Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.695
1.
J Mol Neurosci ; 74(2): 54, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760510

This article discusses a rare case of coexistent meningiomas and Primary familial brain calcification (PFBC). PFBC is a neurodegenerative disease characterized by brain calcifications and a variety of neuropsychiatric symptoms and signs, with pathogenic variants in specific genes. The study explores the potential link between PFBC and meningiomas, highlighting shared features like intralesional calcifications and common genes such as MEA6. The article also revisits PFBC patients developing other brain tumors, particularly gliomas, emphasizing the intersection of oncogenes like PDGFB and PDGFRB in both calcifications and tumor progression. In recent investigations, attention has extended beyond brain tumors to breast cancer metastasis, unveiling a noteworthy connection. These findings suggest a broader connection between brain calcifications and tumors, encouraging a reevaluation of therapeutic approaches for PFBC.


Brain Neoplasms , Calcinosis , Meningioma , Humans , Calcinosis/genetics , Calcinosis/pathology , Meningioma/genetics , Meningioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Female , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Brain Diseases/genetics , Brain Diseases/pathology , Brain Diseases/metabolism
2.
Int J Mol Sci ; 25(10)2024 May 11.
Article En | MEDLINE | ID: mdl-38791281

In recent years, particular attention has been paid to the serotonin 4 receptor, which is well expressed in the brain, but also peripherally in various organs. The cerebral distribution of this receptor is well conserved across species, with high densities in the basal ganglia, where they are expressed by GABAergic neurons. The 5-HT4 receptor is also present in the cerebral cortex, hippocampus, and amygdala, where they are carried by glutamatergic or cholinergic neurons. Outside the central nervous system, the 5-HT4 receptor is notably expressed in the gastrointestinal tract. The wide distribution of the 5-HT4 receptor undoubtedly contributes to its involvement in a plethora of functions. In addition, the modulation of this receptor influences the release of serotonin, but also the release of other neurotransmitters such as acetylcholine and dopamine. This is a considerable asset, as the modulation of the 5-HT4 receptor can therefore play a direct or indirect beneficial role in various disorders. One of the main advantages of this receptor is that it mediates a much faster antidepressant and anxiolytic action than classical selective serotonin reuptake inhibitors. Another major benefit of the 5-HT4 receptor is that its activation enhances cognitive performance, probably via the release of acetylcholine. The expression of the 5-HT4 receptor is also altered in various eating disorders, and its activation by the 5-HT4 agonist negatively regulates food intake. Additionally, although the cerebral expression of this receptor is modified in certain movement-related disorders, it is still yet to be determined whether this receptor plays a key role in their pathophysiology. Finally, there is no longer any need to demonstrate the value of 5-HT4 receptor agonists in the pharmacological management of gastrointestinal disorders.


Receptors, Serotonin, 5-HT4 , Humans , Receptors, Serotonin, 5-HT4/metabolism , Animals , Brain Diseases/metabolism , Brain Diseases/drug therapy , Serotonin 5-HT4 Receptor Agonists/pharmacology , Brain/metabolism
3.
Drug Des Devel Ther ; 18: 1349-1368, 2024.
Article En | MEDLINE | ID: mdl-38681208

