Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113.321
Filter
1.
Cell Physiol Biochem ; 58(4): 361-381, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39092504

ABSTRACT

BACKGROUND/AIMS: Traumatic brain injury is a significant public problem with an incidence of 10 million people per year, causing the largest deaths and disabilities worldwide. Head injuries can be classified into primary and secondary head injuries. Secondary head injuries can be caused by several factors such as ischemia, cerebral edema, and neuroinflammation. AIF and MMP-9 are two parameters that can be indicators in measuring the effect of Oleuropein on traumatic brain injury in rats. Oleuropein itself has many activities such as antioxidant, anti-apoptotic, antimicrobial, anti-inflammatory, and neuroprotective. METHODS: Adult male Sprague-Dawley rats (250-350 grams) were exposed to head injury, with or without intraperitoneal administration of Oleuropein. Within 24-72 hours brain tissue was isolated for immunohistochemical analysis, ELISA, and TUNEL. AIF, GFAP, MMP-9, and HMGB-1 levels were determined using immunohistochemistry in both the control and treatment groups. Statistical analysis was made using the One-Way Analysis of Variance (ANOVA) and paired t-test. RESULTS: The results showed that Oleuropein was able to reduce AIF and MMP-9 levels in rats with traumatic brain injury. This indicates that Oleuropein has a neuroprotective effect by reducing inflammation and apoptosis. CONCLUSION: Oleuropein has a potential neuroprotective effect in traumatic brain injury by reducing inflammation and apoptosis. Therefore, Oleuropein can be considered as a potential therapeutic agent for traumatic brain injury in the future.


Subject(s)
Apoptosis Inducing Factor , Brain Injuries, Traumatic , Disease Models, Animal , Iridoid Glucosides , Iridoids , Matrix Metalloproteinase 9 , Rats, Sprague-Dawley , Animals , Iridoid Glucosides/pharmacology , Iridoid Glucosides/therapeutic use , Matrix Metalloproteinase 9/metabolism , Male , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Iridoids/pharmacology , Iridoids/therapeutic use , Rats , Apoptosis Inducing Factor/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , HMGB1 Protein/metabolism , Apoptosis/drug effects , Glial Fibrillary Acidic Protein/metabolism , Brain/metabolism , Brain/pathology , Brain/drug effects
2.
Ulus Travma Acil Cerrahi Derg ; 30(8): 596-602, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092976

ABSTRACT

BACKGROUND: Head trauma is a leading cause of death and disability. While standard treatment protocols exist for severe head trauma, no clear follow-up standards are available for mild head trauma with positive imaging findings in infants and newborns. Although routine follow-up brain computed tomography (CT) imaging is not recommended for children with moderate and mild head trauma, the necessity for follow-up imaging in infants and newborns remains uncertain. METHODS: Our study is a retrospective, observational, and descriptive study. Infants under 1 year old presenting to the emergency department with isolated head trauma were reviewed with the approval of the Ethics Committee of Ankara Etlik City Hospital. Inclusion criteria included presentation to the emergency department, undergoing more than one brain CT scan, and sustaining mild head trauma (Glasgow Coma Scale [GCS] >13). Patients with incomplete follow-up data or multiple traumas were excluded. Age, gender, mechanism of trauma, initial and follow-up brain CT findings, hospital admission, and surgical procedures were recorded and analyzed using the SPSS statistical package. RESULTS: Out of 238 screened patients, 154 were included in the study. Of these, 66.9% were male and the average age was 5.99 months. The most common presenting symptom was swelling at the trauma site, observed in 79.2% of cases. The most common mechanism of injury was falling from a height of less than 90 cm, accounting for 85.1% of cases. Pathological progression on follow-up CT was observed in 5.2% of the patients, and only 1.9% required surgical treatment. A total of 34.4% of the patients required hospitalization. Patients with parenchymal brain pathology had a higher rate of pathological progression on follow-up CT and a longer hospital stay. CONCLUSION: Follow-up CT scans in infants with mild head trauma do not alter patient outcomes except in cases with brain parenchymal pathology. Study data indicated that repeat imaging is not beneficial for isolated skull fractures. Imaging artifacts often necessitated repeated scans, contributing to increased radiation exposure. Unnecessary repeat imaging escalates radiation exposure and healthcare costs. Only a small percentage of patients exhibited progression of intracranial pathology, justifying follow-up imaging solely in the presence of brain parenchymal injury. Larger prospective studies are necessary to confirm these findings.


Subject(s)
Craniocerebral Trauma , Emergency Service, Hospital , Tomography, X-Ray Computed , Humans , Female , Retrospective Studies , Male , Infant , Infant, Newborn , Craniocerebral Trauma/diagnostic imaging , Glasgow Coma Scale , Brain/diagnostic imaging , Brain/pathology
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(8): 953-956, 2024 Aug 10.
Article in Chinese | MEDLINE | ID: mdl-39097278

ABSTRACT

OBJECTIVE: To explore the clinical, imaging, and genetic characteristics of an adult patient with sporadic Neuronal intranuclear inclusion disease (NIID). METHODS: A patient who had visited the First People's Hospital of Chenzhou on August 6, 2023 was selected as the study subject. Results of clinical examination, neuroimaging, and genetic testing were retrospectively analyzed along with a literature review. The number of GGC trinucleotide repeats in the 5'-untranslated region of the NOTCH2NLC gene was determined by GC-PCR. RESULTS: The patient had presented with episodic encephalopathy, with enhanced magnetic resonance imaging showing enhancement features of the posterior cerebral cortex during the period of acute episode. Genetic testing revealed an increased number of GGC repeats (n = 97) in the 5'- untranslated region of the NOTCH2NLC gene, which confirmed the diagnosis of NIID. CONCLUSION: Clinical attention should be paid to the enhanced MRI findings of patients with adult-onset NIID, for whom posterior cortical enhancement may be characteristic manifestation during the acute phase of encephalopathy-like episode.