Background: Sepsis is recognized as a multiorgan and systemic damage caused by dysregulated host response to infection. Its acute systemic inflammatory response highly resembles that of lipopolysaccharide (LPS)-induced endotoxemia. Propofol and dexmedetomidine are two commonly used sedatives for mechanical ventilation in critically ill patients and have been reported to alleviate cognitive impairment in many diseases. In this study, we aimed to explore and compare the effects of propofol and dexmedetomidine on the encephalopathy induced by endotoxemia and to investigate whether ferroptosis is involved, finally providing experimental evidence for multi-drug combination in septic sedation. Methods: A total of 218 C57BL/6J male mice (20-25 g, 6-8 weeks) were used. Morris water maze (MWM) tests were performed to evaluate whether propofol and dexmedetomidine attenuated LPS-induced cognitive deficits. Brain injury was evaluated using Nissl and Fluoro-Jade C (FJC) staining. Neuroinflammation was assessed by dihydroethidium (DHE) and DCFH-DA staining and by measuring the levels of three cytokines. The number of Iba1+ and GFAP+ cells was used to detect the activation of microglia and astrocytes. To explore the involvement of ferroptosis, the levels of ptgs2 and chac1; the content of iron, malondialdehyde (MDA), and glutathione (GSH); and the expression of ferroptosis-related proteins were investigated. Conclusion: The single use of propofol and dexmedetomidine mitigated LPS-induced cognitive impairment, while the combination showed poor performance. In alleviating endotoxemic neural loss and degeneration, the united sedative group exhibited the most potent capability. Both propofol and dexmedetomidine inhibited neuroinflammation, while propofol's effect was slightly weaker. All sedative groups reduced the neural apoptosis, inhibited the activation of microglia and astrocytes, and relieved neurologic ferroptosis. The combined group was most prominent in combating genetic and biochemical alterations of ferroptosis. Fpn1 may be at the core of endotoxemia-related ferroptosis activation.


Dexmedetomidine , Endotoxemia , Ferroptosis , Lipopolysaccharides , Mice, Inbred C57BL , Propofol , Dexmedetomidine/pharmacology , Animals , Propofol/pharmacology , Ferroptosis/drug effects , Mice , Male , Endotoxemia/drug therapy , Endotoxemia/metabolism , Endotoxemia/chemically induced , Lipopolysaccharides/pharmacology , Dose-Response Relationship, Drug , Brain Diseases/drug therapy , Brain Diseases/metabolism , Brain Diseases/pathology , Hypnotics and Sedatives/pharmacology
4.
Cell Calcium ; 120: 102882, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631162

Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.


Astrocytes , Brain , Astrocytes/metabolism , Humans , Hydrogen-Ion Concentration , Animals , Brain/metabolism , Brain Diseases/metabolism , Brain Diseases/pathology , Homeostasis
5.
Redox Biol ; 70: 103061, 2024 Apr.
Article En | MEDLINE | ID: mdl-38341954

RATIONALE: MER proto-oncogene tyrosine kinase (MerTK) is a key receptor for the clearance of apoptotic cells (efferocytosis) and plays important roles in redox-related human diseases. We will explore MerTK biology in human cells, tissues, and diseases based on big data analytics. METHODS: The human RNA-seq and scRNA-seq data about 42,700 samples were from NCBI Gene Expression Omnibus and analyzed by QIAGEN Ingenuity Pathway Analysis (IPA) with about 170,000 crossover analysis. MerTK expression was quantified as Log2 (FPKM + 0.1). RESULTS: We found that, in human cells, MerTK is highly expressed in macrophages, monocytes, progenitor cells, alpha-beta T cells, plasma B cells, myeloid cells, and endothelial cells (ECs). In human tissues, MerTK has higher expression in plaque, blood vessels, heart, liver, sensory system, artificial tissue, bone, adrenal gland, central nervous system (CNS), and connective tissue. Compared to normal conditions, MerTK expression in related tissues is altered in many human diseases, including cardiovascular diseases, cancer, and brain disorders. Interestingly, MerTK expression also shows sex differences in many tissues, indicating that MerTK may have different impact on male and female. Finally, based on our proteomics from primary human aortic ECs, we validated the functions of MerTK in several human diseases, such as cancer, aging, kidney failure and heart failure. CONCLUSIONS: Our big data analytics suggest that MerTK may be a promising therapeutic target, but how it should be modulated depends on the disease types and sex differences. For example, MerTK inhibition emerges as a new strategy for cancer therapy due to it counteracts effect on anti-tumor immunity, while MerTK restoration represents a promising treatment for atherosclerosis and myocardial infarction as MerTK is cleaved in these disease conditions.


Receptor Protein-Tyrosine Kinases , c-Mer Tyrosine Kinase , Female , Humans , Male , Apoptosis/genetics , c-Mer Tyrosine Kinase/genetics , Data Science , Endothelial Cells/metabolism , Genomics , Neoplasms/metabolism , Phagocytosis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Brain Diseases/metabolism
6.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article En | MEDLINE | ID: mdl-38396755

Brain diseases are oftentimes life-threatening and difficult to treat. The local administration of drug substances using brain implants can increase on-site concentrations and decrease systemic side effects. However, the biocompatibility of potential brain implant materials needs to be evaluated carefully as implants can trigger foreign body reactions, particularly by increasing the microglia and astrocyte reactivity. To date, these tests have been frequently conducted in very simple in vitro models, in particular not respecting the key players in glial cell reactions and the challenges of surgical implantation characterized by the disruption of oxygen and nutrient supply. Thus, we established an in vitro model in which we treated human glial cell lines with reduced oxygen and glucose levels. The model displayed cytokine and reactive oxygen species release from reactive microglia and an increase in a marker of reactive astrocytes, galectin-3. Moreover, the treatment caused changes in the cell survival and triggered the production of hypoxia-inducible factor 1α. In this comprehensive platform, we demonstrated the protective effect of the natural polyphenol resveratrol as a model substance, which might be included in brain implants to ease the undesired glial cell response. Overall, a glial-cell-based in vitro model of the initial challenges of local brain disease treatment may prove useful for investigating new therapy options.


Brain Diseases , Neuroglia , Humans , Resveratrol/pharmacology , Resveratrol/metabolism , Neuroglia/metabolism , Astrocytes/metabolism , Microglia/metabolism , Brain Diseases/metabolism , Oxygen/metabolism
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167043, 2024 Apr.
Article En | MEDLINE | ID: mdl-38320662

Mitochondrial encephalopathy is a neurological disorder caused by impaired mitochondrial function and energy production. One of the genetic causes of this condition is the mutation of MT-TN, a gene that encodes the mitochondrial transfer RNA (tRNA) for asparagine. MT-TN mutations affect the stability and structure of the tRNA, resulting in reduced protein synthesis and complex enzymatic deficiency of the mitochondrial respiratory chain. Our patient cohort manifests with epileptic encephalopathy, ataxia, hypotonia, and bilateral basal ganglia calcification, which differs from previously reported cases. MT-TN mutation deficiency leads to decreased basal and maximal oxygen consumption rates, disrupted spare respiratory capacity, declined mitochondrial membrane potential, and impaired ATP production. Moreover, MT-TN mutations promote mitophagy, a process of selective degradation of damaged mitochondria by autophagy. Excessive mitophagy further leads to mitochondrial biogensis as a compensatory mechanism. In this study, we provided evidence of pathogenicity for two MT-TN mutations, m.5688 T > C and m.G5691A, explored the molecular mechanisms, and summarized the clinical manifestations of MT-TN mutations. Our study expanded the genotype and phenotypic spectrum and provided new insight into mt-tRNA (Asn)-associated mitochondrial encephalopathy.


Brain Diseases , Mitochondrial Encephalomyopathies , Mitophagy , Humans , Mitophagy/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Brain Diseases/genetics , Brain Diseases/metabolism , RNA, Transfer/genetics , RNA, Mitochondrial/metabolism
8.
J Transl Med ; 22(1): 4, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167027

NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.


Alzheimer Disease , Brain Diseases , Brain Neoplasms , NAD(P)H Dehydrogenase (Quinone) , Humans , Carcinogenesis , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Neurons/pathology , Oxidative Stress , Brain Diseases/metabolism
9.
Drug Dev Res ; 85(1): e22130, 2024 Feb.
Article En | MEDLINE | ID: mdl-37942840