Subject(s)
Intranuclear Inclusion Bodies , Neurodegenerative Diseases , Humans , Intranuclear Inclusion Bodies/genetics , Neurodegenerative Diseases/genetics , Magnetic Resonance Imaging , Male , Genetic Testing , Female , Middle Aged , Receptor, Notch2/genetics , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Brain/diagnostic imaging , Brain/pathology , Adult
4.
Cell Biol Toxicol ; 40(1): 63, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093513

ABSTRACT

Anesthetic-induced developmental neurotoxicity (AIDN) can arise due to various factors, among which aberrant nerve cell death is a prominent risk factor. Animal studies have reported that repeated or prolonged anesthetic exposure can cause significant neuroapoptosis in the developing brain. Lately, non-apoptotic programmed cell deaths (PCDs), characterized by inflammation and oxidative stress, have gained increasing attention. Substantial evidence suggests that non-apoptotic PCDs are essential for neuronal cell death in AIDN compared to apoptosis. This article examines relevant publications in the PubMed database until April 2024. Only original articles in English that investigated the potential manifestations of non-apoptotic PCD in AIDN were analysed. Specifically, it investigates necroptosis, pyroptosis, ferroptosis, and parthanatos, elucidating the signaling mechanisms associated with each form. Furthermore, this study explores the potential relevance of these non-apoptotic PCDs pathways to the pathological mechanisms underlying AIDN, drawing upon their distinctive characteristics. Despite the considerable challenges involved in translating fundamental scientific knowledge into clinical therapeutic interventions, this comprehensive review offers a theoretical foundation for developing innovative preventive and treatment strategies targeting non-apoptotic PCDs in the context of AIDN.


Subject(s)
Anesthetics , Apoptosis , Neurotoxicity Syndromes , Humans , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/etiology , Animals , Anesthetics/adverse effects , Anesthetics/toxicity , Anesthetics/pharmacology , Apoptosis/drug effects , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Pyroptosis/drug effects , Oxidative Stress/drug effects , Necroptosis/drug effects , Brain/drug effects , Brain/pathology , Brain/growth & development , Ferroptosis/drug effects , Signal Transduction/drug effects
5.
BMC Neurosci ; 25(1): 35, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095700

ABSTRACT

BACKGROUND: There are currently no effective prediction methods for evaluating the occurrence of cognitive impairment in patients with cerebral small vessel disease (CSVD). AIMS: To investigate the risk factors for cognitive dysfunction in patients with CSVD and to construct a risk prediction model. METHODS: A retrospective study was conducted on 227 patients with CSVD. All patients were assessed by brain magnetic resonance imaging (MRI), and the Montreal Cognitive Assessment (MoCA) was used to assess cognitive status. In addition, the patient's medical records were also recorded. The clinical data were divided into a normal cognitive function group and a cognitive impairment group. A MoCA score < 26 (an additional 1 point for education < 12 years) is defined as cognitive dysfunction. RESULTS: A total of 227 patients (mean age 66.7 ± 6.99 years) with CSVD were included in this study, of whom 68.7% were male and 100 patients (44.1%) developed cognitive impairment. Age (OR = 1.070; 95% CI = 1.015 ~ 1.128, p < 0.05), hypertension (OR = 2.863; 95% CI = 1.438 ~ 5.699, p < 0.05), homocysteine(HCY) (OR = 1.065; 95% CI = 1.005 ~ 1.127, p < 0.05), lacunar infarct score(Lac_score) (OR = 2.732; 95% CI = 1.094 ~ 6.825, P < 0.05), and CSVD total burden (CSVD_score) (OR = 3.823; 95% CI = 1.496 ~ 9.768, P < 0.05) were found to be independent risk factors for cognitive decline in the present study. The above 5 variables were used to construct a nomogram, and the model was internally validated by using bootstrapping with a C-index of 0.839. The external model validation C-index was 0.867. CONCLUSIONS: The nomogram model based on brain MR images and clinical data helps in individualizing the probability of cognitive impairment progression in patients with CSVD.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Magnetic Resonance Imaging , Humans , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Male , Female , Aged , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Retrospective Studies , Middle Aged , Risk Factors , Magnetic Resonance Imaging/methods , Mental Status and Dementia Tests , Brain/diagnostic imaging , Brain/pathology
6.
BMC Med Genomics ; 17(1): 194, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095742