Ischemic stroke is a life-threatening brain disease with the leading cause of disability and mortality worldwide. Heat-shock protein A12A (HSPA12A) is recognized as a neuroprotective target for treating ischemic stroke; however, its regulatory mechanism has been not fully elucidated yet. Human brain microvascular endothelial cells (hBMECs) were induced by oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic ischemic stroke. Gain- and loss-of-function experiments were conducted to explore the regulation of HSAPA12 and PGC-1α. Cell viability, apoptosis, and permeability were assessed by CCK-8, TUNEL, and transendothelial electrical resistance (TEER) assays, respectively. The expression of HSPA12A and corresponding proteins was measured by western blot. Cell immunofluorescence was adopted to evaluate ZO-1 expression. THP-1 cells were applied to adhere hBMECs in vitro to simulate leukocyte adhesion in the brain. HSPA12A was downregulated in OGD/R-treated hBMECs. HSPA12A overexpression significantly suppressed OGD/R-induced cell viability loss and apoptosis in hBMECs. Meanwhile, HSPA12A overexpression attenuated blood-brain barrier (BBB) integrity in OGD/R-induced hBMECs, evidenced by the restored TEER value and the upregulated ZO-1, occludin, and claudin-5. HSPA12A also restricted OGD/R-induced attachment of THP-1 cells to hBMECs, accompanied with downregulating ICAM-1 and VCAM-1. Additionally, OGD/R-caused downregulation of PGC-1α/SIRT3 in hBMECs was partly restored by HSPA12A overexpression. Furthermore, the above effects of HSPA12A on OGD/R-induced hBMECs injury were partly reversed by PGC-1α knockdown. HSPA12A plays a protective role against OGD/R-induced hBMECs injury by upregulating PGC-1α, providing a potential neuroprotective role of HSPA12A in ischemic stroke.


Brain Diseases , Ischemic Stroke , Sirtuin 3 , Humans , Oxygen/metabolism , Oxygen/pharmacology , Endothelial Cells , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Glucose/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/pharmacology , Brain/metabolism , Brain Diseases/metabolism , Apoptosis , Ischemic Stroke/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/pharmacology
10.
J Nutr ; 154(3): 875-885, 2024 Mar.
Article En | MEDLINE | ID: mdl-38072152

BACKGROUND: The current pediatric practice of monitoring for infantile iron deficiency (ID) via hemoglobin (Hgb) screening at one y of age does not identify preanemic ID nor protect against later neurocognitive deficits. OBJECTIVES: To identify biomarkers of iron-related metabolic alterations in the serum and brain and determine the sensitivity of conventional iron and heme indices for predicting risk of brain metabolic dysfunction using a nonhuman primate model of infantile ID. METHODS: Simultaneous serum iron and RBC indices, and serum and cerebrospinal fluid (CSF) metabolomic profiles were determined in 20 rhesus infants, comparing iron sufficient (IS; N = 10) and ID (N = 10) infants at 2 and 4 mo of age. RESULTS: Reticulocyte hemoglobin (RET-He) was lower at 2 wk in the ID group. Significant IS compared with ID differences in serum iron indices were present at 2 mo, but Hgb and RBC indices differed only at 4 mo (P < 0.05). Serum and CSF metabolomic profiles of the ID and IS groups differed at 2 and 4 mo (P < 0.05). Key metabolites, including homostachydrine and stachydrine (4-5-fold lower at 4 mo in ID group, P < 0.05), were altered in both serum and CSF. Iron indices and RET-He at 2 mo, but not Hgb or other RBC indices, were correlated with altered CSF metabolic profile at 4 mo and had comparable predictive accuracy (area under the receiver operating characteristic curve scores, 0.75-0.80). CONCLUSIONS: Preanemic ID at 2 mo was associated with metabolic alterations in serum and CSF in infant monkeys. Among the RBC indices, only RET-He predicted the future risk of abnormal CSF metabolic profile with a predictive accuracy comparable to serum iron indices. The concordance of homostachydrine and stachydrine changes in serum and CSF indicates their potential use as early biomarkers of brain metabolic dysfunction in infantile ID.