ABSTRACT

BACKGROUND: The prognosis of brain injury caused by subarachnoid hemorrhage (SAH) is poor. Previous studies showed that abnormal function of RBPs might be involved in brain injury, neuroinflammation and further affect microglia homeostasis. However, no studies have systematically analyzed the genome-wide abnormal expression of RBPs genes in microglia during SAH. METHODS: RNA-seq data of microglia from the SAH mouse group (SAH) and control sham-operated mouse group (sham) were downloaded from the GEO database in GSE167957, including four samples from the sham group and four samples from the SAH group for subsequent analysis.Utilizing GO and KEGG functional enrichment analyses, we conducted a comprehensive study of differentially expressed genes (DEGs), alternative splicing patterns, and co-expression networks to gain deeper insights into the differential expression of RNA-binding proteins (RBPs) and differential alternative splicing events (ASEs) between the SAH (subarachnoid hemorrhage) and sham groups. This analysis aimed to elucidate the potential mechanisms underlying the aberrant expression of RBPs in microglia during brain injury caused by SAH. RESULTS: ASEs and co-expression analyses of differentially expressed RBPs and differential ASEs were carried out in microglia in terms of gene expression. GO and KEGG functional enrichment analysis showed that aberrantly expressed RBPs such as Mcm7, Mtdh, SRSF3, and Hnrnpa2b1 may affect and regulate downstream Csnk1d, Uckl1 and other protein phosphorylation-related genes by alterative splicing. CONCLUSION: RBPs were aberrantly expressed in microglia during the development of brain injury secondary to SAH, regulating alterative splicing of downstream genes and influencing the progression of SAH brain injury in this study. This implies that RBPs are important for the identification of new therapeutic targets for brain injury after SAH.


Subject(s)
Microglia , RNA-Binding Proteins , Subarachnoid Hemorrhage , Animals , Microglia/metabolism , Microglia/pathology , Mice , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Alternative Splicing , Brain/metabolism , Brain/pathology , Gene Expression Profiling , Gene Regulatory Networks , Gene Expression Regulation
7.
Genome Med ; 16(1): 95, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095897

ABSTRACT

BACKGROUND: Ischemic stroke elicits a complex and sustained immune response in the brain. Immunomodulatory treatments have long held promise for improving stroke outcomes, yet none have succeeded in the clinical setting. This lack of success is largely due to our incomplete understanding of how immune cells respond to stroke. The objective of the current study was to dissect the effect of permanent stroke on microglia, the resident immune cells within the brain parenchyma. METHODS: A permanent middle cerebral artery occlusion (pMCAO) model was used to induce ischemic stroke in young male and female mice. Microglia were sorted from fluorescence reporter mice after pMCAO or sham surgery and then subjected to single-cell RNA sequencing analysis. Various methods, including flow cytometry, RNA in situ hybridization, immunohistochemistry, whole-brain imaging, and bone marrow transplantation, were also employed to dissect the microglial response to stroke. Stroke outcomes were evaluated by infarct size and behavioral tests. RESULTS: First, we showed the morphologic and spatial changes in microglia after stroke. We then performed single-cell RNA sequencing analysis on microglia isolated from sham and stroke mice of both sexes. The data indicate no major sexual dimorphism in the microglial response to permanent stroke. Notably, we identified seven potential stroke-associated microglial clusters, including four major clusters characterized by a disease-associated microglia-like signature, a highly proliferative state, a macrophage-like profile, and an interferon (IFN) response signature, respectively. Importantly, we provided evidence that the macrophage-like cluster may represent the long-sought stroke-induced microglia subpopulation with increased CD45 expression. Lastly, given that the IFN-responsive subset constitutes the most prominent microglial population in the stroke brain, we used fludarabine to pharmacologically target STAT1 signaling and found that fludarabine treatment improved long-term stroke outcome. CONCLUSIONS: Our findings shed new light on microglia heterogeneity in stroke pathology and underscore the potential of targeting specific microglial populations for effective stroke therapies.


Subject(s)
Brain , Ischemic Stroke , Microglia , Animals , Microglia/metabolism , Microglia/pathology , Female , Male , Mice , Ischemic Stroke/pathology , Ischemic Stroke/metabolism , Brain/pathology , Brain/metabolism , Disease Models, Animal , Single-Cell Analysis , Infarction, Middle Cerebral Artery/pathology , Mice, Inbred C57BL
8.
Transl Neurodegener ; 13(1): 39, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095921

ABSTRACT

BACKGROUND: Deoxyribonuclease 2 (DNase II) plays a key role in clearing cytoplasmic double-stranded DNA (dsDNA). Deficiency of DNase II leads to DNA accumulation in the cytoplasm. Persistent dsDNA in neurons is an early pathological hallmark of senescence and neurodegenerative diseases including Alzheimer's disease (AD). However, it is not clear how DNase II and neuronal cytoplasmic dsDNA influence neuropathogenesis. Tau hyperphosphorylation is a key factor for the pathogenesis of AD. The effect of DNase II and neuronal cytoplasmic dsDNA on neuronal tau hyperphosphorylation remains unclarified. METHODS: The levels of neuronal DNase II and dsDNA in WT and Tau-P301S mice of different ages were measured by immunohistochemistry and immunolabeling, and the levels of DNase II in the plasma of AD patients were measured by ELISA. To investigate the impact of DNase II on tauopathy, the levels of phosphorylated tau, phosphokinase, phosphatase, synaptic proteins, gliosis and proinflammatory cytokines in the brains of neuronal DNase II-deficient WT mice, neuronal DNase II-deficient Tau-P301S mice and neuronal DNase II-overexpressing Tau-P301S mice were evaluated by immunolabeling, immunoblotting or ELISA. Cognitive performance was determined using the Morris water maze test, Y-maze test, novel object recognition test and open field test. RESULTS: The levels of DNase II were significantly decreased in the brains and the plasma of AD patients. DNase II also decreased age-dependently in the neurons of WT and Tau-P301S mice, along with increased dsDNA accumulation in the cytoplasm. The DNA accumulation induced by neuronal DNase II deficiency drove tau phosphorylation by upregulating cyclin-dependent-like kinase-5 (CDK5) and calcium/calmodulin activated protein kinase II (CaMKII) and downregulating phosphatase protein phosphatase 2A (PP2A). Moreover, DNase II knockdown induced and significantly exacerbated neuron loss, neuroinflammation and cognitive deficits in WT and Tau-P301S mice, respectively, while overexpression of neuronal DNase II exhibited therapeutic benefits. CONCLUSIONS: DNase II deficiency and cytoplasmic dsDNA accumulation can initiate tau phosphorylation, suggesting DNase II as a potential therapeutic target for tau-associated disorders.


Subject(s)
Alzheimer Disease , Endodeoxyribonucleases , Neurons , tau Proteins , Animals , tau Proteins/metabolism , tau Proteins/genetics , Phosphorylation , Mice , Neurons/metabolism , Neurons/pathology , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Alzheimer Disease/pathology , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/deficiency , Endodeoxyribonucleases/metabolism , Mice, Transgenic , DNA/genetics , Male , Female , Brain/metabolism , Brain/pathology , Mice, Inbred C57BL
9.
J Clin Invest ; 134(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087478

ABSTRACT

Most cases of human prion disease arise due to spontaneous misfolding of WT or mutant prion protein, yet recapitulating this event in animal models has proven challenging. It remains unclear whether spontaneous prion generation can occur within the mouse lifespan in the absence of protein overexpression and how disease-causing mutations affect prion strain properties. To address these issues, we generated knockin mice that express the misfolding-prone bank vole prion protein (BVPrP). While mice expressing WT BVPrP (I109 variant) remained free from neurological disease, a subset of mice expressing BVPrP with mutations (D178N or E200K) causing genetic prion disease developed progressive neurological illness. Brains from spontaneously ill knockin mice contained prion disease-specific neuropathological changes as well as atypical protease-resistant BVPrP. Moreover, brain extracts from spontaneously ill D178N- or E200K-mutant BVPrP-knockin mice exhibited prion seeding activity and transmitted disease to mice expressing WT BVPrP. Surprisingly, the properties of the D178N- and E200K-mutant prions appeared identical before and after transmission, suggesting that both mutations guide the formation of a similar atypical prion strain. These findings imply that knockin mice expressing mutant BVPrP spontaneously develop a bona fide prion disease and that mutations causing prion diseases may share a uniform initial mechanism of action.


Subject(s)
Disease Models, Animal , Gene Knock-In Techniques , Mice, Transgenic , Prion Diseases , Prion Proteins , Animals , Mice , Prion Diseases/genetics , Prion Diseases/pathology , Prion Diseases/metabolism , Prion Proteins/genetics , Prion Proteins/metabolism , Brain/metabolism , Brain/pathology , Mutation, Missense , Humans , Arvicolinae/genetics , Arvicolinae/metabolism , Amino Acid Substitution , Prions/genetics , Prions/metabolism , Protein Folding
10.
Acta Neuropathol ; 148(1): 20, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147931

ABSTRACT

Cotton wool plaques (CWPs) have been described as features of the neuropathologic phenotype of dominantly inherited Alzheimer disease (DIAD) caused by some missense and deletion mutations in the presenilin 1 (PSEN1) gene. CWPs are round, eosinophilic amyloid-ß (Aß) plaques that lack an amyloid core and are recognizable, but not fluorescent, in Thioflavin S (ThS) preparations. Amino-terminally truncated and post-translationally modified Aß peptide species are the main component of CWPs. Tau immunopositive neurites may be present in CWPs. In addition, neurofibrillary tangles coexist with CWPs. Herein, we report the structure of Aß and tau filaments isolated from brain tissue of individuals affected by DIAD caused by the PSEN1 V261I and A431E mutations, with the CWP neuropathologic phenotype. CWPs are predominantly composed of type I Aß filaments present in two novel arrangements, type Ic and type Id; additionally, CWPs contain type I and type Ib Aß filaments. Tau filaments have the AD fold, which has been previously reported in sporadic AD and DIAD. The formation of type Ic and type Id Aß filaments may be the basis for the phenotype of CWPs. Our data are relevant for the development of PET imaging methodologies to best detect CWPs in DIAD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Plaque, Amyloid , Presenilin-1 , tau Proteins , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , tau Proteins/metabolism , tau Proteins/genetics , Amyloid beta-Peptides/metabolism , Presenilin-1/genetics , Brain/pathology , Brain/metabolism , Brain/diagnostic imaging , Mutation , Female , Male
11.
Neurology ; 103(5): e209764, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39151102