Anemia, Iron-Deficiency , Brain Diseases , Iron Deficiencies , Animals , Infant , Humans , Child , Anemia, Iron-Deficiency/complications , Anemia, Iron-Deficiency/diagnosis , Macaca mulatta/metabolism , Prognosis , Iron/metabolism , Hemoglobins/metabolism , Brain Diseases/metabolism , Biomarkers , Brain/metabolism
11.
Vet Res Commun ; 48(1): 317-327, 2024 Feb.
Article En | MEDLINE | ID: mdl-37684400

Aflatoxins, particularly AFB1, are the most common feed contaminants worldwide, causing significant economic losses to the livestock sector. The current paper describes an outbreak of aflatoxicosis in a herd of 160 male young goat kids (3-4 months), of which 68 young kids succumbed over a period of 25 days after showing neurological signs of abnormal gait, progressive paralysis and head pressing. The haematobiochemical investigation showed reduced haemoglobin, leucocyte count, PCV level, increased levels of AST, ALT, glucose, BUN, creatinine and reduced level of total protein. Grossly, kids had pale mucous membranes, pale and swollen liver; right apical lobe consolidation, and petechiation of the synovial membrane of the hock joints. The microscopic changes were characterized by multifocal hemorrhages, status spongiosus/ vacuolation, vasculitis, focal to diffuse gliosis, satellitosis, and ischemic apoptotic neurons in different parts of the brain and spinal cord. These changes corresponded well with strong immunoreactivity for AFB1 in neurons, glia cells (oligodendrocytes, astrocytes, and ependymal cells) in various anatomical sites of the brain. The higher values of LPO and reduced levels of antioxidant enzymes (Catalase, SOD, GSH) with strong immunoreactivity of 8-OHdG in the brain indicating high level of oxidative stress. Further, the higher immunosignaling of caspase-3 and caspase-9 in the brain points towards the association with intrinsic pathway of apoptosis. The toxicological analysis of feed samples detected high amounts of AFB1 (0.38ppm). These findings suggest that AFB1 in younger goat kids has more of neurotoxic effect mediated through caspase dependent intrinsic pathway.


Brain Diseases , Goat Diseases , Male , Animals , Goats/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Apoptosis , Oxidative Stress , Liver/metabolism , Free Radicals/metabolism , Free Radicals/pharmacology , Brain Diseases/metabolism , Brain Diseases/veterinary , Goat Diseases/chemically induced
12.
Biofactors ; 50(1): 181-200, 2024.
Article En | MEDLINE | ID: mdl-37650587

In the brain, the non-essential amino acid L-serine is produced through the phosphorylated pathway (PP) starting from the glycolytic intermediate 3-phosphoglycerate: among the different roles played by this amino acid, it can be converted into D-serine and glycine, the two main co-agonists of NMDA receptors. In humans, the enzymes of the PP, namely phosphoglycerate dehydrogenase (hPHGDH, which catalyzes the first and rate-limiting step of this pathway), 3-phosphoserine aminotransferase, and 3-phosphoserine phosphatase are likely organized in the cytosol as a metabolic assembly (a "serinosome"). The hPHGDH deficiency is a pathological condition biochemically characterized by reduced levels of L-serine in plasma and cerebrospinal fluid and clinically identified by severe neurological impairment. Here, three single-point variants responsible for hPHGDH deficiency and Neu-Laxova syndrome have been studied. Their biochemical characterization shows that V261M, V425M, and V490M substitutions alter either the kinetic (both maximal activity and Km for 3-phosphoglycerate in the physiological direction) and the structural properties (secondary, tertiary, and quaternary structure, favoring aggregation) of hPHGDH. All the three variants have been successfully ectopically expressed in U251 cells, thus the pathological effect is not due to hindered expression level. At the cellular level, mistargeting and aggregation phenomena have been observed in cells transiently expressing the pathological protein variants, as well as a reduced L-serine cellular level. Previous studies demonstrated that the pharmacological supplementation of L-serine in hPHGDH deficiencies could ameliorate some of the related symptoms: our results now suggest the use of additional and alternative therapeutic approaches.