ABSTRACT

BACKGROUND AND OBJECTIVES: Childhood cerebral adrenoleukodystrophy (C-ALD) is a severe inflammatory demyelinating disease that must be treated at an early stage to prevent permanent brain injury and neurocognitive decline. In standard clinical practice, C-ALD lesions are detected and characterized by a neuroradiologist reviewing anatomical MRI scans. We aimed to assess whether diffusion tensor imaging (DTI) is sensitive to the presence and severity of C-ALD lesions and to investigate associations with neurocognitive outcomes after hematopoietic cell therapy (HCT). METHODS: In this retrospective cohort study, we analyzed high-resolution anatomical MRI, DTI, and neurocognitive assessments from boys with C-ALD undergoing HCT at the University of Minnesota between 2011 and 2021. Longitudinal DTI data were compared with an age-matched group of boys with ALD and no lesion (NL-ALD). DTI metrics were obtained for atlas-based regions of interest (ROIs) within 3 subdivisions of the corpus callosum (CC), corticospinal tract (CST), and total white matter (WM). Between-group baseline and slope differences in fractional anisotropy (FA) and axial (AD), radial (RD), and mean (MD) diffusivities were compared using analysis of covariance accounting for age, MRI severity (Loes score), and lesion location. RESULTS: Among patients with NL-ALD (n = 14), stable or increasing FA, stable AD, and stable or decreasing RD and MD were generally observed during the 1-year study period across all ROIs. In comparison, patients with mild posterior lesions (Loes 1-2; n = 13) demonstrated lower baseline FA in the CC splenium (C-ALD 0.50 ± 0.08 vs NL-ALD 0.58 ± 0.04; pBH = 0.022 adjusted Benjamini-Hochberg p-value), lower baseline AD across ROIs (e.g., C-ALD 1.34 ± 0.03 ×10-9 m2/s in total WM vs NL-ALD 1.38 ± 0.04 ×10-9 m2/s; pBH = 0.005), lower baseline RD in CC body and CST, and lower baseline MD across ROIs except CC splenium. Longitudinal slopes in CC splenium showed high sensitivity and specificity in differentiating early C-ALD from NL-ALD. Among all patients with C-ALD (n = 38), baseline Loes scores and DTI metrics were associated with post-HCT neurocognitive functions, including processing speed (e.g., FA WM Spearman correlation coefficient R = 0.64) and visual-motor integration (e.g., FA WM R = 0.71). DISCUSSION: DTI was sensitive to lesion presence and severity as well as clinical neurocognitive effects of C-ALD. DTI metrics quantify C-ALD even at an early stage.


Subject(s)
Adrenoleukodystrophy , Corpus Callosum , Diffusion Tensor Imaging , White Matter , Humans , Male , Adrenoleukodystrophy/diagnostic imaging , Adrenoleukodystrophy/complications , Child , Retrospective Studies , White Matter/diagnostic imaging , White Matter/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Adolescent , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Child, Preschool , Hematopoietic Stem Cell Transplantation , Neuropsychological Tests , Cohort Studies , Brain/diagnostic imaging , Brain/pathology
12.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39152671

ABSTRACT

Metabolic syndrome has been associated with reduced brain white matter integrity in older individuals. However, less is known about how metabolic syndrome might impact white matter integrity in younger populations. This study examined metabolic syndrome-related global and regional white matter integrity differences in a sample of 537 post-9/11 Veterans. Metabolic syndrome was defined as ≥3 factors of: increased waist circumference, hypertriglyceridemia, low high-density lipoprotein cholesterol, hypertension, and high fasting glucose. T1 and diffusion weighted 3 T MRI scans were processed using the FreeSurfer image analysis suite and FSL Diffusion Toolbox. Atlas-based regions of interest were determined from a combination of the Johns Hopkins University atlas and a Tract-Based Spatial Statistics-based FreeSurfer WMPARC white matter skeleton atlas. Analyses revealed individuals with metabolic syndrome (n = 132) had significantly lower global fractional anisotropy than those without metabolic syndrome (n = 405), and lower high-density lipoprotein cholesterol levels was the only metabolic syndrome factor significantly related to lower global fractional anisotropy levels. Lobe-specific analyses revealed individuals with metabolic syndrome had decreased fractional anisotropy in frontal white matter regions compared with those without metabolic syndrome. These findings indicate metabolic syndrome is prevalent in this sample of younger Veterans and is related to reduced frontal white matter integrity. Early intervention for metabolic syndrome may help alleviate adverse metabolic syndrome-related brain and cognitive effects with age.


Subject(s)
Metabolic Syndrome , Veterans , White Matter , Humans , Metabolic Syndrome/pathology , Metabolic Syndrome/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Male , Female , Middle Aged , Adult , Brain/diagnostic imaging , Brain/pathology , Young Adult , Magnetic Resonance Imaging , Anisotropy , Diffusion Tensor Imaging/methods , September 11 Terrorist Attacks
13.
J Cell Mol Med ; 28(16): e70008, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39153195

ABSTRACT

Blood-brain barrier (BBB) disruption is a major pathophysiological event of ischemic stroke. Brain microvascular endothelial cells are critical to maintain homeostasis between central nervous system and periphery. Resveratrol protects against ischemic stroke. 3,3',4,5'-tetramethoxy-trans-stilbene (3,3',4,5'-TMS) and 3,4',5-trimethoxy-trans-stilbene (3,4',5-TMS) are resveratrol derivatives with addition of methoxy groups, showing better pharmacokinetic performance. We aimed to explore their protective effects and underlying mechanisms. Oxygen-glucose deprivation (OGD) model was applied in bEnd.3 cell line, mouse brain microvascular endothelium to mimic ischemia. The cells were pre-treated with 3,3',4,5'-TMS or 3,4',5-TMS (1 and 5 µM, 24 h) and then subjected to 2-h OGD injury. Cell viability, levels of proinflammatory cytokines and reactive oxygen species (ROS), and protein expressions were measured by molecular assays and fluorescence staining. OGD injury triggered cell death, inflammatory responses, ROS production and nuclear factor-kappa B (NF-κB) signalling pathway. These impairments were remarkably attenuated by the two stilbenes, 3,3',4,5'-TMS and 3,4',5-TMS. They also alleviated endothelial barrier injuries through upregulating the expression of tight junction proteins. Moreover, 3,3',4,5'-TMS and 3,4',5-TMS activated 5' adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Overall, 3,3',4,5'-TMS and 3,4',5-TMS exert protective effects against OGD damage through suppressing cell death, inflammatory responses, oxidative stress, as well as BBB disruption on bEnd.3 cells.


Subject(s)
Brain , Cell Survival , Endothelial Cells , Glucose , Oxygen , Reactive Oxygen Species , Stilbenes , Stilbenes/pharmacology , Animals , Glucose/metabolism , Mice , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Reactive Oxygen Species/metabolism , Oxygen/metabolism , Cell Line , Brain/metabolism , Brain/drug effects , Brain/pathology , Cell Survival/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Oxidative Stress/drug effects , Cytokines/metabolism , Signal Transduction/drug effects , Cell Hypoxia/drug effects
14.
Acta Neuropathol Commun ; 12(1): 135, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154163

ABSTRACT

Progressive supranuclear palsy (PSP) is a neurodegenerative movement and cognitive disorder characterized by abnormal accumulation of the microtubule-associated protein tau in the brain. Biochemically, inclusions in PSP are enriched for tau proteoforms with four microtubule-binding domain repeats (4R), an isoform that arises from alternative tau pre-mRNA splicing. While preferential aggregation and reduced degradation of 4R tau protein is thought to play a role in inclusion formation and toxicity, an alternative hypothesis is that altered expression of tau mRNA isoforms plays a causal role. This stems from the observation that PSP is associated with common variation in the tau gene (MAPT) at the 17q21.31 locus which contains low copy number repeats flanking a large recurrent genomic inversion. The complex genomic structural changes at the locus give rise to two dominant haplotypes, termed H1 and H2, that have the potential to markedly influence gene expression. Here, we explored haplotype-dependent differences in gene expression using a bulk RNA-seq dataset derived from human post-mortem brain tissue from PSP (n = 84) and controls (n = 77) using a rigorous computational pipeline, including alternative pre-mRNA splicing. We found 3579 differentially expressed genes in the temporal cortex and 10,011 in the cerebellum. We also found 7214 differential splicing events in the temporal cortex and 18,802 in the cerebellum. In the cerebellum, total tau mRNA levels and the proportion of transcripts encoding 4R tau were significantly increased in PSP compared to controls. In the temporal cortex, the proportion of reads that expressed 4R tau was increased in cases compared to controls. 4R tau mRNA levels were significantly associated with the H1 haplotype in the temporal cortex. Further, we observed a marked haplotype-dependent difference in KANSL1 expression that was strongly associated with H1 in both brain regions. These findings support the hypothesis that sporadic PSP is associated with haplotype-dependent increases in 4R tau mRNA that might play a causal role in this disorder.


Subject(s)
Haplotypes , Supranuclear Palsy, Progressive , Transcriptome , tau Proteins , Humans , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/pathology , Supranuclear Palsy, Progressive/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Aged , Male , Female , Aged, 80 and over , Brain/metabolism , Brain/pathology , Middle Aged
15.
J Neuroinflammation ; 21(1): 202, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154174

ABSTRACT

Growing evidence has implicated systemic infection as a significant risk factor for the development and advancement of Alzheimer's disease (AD). With the emergence of SARS-CoV-2 (COVID-19) and the resultant pandemic, many individuals from the same aging population vulnerable to AD suffered a severe systemic infection with potentially unidentified long-term consequences for survivors. To study the impact of COVID-19 survival on the brain's intrinsic immune system in a population also suffering from AD, we profiled post-mortem brain tissue from patients in the UF Neuromedicine Human Brain and Tissue Bank with a diagnosis of AD who survived a COVID-19 infection (COVID-AD) and contrasted our findings with AD patients who did not experience a COVID-19 infection, including a group of brain donors who passed away before arrival of SARS-CoV-2 in the United States. We assessed disease-relevant protein pathology and microglial and astrocytic markers by quantitative immunohistochemistry and supplemented these data with whole tissue gene expression analysis performed on the NanoString nCounter® platform. COVID-AD patients showed slightly elevated Aß burden in the entorhinal, fusiform, and inferior temporal cortices compared to non-COVID-AD patients, while tau pathology burden did not differ between groups. Analysis of microglia revealed a significant loss of microglial homeostasis as well as exacerbated microgliosis in COVID-AD patients compared to non-COVID-AD patients in a brain region-dependent manner. Furthermore, COVID-AD patients showed reduced cortical astrocyte numbers, independent of functional subtype. Transcriptomic analysis supported these histological findings and, in addition, identified a dysregulation of oligodendrocyte and myelination pathways in the hippocampus of COVID-AD patients. In summary, our data demonstrate a profound impact of COVID-19 infection on neuroimmune and glial pathways in AD patients persisting for months post-infection, highlighting the importance of peripheral to central neuroimmune crosstalk in neurodegenerative diseases.