Brain Diseases , Glyceric Acids , Serine , Humans , Serine/genetics , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/chemistry , Brain Diseases/metabolism , Amino Acids
13.
Gerontology ; 70(2): 193-209, 2024.
Article En | MEDLINE | ID: mdl-38008091

BACKGROUND: The related functions of skeletal muscle and brain decrease significantly with age, and muscle-brain-related diseases are primarily associated with each other. Exercise can promote the secretion of myokines in skeletal muscle, showing a beneficial effect on the function of both, reflecting muscle-brain crosstalk. However, the key mechanism of action of exercise-regulated myokines in muscle-brain diseases remains unclear. SUMMARY: This review is intended to sort out and explore the key mechanism of the effect of exercise regulatory myokines on muscle-brain diseases through summarizing the relevant literature on the level of motor regulatory myokines in recent years and pay special attention to the impact of exercise type, intensity, and duration on myokine expression levels. KEY MESSAGES: The mechanism by which exercise regulates myokine levels in muscle-brain diseases is explained, and an effective exercise prescription for myokine expression that is more suitable for the elderly based on relevant literature is proposed. This work may hold certain value for subsequent exercise treatment of chronic diseases in the elderly and for further research on muscle-brain crosstalk.


Brain Diseases , Myokines , Humans , Aged , Cytokines/metabolism , Muscle, Skeletal/metabolism , Brain/metabolism , Brain Diseases/metabolism , Aging
14.
Biol Psychiatry ; 95(4): 348-360, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-37918459

Nutrition and diet quality play key roles in preventing and slowing cognitive decline and have been linked to multiple brain disorders. This review compiles available evidence from preclinical studies and clinical trials on the impact of nutrition and interventions regarding major psychiatric conditions and some neurological disorders. We emphasize the potential role of diet-related microbiome alterations in these effects and highlight commonalities between various brain disorders related to the microbiome. Despite numerous studies shedding light on these findings, there are still gaps in our understanding due to the limited availability of definitive human trial data firmly establishing a causal link between a specific diet and microbially mediated brain functions and symptoms. The positive impact of certain diets on the microbiome and cognitive function is frequently ascribed with the anti-inflammatory effects of certain microbial metabolites or a reduction of proinflammatory microbial products. We also critically review recent research on pro- and prebiotics and nondietary interventions, particularly fecal microbiota transplantation. The recent focus on diet in relation to brain disorders could lead to improved treatment outcomes with combined dietary, pharmacological, and behavioral interventions.


Brain Diseases , Gastrointestinal Microbiome , Mental Disorders , Humans , Diet , Brain , Brain Diseases/metabolism
15.
Mol Psychiatry ; 29(2): 449-463, 2024 Feb.
Article En | MEDLINE | ID: mdl-38123727

Various chemical modifications of all RNA transcripts, or epitranscriptomics, have emerged as crucial regulators of RNA metabolism, attracting significant interest from both basic and clinical researchers due to their diverse functions in biological processes and immense clinical potential as highlighted by the recent profound success of RNA modifications in improving COVID-19 mRNA vaccines. Rapid accumulation of evidence underscores the critical involvement of various RNA modifications in governing normal neural development and brain functions as well as pathogenesis of brain disorders. Here we provide an overview of RNA modifications and recent advancements in epitranscriptomic studies utilizing animal models to elucidate important roles of RNA modifications in regulating mammalian neurogenesis, gliogenesis, synaptic formation, and brain function. Moreover, we emphasize the pivotal involvement of RNA modifications and their regulators in the pathogenesis of various human brain disorders, encompassing neurodevelopmental disorders, brain tumors, psychiatric and neurodegenerative disorders. Furthermore, we discuss potential translational opportunities afforded by RNA modifications in combatting brain disorders, including their use as biomarkers, in the development of drugs or gene therapies targeting epitranscriptomic pathways, and in applications for mRNA-based vaccines and therapies. We also address current limitations and challenges hindering the widespread clinical application of epitranscriptomic research, along with the improvements necessary for future progress.


Brain , COVID-19 , Epigenesis, Genetic , Humans , Animals , Brain/metabolism , Epigenesis, Genetic/genetics , Translational Research, Biomedical/methods , Transcriptome/genetics , SARS-CoV-2 , Brain Diseases/genetics , Brain Diseases/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Neurogenesis/genetics , RNA Processing, Post-Transcriptional/genetics , Epigenomics/methods
16.
Cells ; 12(23)2023 12 04.
Article En | MEDLINE | ID: mdl-38067189

Clinical and pre-clinical studies of neuropsychiatric (NP) disorders show altered astrocyte properties and synaptic networks. These are refined during early postnatal developmental (PND) stages. Thus, investigating early brain maturational trajectories is essential to understand NP disorders. However, animal experiments are highly time-/resource-consuming, thereby calling for alternative methodological approaches. The function of MEGF10 in astrocyte-mediated synapse elimination (pruning) is crucial to refine neuronal networks during development and adulthood. To investigate the impact of MEGF10 during PND in the rat prefrontal cortex (PFC) and its putative role in brain disorders, we established and validated an organotypic brain slice culture (OBSC) system. Using Western blot, we characterized the expression of MEGF10 and the synaptic markers synaptophysin and PSD95 in the cortex of developing pups. We then combined immunofluorescent-immunohistochemistry with Imaris-supported 3D analysis to compare age- and sex-dependent astrocyte-mediated pruning within the PFC in pups and OBSCs. We thereby validated this system to investigate age-dependent astrocyte-mediated changes in pruning during PND. However, further optimizations are required to use OBSCs for revealing sex-dependent differences. In conclusion, OBSCs offer a valid alternative to study physiological astrocyte-mediated synaptic remodeling during PND and might be exploited to investigate the pathomechanisms of brain disorders with aberrant synaptic development.


Astrocytes , Brain Diseases , Rats , Animals , Hippocampus/metabolism , Synapses/metabolism , Prefrontal Cortex/metabolism , Brain , Brain Diseases/metabolism
17.
Cell Rep Med ; 4(12): 101308, 2023 12 19.
Article En | MEDLINE | ID: mdl-38086378

De novo mutations in STXBP1 are among the most prevalent causes of neurodevelopmental disorders and lead to haploinsufficiency, cortical hyperexcitability, epilepsy, and other symptoms in people with mutations. Given that Munc18-1, the protein encoded by STXBP1, is essential for excitatory and inhibitory synaptic transmission, it is currently not understood why mutations cause hyperexcitability. We find that overall inhibition in canonical feedforward microcircuits is defective in a P15-22 mouse model for Stxbp1 haploinsufficiency. Unexpectedly, we find that inhibitory synapses formed by parvalbumin-positive interneurons were largely unaffected. Instead, excitatory synapses fail to recruit inhibitory interneurons. Modeling confirms that defects in the recruitment of inhibitory neurons cause hyperexcitation. CX516, an ampakine that enhances excitatory synapses, restores interneuron recruitment and prevents hyperexcitability. These findings establish deficits in excitatory synapses in microcircuits as a key underlying mechanism for cortical hyperexcitability in a mouse model of Stxbp1 disorder and identify compounds enhancing excitation as a direction for therapy.


Brain Diseases , Animals , Humans , Mice , Brain Diseases/genetics , Brain Diseases/metabolism , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Mutation , Neurons/metabolism , Synapses/metabolism , Synaptic Transmission/genetics
18.
Tissue Cell ; 85: 102249, 2023 Dec.
Article En | MEDLINE | ID: mdl-37865039