Subject(s)
Alzheimer Disease , COVID-19 , Homeostasis , Humans , COVID-19/immunology , COVID-19/complications , COVID-19/pathology , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Male , Female , Aged , Aged, 80 and over , Homeostasis/physiology , Brain/pathology , Brain/immunology , Brain/metabolism , Neuroimmunomodulation/physiology , Microglia/immunology , Microglia/metabolism , Microglia/pathology , Middle Aged , SARS-CoV-2 , Astrocytes/metabolism , Astrocytes/immunology , Astrocytes/pathology
16.
IEEE J Transl Eng Health Med ; 12: 569-579, 2024.
Article in English | MEDLINE | ID: mdl-39155922

ABSTRACT

Brain microstructural changes already occur in the earliest phases of Alzheimer's disease (AD) as evidenced in diffusion magnetic resonance imaging (dMRI) literature. This study investigates the potential of the novel dMRI Apparent Measures Using Reduced Acquisitions (AMURA) as imaging markers for capturing such tissue modifications.Tract-based spatial statistics (TBSS) and support vector machines (SVMs) based on different measures were exploited to distinguish between amyloid-beta/tau negative (A[Formula: see text]-/tau-) and A[Formula: see text]+/tau+ or A[Formula: see text]+/tau- subjects. Moreover, eXplainable Artificial Intelligence (XAI) was used to highlight the most influential features in the SVMs classifications and to validate the results by seeing the explanations' recurrence across different methods.TBSS analysis revealed significant differences between A[Formula: see text]-/tau- and other groups in line with the literature. The best SVM classification performance reached an accuracy of 0.73 by using advanced measures compared to more standard ones. Moreover, the explainability analysis suggested the results' stability and the central role of the cingulum to show early sign of AD.By relying on SVM classification and XAI interpretation of the outcomes, AMURA indices can be considered viable markers for amyloid and tau pathology. Clinical impact: This pre-clinical research revealed AMURA indices as viable imaging markers for timely AD diagnosis by acquiring clinically feasible dMR images, with advantages compared to more invasive methods employed nowadays.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Brain , Support Vector Machine , tau Proteins , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , tau Proteins/metabolism , tau Proteins/analysis , Amyloid beta-Peptides/metabolism , Male , Female , Aged , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism , Image Interpretation, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods
17.
Parasitol Res ; 123(8): 303, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39160298

ABSTRACT

This study investigates the efficacy of nebivolol (NBV) in experimental models of toxoplasmosis, focusing on parasite burden reduction and neuronal protection. In the acute model of experimental toxoplasmosis, Swiss mice infected with RH strain tachyzoites received oral NBV chlorhydrate doses of 2 mg/kg/day and 4 mg/kg/day for 8 days. Treatment with NBV significantly reduced parasite burden compared to vehicle and standard drug (PYR) groups. In the chronic model of experimental toxoplasmosis, C57/BL6 mice infected with the ME49 strain received NBV chlorhydrate 41 days post-infection and were evaluated after 10 days of treatment. NBV chlorhydrate effectively reduced cyst number and area, as well as bradyzoite burden compared to controls. Histological analysis demonstrated that NBV chlorhydrate preserved neuronal count, with the 4 mg/kg/day dose yielding counts similar to non-infected mice. Statistical analysis confirmed significant differences compared to control groups. Furthermore, immunohistochemical analysis revealed a significant reduction in iNOS labeling in the brains of mice treated with NBV chlorhydrate, indicating a decrease in nitric oxide production compared to control groups. These findings suggest NBV's potential as a promising candidate for toxoplasmosis treatment, highlighting its ability to reduce parasite burden and protect neuronal integrity. Further research is warranted to elucidate NBV's mechanisms of action and its clinical application in managing toxoplasmosis.


Subject(s)
Brain , Disease Models, Animal , Mice, Inbred C57BL , Nebivolol , Parasite Load , Toxoplasmosis, Animal , Animals , Nebivolol/pharmacology , Nebivolol/therapeutic use , Mice , Toxoplasmosis, Animal/drug therapy , Toxoplasmosis, Animal/parasitology , Brain/parasitology , Brain/pathology , Brain/drug effects , Female , Neurons/drug effects , Neurons/parasitology , Ethanolamines/pharmacology , Ethanolamines/therapeutic use , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Treatment Outcome , Nitric Oxide/metabolism , Toxoplasma/drug effects , Nitric Oxide Synthase Type II/metabolism
18.
Sci Rep ; 14(1): 19049, 2024 08 17.
Article in English | MEDLINE | ID: mdl-39152190

ABSTRACT

Patients recovering from COVID-19 commonly exhibit cognitive and brain alterations, yet the specific neuropathological mechanisms and risk factors underlying these alterations remain elusive. Given the significant global incidence of COVID-19, identifying factors that can distinguish individuals at risk of developing brain alterations is crucial for prioritizing follow-up care. Here, we report findings from a sample of patients consisting of 73 adults with a mild to moderate SARS-CoV-2 infection without signs of respiratory failure and 27 with infections attributed to other agents and no history of COVID-19. The participants underwent cognitive screening, a decision-making task, and MRI evaluations. We assessed for the presence of anosmia and the requirement for hospitalization. Groups did not differ in age or cognitive performance. Patients who presented with anosmia exhibited more impulsive alternative changes after a shift in probabilities (r = - 0.26, p = 0.001), while patients who required hospitalization showed more perseverative choices (r = 0.25, p = 0.003). Anosmia correlated with brain measures, including decreased functional activity during the decision-making task, thinning of cortical thickness in parietal regions, and loss of white matter integrity. Hence, anosmia could be a factor to be considered when identifying at-risk populations for follow-up.