Hepatic encephalopathy (HE) is one of the most debilitating cerebral complications of liver cirrhosis. The one-year survival of patients with liver cirrhosis and severe encephalopathy is less than 50%. Recent studies have indicated that neuroinflammation is a new player in the pathogenesis of HE, which seems to be involved in the development of cognitive impairment. In this study, we demonstrated neurobehavioral and neuropathological consequences of liver cirrhosis and tested the therapeutic potential of the tumor necrosis factor-α (TNF-α) inhibitor, etanercept. Sixty male adult Wistar albino rats (120-190 g) were allocated into four groups, where groups I and IV served as controls. Thioacetamide (TAA; 300 mg/kg) was intraperitoneally injected twice a week for five months to induce liver cirrhosis in group II (n = 20). Both TAA and etanercept (2 mg/kg) were administered to group III (n = 20). At the end of the experiment, spatial learning was assessed using Morris water maze. TNF-α was detected in both serum and hippocampus. The excised brains were also immunohistochemically stained with glial fibrillary acidic protein (GFAP) to estimate both the number and integrity of hippocampal astrocytes. Ultrastructural changes in the hippocampus were characterized by transmission electron microscopy. The results showed that blocking TNF-α by etanercept was accompanied by a lower TNF-α expression and a higher number of GFAP-positive astrocytes in the hippocampus. Etanercept intervention alleviated the neuronal and glial degenerative changes and impeded the deterioration of spatial learning ability. In conclusion, TNF-α is strongly involved in the development of liver cirrhosis and the associated encephalopathy. TNF-α blockers may be a promising approach for management of hepatic cirrhosis and its cerebral complications.


Brain Diseases , Hepatic Encephalopathy , Rats , Animals , Humans , Male , Tumor Necrosis Factor-alpha/metabolism , Etanercept/pharmacology , Etanercept/metabolism , Spatial Learning , Disease Models, Animal , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Rats, Wistar , Hippocampus/metabolism , Brain Diseases/metabolism , Brain Diseases/pathology , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/metabolism , Hepatic Encephalopathy/pathology , Thioacetamide/toxicity
19.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article En | MEDLINE | ID: mdl-37569267

Accounting for 5-20% of the total glial cells present in the adult brain, microglia are involved in several functions: maintenance of the neural environment, response to injury and repair, immunesurveillance, cytokine secretion, regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. Microglia contribute to some neurodevelopmental disorders, such as Nasu-Hakola disease (NHD), Tourette syndrome (TS), autism spectrum disorder (ASD), and schizophrenia. Moreover, microglial involvement in neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, has also been well established. During the last two decades, epidemiological and research studies have demonstrated the involvement of vitamin D3 (VD3) in the brain's pathophysiology. VD3 is a fat-soluble metabolite that is required for the proper regulation of many of the body's systems, as well as for normal human growth and development, and shows neurotrophic and neuroprotective actions and influences on neurotransmission and synaptic plasticity, playing a role in various neurological diseases. In order to better understand the exact mechanisms behind the diverse actions of VD3 in the brain, a large number of studies have been performed on isolated cells or tissues of the central nervous system (CNS). Here, we discuss the involvement of VD3 and microglia on neurodegeneration- and aging-related diseases.


Autism Spectrum Disorder , Brain Diseases , Humans , Microglia/metabolism , Autism Spectrum Disorder/metabolism , Vitamin D/metabolism , Central Nervous System/metabolism , Brain Diseases/metabolism , Brain/metabolism , Vitamins/metabolism
20.
J Chem Neuroanat ; 132: 102321, 2023 10.
Article En | MEDLINE | ID: mdl-37524128

Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are nearly ubiquitously expressed. They are localized in mitochondria, cytosol and cell nuclei. In the healthy CNS, they occur in neurons and non-neuronal cells (oligodendrocytes, astrocytes, microglia, and endothelial cells) and fulfill pivotal functions in brain development and aging, the regulation of brain metabolism, maintenance of structural integrity, synapse formation, aminoacidergic neurotransmission and, probably, regulation of brain action of certain hypothalamic-pituitary hormones.With regard to the diseased brain there is increasing evidence that prohibitins are prominently involved in numerous major diseases of the CNS, which are summarized and discussed in the present review (brain tumors, neurotropic viruses, Alzheimer disease, Down syndrome, Fronto-temporal and vascular dementia, dementia with Lewy bodies, Parkinson disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral sclerosis, stroke, alcohol use disorder, schizophrenia and autism). Unfortunately, there is no PHB-targeted therapy available for any of these diseases.


Brain Diseases , Prohibitins , Humans , Endothelial Cells/metabolism , Mitochondria/metabolism , Brain/metabolism , Brain Diseases/metabolism
...