Subject(s)
Anosmia , Brain , COVID-19 , Magnetic Resonance Imaging , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/psychology , COVID-19/physiopathology , COVID-19/diagnostic imaging , COVID-19/pathology , Anosmia/etiology , Anosmia/physiopathology , Male , Female , Middle Aged , Adult , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , SARS-CoV-2/isolation & purification , Aged , Decision Making , Cognition/physiology
19.
J Cell Mol Med ; 28(15): e18528, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099086

ABSTRACT

Huanglian Jiedu decoction (HLJD) has been used to treat ischemic stroke in clinic. However, the detailed protective mechanisms of HLJD on ischemic stroke have yet to be elucidated. The aim of this study is to elucidate the underlying pharmacological mechanisms of HLJD based on the inhibition of neuroinflammation and the amelioration of nerve cell damage. A middle cerebral artery occlusion reperfusion (MCAO/R) model was established in rats and received HLJD treatment. Effects of HLJD on neurological function was assessed based on Bederson's score, postural reflex test and asymmetry score. 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining, Hematein and eosin (HE) and Nissl staining were used to observe the pathological changes in brain. Then, transcriptomics was used to screen the differential genes in brain tissue in MCAO/R model rats following HLJD intervention. Subsequently, the effects of HLJD on neutrophil extracellular trap (NET) formation-related neuroinflammation, gamma-aminobutyric acid (GABA)ergic synapse activation, nerve cell damage and proliferation were validated using immunofluorescence, western blot and enzyme-linked immunosorbent assay (ELISA). Our results showed that HLJD intervention reduced the Bederson's score, postural reflex test score and asymmetry score in MCAO/R model rats. Pathological staining indicated that HLJD treatment decreased the cerebral infarction area, mitigated neuronal damage and increased the numbers of Nissl bodies. Transcriptomics suggested that HLJD affected 435 genes in MCAO/R rats. Among them, several genes involving in NET formation and GABAergic synapses pathways were dysregulated. Subsequent experimental validation showed that HLJD reduced the MPO+CitH3+ positive expression area, reduced the protein expression of PAD4, p-P38/P38, p-ERK/ERK and decreased the levels of IL-1ß, IL-6 and TNF-α, reversed the increase of Iba1+TLR4+, Iba1+p65+ and Iba1+NLRP3+ positive expression area in brain. Moreover, HLJD increased GABA levels, elevated the protein expression of GABRG1 and GAT3, decreased the TUNEL positive expression area and increased the Ki67 positive expression area in brain. HLJD intervention exerts a multifaceted positive impact on ischemia-induced cerebral injury in MCAO/R rats. This intervention effectively inhibits neuroinflammation by mitigating NET formation, and concurrently improves nerve cell damage and fosters nerve cell proliferation through activating GABAergic synapses.


Subject(s)
Brain Ischemia , Drugs, Chinese Herbal , Rats, Sprague-Dawley , Synapses , Animals , Drugs, Chinese Herbal/pharmacology , Rats , Male , Synapses/drug effects , Synapses/metabolism , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Disease Models, Animal , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , gamma-Aminobutyric Acid/metabolism , Infarction, Middle Cerebral Artery/complications , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/complications , Neuroprotective Agents/pharmacology , Brain/pathology , Brain/metabolism , Brain/drug effects
20.
Brain Behav ; 14(8): e3643, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099405

ABSTRACT

INTRODUCTION: Emerging evidence illustrates that temporal lobe epilepsy (TLE) involves network disruptions represented by hyperexcitability and other seizure-related neural plasticity. However, these associations are not well-characterized. Our study characterizes the whole brain white matter connectome abnormalities in TLE patients compared to healthy controls (HCs) from the prospective Epilepsy Connectome Project study. Furthermore, we assessed whether aberrant white matter connections are differentially related to cognitive impairment and a history of focal-to-bilateral tonic-clonic (FBTC) seizures. METHODS: Multi-shell connectome MRI data were preprocessed using the DESIGNER guidelines. The IIT Destrieux gray matter atlas was used to derive the 162 × 162 structural connectivity matrices (SCMs) using MRTrix3. ComBat data harmonization was applied to harmonize the SCMs from pre- and post-scanner upgrade acquisitions. Threshold-free network-based statistics were used for statistical analysis of the harmonized SCMs. Cognitive impairment status and FBTC seizure status were then correlated with these findings. RESULTS: We employed connectome measurements from 142 subjects, including 92 patients with TLE (36 males, mean age = 40.1 ± 11.7 years) and 50 HCs (25 males, mean age = 32.6 ± 10.2 years). Our analysis revealed overall significant decreases in cross-sectional area (CSA) of the white matter tract in TLE group compared to controls, indicating decreased white matter tract integrity and connectivity abnormalities in addition to apparent differences in graph theoretic measures of connectivity and network-based statistics. Focal and generalized cognitive impaired TLE patients showcased higher trend-level abnormalities in the white matter connectome via decreased CSA than those with no cognitive impairment. Patients with a positive FBTC seizure history also showed trend-level findings of association via decreased CSA. CONCLUSIONS: Widespread global aberrant white matter connectome changes were observed in TLE patients and characterized by seizure history and cognitive impairment, laying a foundation for future studies to expand on and validate the novel biomarkers and further elucidate TLE's impact on brain plasticity.


Subject(s)
Connectome , Epilepsy, Temporal Lobe , Magnetic Resonance Imaging , White Matter , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/pathology , Male , White Matter/diagnostic imaging , White Matter/pathology , Female , Adult , Middle Aged , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/pathology , Prospective Studies , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL