Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.147
Filter
1.
PeerJ ; 12: e17732, 2024.
Article in English | MEDLINE | ID: mdl-39035166

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that causes physical damage to neuronal connections, leading to brain atrophy. This disruption of synaptic connections results in mild to severe cognitive impairments. Unfortunately, no effective treatment is currently known to prevent or reverse the symptoms of AD. The aim of this study was to investigate the effects of three synthetic peptides, i.e., KLVFF, RGKLVFFGR and RIIGL, on an AD in vitro model represented by differentiated SH-SY5Y neuroblastoma cells exposed to retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). The results demonstrated that RIIGL peptide had the least significant cytotoxic activity to normal SH-SY5Y while exerting high cytotoxicity against the differentiated cells. The mechanism of RIIGL peptide in the differentiated SH-SY5Y was investigated based on changes in secretory proteins compared to another two peptides. A total of 380 proteins were identified, and five of them were significantly detected after treatment with RIIGL peptide. These secretory proteins were found to be related to microtubule-associated protein tau (MAPT) and amyloid-beta precursor protein (APP). RIIGL peptide acts on differentiated SH-SY5Y by regulating amyloid-beta formation, neuron apoptotic process, ceramide catabolic process, and oxidative phosphorylation and thus has the potentials to treat AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Brain-Derived Neurotrophic Factor , Cell Differentiation , Neuroblastoma , tau Proteins , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/pharmacology , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , Cell Line, Tumor , Cell Differentiation/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , tau Proteins/metabolism , Tretinoin/pharmacology , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics
2.
Lab Chip ; 24(13): 3252-3264, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38841815

ABSTRACT

In our brains, different neurons make appropriate connections; however, there remain few in vitro models of such circuits. We use an open microfluidic approach to build and study neuronal circuits in vitro in ways that fit easily into existing bio-medical workflows. Dumbbell-shaped circuits are built in minutes in standard Petri dishes; the aqueous phase is confined by fluid walls - interfaces between cell-growth medium and an immiscible fluorocarbon, FC40. Conditions are established that ensure post-mitotic neurons derived from human induced pluripotent stem cells (iPSCs) plated in one chamber of a dumbbell remain where deposited. After seeding cortical neurons on one side, axons grow through the connecting conduit to ramify amongst striatal neurons on the other - an arrangement mimicking unidirectional cortico-striatal connectivity. We also develop a moderate-throughput non-contact axotomy assay. Cortical axons in conduits are severed by a media jet; then, brain-derived neurotrophic factor and striatal neurons in distal chambers promote axon regeneration. As additional conduits and chambers are easily added, this opens up the possibility of mimicking complex neuronal networks, and screening drugs for their effects on connectivity.


Subject(s)
Axotomy , Induced Pluripotent Stem Cells , Neurons , Humans , Neurons/cytology , Induced Pluripotent Stem Cells/cytology , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices , Cells, Cultured , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Axons/physiology , Axons/metabolism
3.
Bull Exp Biol Med ; 176(5): 666-671, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38727956

ABSTRACT

This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.


Subject(s)
Brain-Derived Neurotrophic Factor , Neurotrophin 3 , Olfactory Bulb , Remyelination , Animals , Rats , Neurotrophin 3/metabolism , Humans , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Remyelination/physiology , Olfactory Bulb/cytology , Cell Proliferation , Spinal Cord/metabolism , Myelin Sheath/metabolism , Myelin Sheath/physiology , Cells, Cultured , Cell Movement , Cysts/pathology , Female , Central Nervous System Cysts/surgery , Central Nervous System Cysts/pathology
4.
Int J Biol Macromol ; 267(Pt 2): 131610, 2024 May.
Article in English | MEDLINE | ID: mdl-38621565

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a neurotrophic protein that promotes neuronal survival, increases neurotransmitter synthesis, and has potential therapeutic effects in neurodegenerative and psychiatric diseases, but its drug development has been limited by the fact that recombinant proteins of BDNF are unstable and do not penetrate the blood-brain barrier (BBB). In this study, we fused a TAT membrane-penetrating peptide with BDNF to express a recombinant protein (TBDNF), which was then PEG-modified to P-TBDNF. Protein characterization showed that P-TBDNF significantly improved the stability of the recombinant protein and possessed the ability to penetrate the BBB, and in cellular experiments, P-TBDNF prevented MPTP-induced nerve cell oxidative stress damage, apoptosis and inflammatory response, and its mechanism of action was closely related to the activation of tyrosine kinase B (TrkB) receptor and inhibition of microglia activation. In animal experiments, P-TBDNF improved motor and cognitive deficits in MPTP mice and inhibited pathological changes in Parkinson's disease (PD). In conclusion, this paper is expected to reveal the mechanism of action of P-TBDNF in inhibiting neurotoxicity, provide a new way for treating PD, and lay the foundation for the future development of recombinant P-TBDNF.


Subject(s)
Brain-Derived Neurotrophic Factor , Neuroprotective Agents , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Mice , Neuroprotective Agents/pharmacology , Recombinant Proteins/pharmacology , Blood-Brain Barrier/metabolism , Male , Oxidative Stress/drug effects , Humans , Apoptosis/drug effects , Receptor, trkB/metabolism , Neurons/metabolism , Neurons/drug effects , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Mice, Inbred C57BL
5.
Cell Commun Signal ; 22(1): 216, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570868

ABSTRACT

BACKGROUND: Radiation-induced brain injury (RIBI) is a common and severe complication during radiotherapy for head and neck tumor. Repetitive transcranial magnetic stimulation (rTMS) is a novel and non-invasive method of brain stimulation, which has been applied in various neurological diseases. rTMS has been proved to be effective for treatment of RIBI, while its mechanisms have not been well understood. METHODS: RIBI mouse model was established by cranial irradiation, K252a was daily injected intraperitoneally to block BDNF pathway. Immunofluorescence staining, immunohistochemistry and western blotting were performed to examine the microglial pyroptosis and hippocampal neurogenesis. Behavioral tests were used to assess the cognitive function and emotionality of mice. Golgi staining was applied to observe the structure of dendritic spine in hippocampus. RESULTS: rTMS significantly promoted hippocampal neurogenesis and mitigated neuroinflammation, with ameliorating pyroptosis in microglia, as well as downregulation of the protein expression level of NLRP3 inflammasome and key pyroptosis factor Gasdermin D (GSDMD). BDNF signaling pathway might be involved in it. After blocking BDNF pathway by K252a, a specific BDNF pathway inhibitor, the neuroprotective effect of rTMS was markedly reversed. Evaluated by behavioral tests, the cognitive dysfunction and anxiety-like behavior were found aggravated with the comparison of mice in rTMS intervention group. Moreover, the level of hippocampal neurogenesis was found to be attenuated, the pyroptosis of microglia as well as the levels of GSDMD, NLRP3 inflammasome and IL-1ß were upregulated. CONCLUSION: Our study indicated that rTMS notably ameliorated RIBI-induced cognitive disorders, by mitigating pyroptosis in microglia and promoting hippocampal neurogenesis via mediating BDNF pathway.


Subject(s)
Brain Injuries , Cognitive Dysfunction , Mice , Animals , Transcranial Magnetic Stimulation/adverse effects , Transcranial Magnetic Stimulation/methods , NLR Family, Pyrin Domain-Containing 3 Protein , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Microglia/metabolism , Pyroptosis , Inflammasomes/metabolism , Brain/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Cognition , Brain Injuries/complications , Brain Injuries/pathology , Neurogenesis/radiation effects
6.
Cells ; 13(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38534361

ABSTRACT

BACKGROUND: Brain-derived neurotrophic factor (BDNF) has gained attention as a therapeutic agent due to its potential biological activities, including osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of BDNF have not been fully understood. This study aimed to investigate the action of BDNF on the osteoblast differentiation in bone marrow stromal cells, and its influence on signaling pathways. In addition, to evaluate the clinical efficacy, an in vivo animal study was performed. METHODS: Preosteoblast cells (MC3T3-E1), bone marrow-derived stromal cells (ST2), and a direct 2D co-culture system were treated with BDNF. The effect of BDNF on cell proliferation was determined using the CCK-8 assay. Osteoblast differentiation was assessed based on alkaline phosphatase (ALP) activity and staining and the protein expression of multiple osteoblast markers. Calcium accumulation was examined by Alizarin red S staining. For the animal study, we used ovariectomized Sprague-Dawley rats and divided them into BDNF and normal saline injection groups. MicroCT, hematoxylin and eosin (H&E), and tartrate-resistant acid phosphatase (TRAP) stain were performed for analysis. RESULTS: BDNF significantly increased ALP activity, calcium deposition, and the expression of osteoblast differentiation-related proteins, such as ALP, osteopontin, etc., in both ST-2 and the MC3T3-E1 and ST-2 co-culture systems. Moreover, the effect of BDNF on osteogenic differentiation was diminished by blocking tropomyosin receptor kinase B, as well as inhibiting c-Jun N-terminal kinase and p38 MAPK signals. Although the animal study results including bone density and histology showed increased osteoblastic and decreased osteoclastic activity, only a portion of parameters reached statistical significance. CONCLUSIONS: Our study results showed that BDNF affects osteoblast differentiation through TrkB receptor, and JNK and p38 MAPK signal pathways. Although not statistically significant, the trend of such effects was observed in the animal experiment.


Subject(s)
Brain-Derived Neurotrophic Factor , Osteogenesis , Rats , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Calcium/pharmacology , Rats, Sprague-Dawley , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Neuroscience ; 543: 49-64, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38417539

ABSTRACT

In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.


Subject(s)
Brain-Derived Neurotrophic Factor , Neuralgia , Rats , Animals , Female , Male , Rats, Sprague-Dawley , Brain-Derived Neurotrophic Factor/pharmacology , Posterior Horn Cells , Spinal Cord Dorsal Horn , Neuralgia/drug therapy , Hyperalgesia
8.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397033

ABSTRACT

In female mammals, the proliferation and apoptosis of granulosa cells (GCs) are critical in determining the fate of follicles and are influenced by various factors, including brain-derived neurotrophic factor (BDNF). Previous research has shown that BDNF primarily regulates GC proliferation through the PI3K/AKT, NF-kB, and CREB tumour pathways; however, the role of other molecular mechanisms in mediating BDNF-induced GC proliferation remains unclear. In this study, we investigated the involvement of the m6A reader YTH domain-containing family member 2 (YTHDF2) in BDNF-stimulated GC proliferation and its underlying mechanism. GCs were cultured in DMEM medium supplemented with varying BDNF concentrations (0, 10, 30, 75, and 150 ng/mL) for 24 h. The viability, number, and cell cycle of GCs were assessed using the CCK-8 assay, cell counting, and flow cytometry, respectively. Further exploration into YTHDF2's role in BDNF-stimulated GC proliferation was conducted using RT-qPCR, Western blotting, and sequencing. Our findings indicate that YTHDF2 mediates the effect of BDNF on GC proliferation. Additionally, this study suggests for the first time that BDNF promotes YTHDF2 expression by increasing the phosphorylation level of the ERK1/2 signalling pathway. This study offers a new perspective and foundation for further elucidating the mechanism by which BDNF regulates GC proliferation.


Subject(s)
Brain-Derived Neurotrophic Factor , Phosphatidylinositol 3-Kinases , Female , Swine , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Granulosa Cells/metabolism , Signal Transduction , Transcription Factors/metabolism , Cell Proliferation , Mammals/metabolism
9.
Muscle Nerve ; 69(4): 490-497, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38328996

ABSTRACT

INTRODUCTION/AIMS: Daily intramuscular injections of fibroblast growth factor 2 (FGF2) but not of brain-derived neurotrophic factor (BDNF) significantly improve whisking behavior and mono-innervation of the rat levator labii superioris (LLS) muscle 56 days after buccal nerve transection and suture (buccal-buccal anastomosis, BBA). We explored the dose-response of BDNF, FGF2, and insulin growth factor 2 (IGF2) on the same parameters, asking whether higher doses of BDNF would promote recovery. METHODS: After BBA, growth factors were injected (30 µL volume) daily into the LLS muscle over 14, 28, or 56 days. At 56 days, video-based motion analysis of vibrissal whisking was performed and the extent of mono- and poly-reinnervation of the reinnervated neuromuscular junctions (NMJs) of the muscle determined with immunostaining of the nerve with ß-tubulin and histochemical staining of the endplates with Alexa Fluor 488-conjugated α-bungarotoxin. RESULTS: The dose-response curve demonstrated significantly higher whisking amplitudes and corresponding increased mono-innervation of the NMJ in the reinnervated LLS muscle at concentrations of 20-30 µg/mL BDNF administered daily for 14-28 days after BBA surgery. In contrast, high doses of IGF2 and FGF2, or doses of 20 and 40 µg/mL of BDNF administered for 14-56 days had no effect on either whisking behavior or in reducing poly-reinnervation of endplates in the muscle. DISCUSSION: These data suggest that the re-establishment of mono-innervation of whiskerpad muscles and the improved motor function by injections of BDNF into the paralyzed vibrissal musculature after facial nerve injury have translation potential and promote clinical application.


Subject(s)
Facial Nerve Injuries , Rats , Animals , Facial Nerve Injuries/drug therapy , Brain-Derived Neurotrophic Factor/pharmacology , Injections, Intramuscular , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/therapeutic use , Neuromuscular Junction , Nerve Regeneration/physiology , Recovery of Function/physiology , Facial Nerve
10.
Gut Microbes ; 16(1): 2310603, 2024.
Article in English | MEDLINE | ID: mdl-38332676

ABSTRACT

Chronic pain is commonly linked with diminished working memory. This study explores the impact of the anesthetic (S)-ketamine on spatial working memory in a chronic constriction injury (CCI) mouse model, focusing on gut microbiome. We found that multiple doses of (S)-ketamine, unlike a single dose, counteracted the reduced spontaneous alteration percentage (%SA) in the Y-maze spatial working memory test, without affecting mechanical or thermal pain sensitivity. Additionally, repeated (S)-ketamine treatments improved the abnormal composition of the gut microbiome (ß-diversity), as indicated by fecal 16S rRNA analysis, and increased levels of butyrate, a key gut - brain axis mediator. Protein analysis showed that these treatments also corrected the upregulated histone deacetylase 2 (HDAC2) and downregulated brain-derived neurotrophic factor (BDNF) in the hippocampi of CCI mice. Remarkably, fecal microbiota transplantation from mice treated repeatedly with (S)-ketamine to CCI mice restored %SA and hippocampal BDNF levels in CCI mice. Butyrate supplementation alone also improved %SA, BDNF, and HDAC2 levels in CCI mice. Furthermore, the TrkB receptor antagonist ANA-12 negated the beneficial effects of repeated (S)-ketamine on spatial working memory impairment in CCI mice. These results indicate that repeated (S)-ketamine administration ameliorates spatial working memory impairment in CCI mice, mediated by a gut microbiota - brain axis, primarily through the enhancement of hippocampal BDNF - TrkB signaling by butyrate.


Subject(s)
Chronic Pain , Gastrointestinal Microbiome , Ketamine , Mice , Animals , Ketamine/pharmacology , Ketamine/therapeutic use , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Memory, Short-Term , Chronic Pain/drug therapy , RNA, Ribosomal, 16S , Hippocampus/metabolism , Memory Disorders/drug therapy , Butyrates/pharmacology
11.
Macromol Biosci ; 24(5): e2300453, 2024 May.
Article in English | MEDLINE | ID: mdl-38224015

ABSTRACT

Spinal cord injuries are very common worldwide, leading to permanent nerve function loss with devastating effects in the affected patients. The challenges and inadequate results in the current clinical treatments are leading scientists to innovative neural regenerative research. Advances in nanoscience and neural tissue engineering have opened new avenues for spinal cord injury (SCI) treatment. In order for designed nerve guidance conduit (NGC) to be functionally useful, it must have ideal scaffold properties and topographic features that promote the linear orientation of damaged axons. In this study, it is aimed to develop channeled polycaprolactone (PCL)/Poly-D,L-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, modify their surfaces by IKVAV pentapeptide/gold nanoparticles (AuNPs) or polypyrrole (PPy) and investigate the behavior of motor neurons on the designed scaffold surfaces in vitro under static/bioreactor conditions. Their potential to promote neural regeneration after implantation into the rat SCI by shaping the film scaffolds modified with neural factors into a tubular form is also examined. It is shown that channeled groups decorated with AuNPs highly promote neurite orientation under bioreactor conditions and also the developed optimal NGC (PCL/PLGA G1-IKVAV/BDNF/NGF-AuNP50) highly regenerates SCI. The results indicate that the designed scaffold can be an ideal candidate for spinal cord regeneration.


Subject(s)
Brain-Derived Neurotrophic Factor , Gold , Metal Nanoparticles , Nerve Growth Factor , Spinal Cord Injuries , Tissue Scaffolds , Animals , Rats , Brain-Derived Neurotrophic Factor/pharmacology , Gold/chemistry , Metal Nanoparticles/chemistry , Nerve Growth Factor/pharmacology , Nerve Regeneration/drug effects , Oligopeptides/pharmacology , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats, Sprague-Dawley , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Tissue Scaffolds/chemistry
12.
Biofactors ; 50(1): 58-73, 2024.
Article in English | MEDLINE | ID: mdl-37431985

ABSTRACT

The pituitary is a vital endocrine organ for synthesis and secretion of gonadotropic hormones (FSH and LH), and the gonadotropin showed fluctuations in animals with different fecundity. Long non-coding RNAs (lncRNAs) have been identified as regulatory factors for the reproductive process. However, the profiles of lncRNAs and their roles involved in sheep fecundity remains unclear. In this study, we performed RNA-sequencing for the sheep pituitary gland associated with different fecundity, and identified a novel candidate lncRNA LOC105613571 targeting BDNF related to gonadotropin secretion. Our results showed that expression of lncRNA LOC105613571 and BDNF could be significantly upregulated by GnRH stimulation in sheep pituitary cells in vitro. Notably, either lncRNA LOC105613571 or BDNF silencing inhibited cell proliferation while promoted cell apoptosis. Moreover, lncRNA LOC105613571 knockdown could also downregulate gonadotropin secretion via inactivation AKT, ERK and mTOR pathway. In addition, co-treatment with GnRH stimulation and lncRNA LOC105613571 or BDNF knockdown showed the opposite effect on sheep pituitary cells in vitro. In summary, BDNF-binding lncRNA LOC105613571 in sheep regulates pituitary cell proliferation and gonadotropin secretion via the AKT/ERK-mTOR pathway, providing new ideas for the molecular mechanisms of pituitary functions.


Subject(s)
Luteinizing Hormone , RNA, Long Noncoding , Animals , Sheep/genetics , Luteinizing Hormone/metabolism , Luteinizing Hormone/pharmacology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Pituitary Gland/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism
13.
Genes Cells ; 29(1): 99-105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38009531

ABSTRACT

Suppressor of cancer cell invasion (SCAI) acts as a transcriptional repressor of serum response factor (SRF)-mediated gene expression by binding to megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF), which is an SRF transcriptional coactivator. Growing evidence suggests that SCAI is a negative regulator of neuronal morphology, whereas MKL2/MRTFB is a positive regulator. The mRNA expression of SCAI is downregulated during brain development, suggesting that a reduction in SCAI contributes to the reduced suppression of SRF-mediated gene induction, thus increasing dendritic complexity and developing neuronal circuits. In the present study, we hypothesized that brain-derived neurotrophic factor (BDNF), which is important for neuronal plasticity and development, might alter SCAI mRNA levels. We therefore investigated the effects of BDNF on SCAI mRNA levels in primary cultured cortical neurons. Furthermore, because alternative splicing generates several SCAI variants in the brain, we measured SCAI variant mRNA after BDNF stimulation. Both SCAI variant 1 and total SCAI mRNA expression levels were downregulated by BDNF. Moreover, the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway was involved in the BDNF-mediated decrease in SCAI mRNA expression. Our findings provide insights into the molecular mechanism underlying a neurotrophic factor switch for the repressive transcriptional complex that includes SCAI.


Subject(s)
Brain-Derived Neurotrophic Factor , Neurons , Humans , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Neurons/metabolism , Gene Expression Regulation , Extracellular Signal-Regulated MAP Kinases/metabolism , Neoplasm Invasiveness , Cells, Cultured
14.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38126116

ABSTRACT

Fecal microbiota transplantation from patients with depression/inflammatory bowel disease (PDI) causes depression with gut inflammation in mice. Here, we investigated the effects of six Lactobacillus reuteri strains on brain-derived neurotropic factor (BDNF), serotonin, and interleukin (IL)-6 expression in neuronal or macrophage cells and PDI fecal microbiota-cultured microbiota (PcM)-induced depression in mice. Of these strains, L6 most potently increased BDNF and serotonin levels in corticosterone-stimulated SH-SY5Y and PC12 cells, followed by L3. L6 most potently decreased IL-6 expression in lipopolysaccharide (LPS)-stimulated macrophages. When L1 (weakest in vitro), L3, and L6 were orally administered in mice with PcM-induced depression, L6 most potently suppressed depression-like behaviors and hippocampal TNF-α and IL-6 expression and increased hippocampal serotonin, BDNF, 5HT7, GABAARα1, and GABABR1b expression, followed by L3 and L1. L6 also suppressed TNF-α and IL-6 expression in the colon. BDNF or serotonin levels in corticosterone-stimulated neuronal cells were negatively correlated with depression-related biomarkers in PcM-transplanted mice, while IL-6 levels in LPS-stimulated macrophage were positively correlated. These findings suggest that IL-6 expression-suppressing and BDNF/serotonin expression-inducing LBPs in vitro, particularly L6, may alleviate gut microbiota-involved depression with colitis in vivo.


Subject(s)
Gastrointestinal Microbiome , Limosilactobacillus reuteri , Neuroblastoma , Rats , Humans , Mice , Animals , Interleukin-6/genetics , Depression/therapy , Tumor Necrosis Factor-alpha/genetics , Lipopolysaccharides/toxicity , Corticosterone/pharmacology , Serotonin/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Anxiety/therapy , Anxiety/etiology , Mice, Inbred C57BL
15.
Commun Biol ; 6(1): 1278, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110605

ABSTRACT

Plasticity and homeostatic mechanisms allow neural networks to maintain proper function while responding to physiological challenges. Despite previous work investigating morphological and synaptic effects of brain-derived neurotrophic factor (BDNF), the most prevalent growth factor in the central nervous system, how exposure to BDNF manifests at the network level remains unknown. Here we report that BDNF treatment affects rodent hippocampal network dynamics during development and recovery from glutamate-induced excitotoxicity in culture. Importantly, these effects are not obvious when traditional activity metrics are used, so we delve more deeply into network organization, functional analyses, and in silico simulations. We demonstrate that BDNF partially restores homeostasis by promoting recovery of weak and medium connections after injury. Imaging and computational analyses suggest these effects are caused by changes to inhibitory neurons and connections. From our in silico simulations, we find that BDNF remodels the network by indirectly strengthening weak excitatory synapses after injury. Ultimately, our findings may explain the difficulties encountered in preclinical and clinical trials with BDNF and also offer information for future trials to consider.


Subject(s)
Brain-Derived Neurotrophic Factor , Synapses , Brain-Derived Neurotrophic Factor/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Synapses/metabolism , Neurons/physiology , Glutamic Acid/metabolism
16.
Open Vet J ; 13(10): 1326-1333, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38027402

ABSTRACT

Background: Hypoxia ischemia leads to abnormal behavior and growth. Prenatal hypoxia also decreases brain adaptive potential, which can cause fatal effects such as cell death. Asiatic acid (AA) in Centella asiatica is a neuroprotector through antioxidant and anti-inflammatory activities. Aim: This study aimed to analyze the effect of AA as a neuroprotector against hypoxia during intrauterine development on locomotor activity, head width, and brain-derived neurotrophic factor (BDNF) expression. Methods: The true experimental laboratory research used a posttest control-only design. Zebrafish embryos (Danio rerio) aged 0-2 dpf (days postfertilization) were exposed to hypoxia with oxygen levels reaching 1.5 mg/l. Then, AA was administered at successive concentrations, namely, 0.36, 0.72, and 1.45 µg/ml, at 2 hpf (hours postfertilization), 3, 6, and 9 dpf. Head width, velocity activity, and BDNF expression were observed. Results: Intrauterine hypoxia significantly decreased head width, velocity rate, and BDNF expression (<0.001). Administration of AA at all concentrations and age 9 dpf to zebrafish larvae with intrauterine hypoxia exposure increased head width ( p < 0.0001), velocity (p < 0.05), and relative mRNA expression of BDNF (p < 0.05). Conclusion: AA is potentially neuroprotective to the brain in zebrafish larvae exposed to hypoxia during intrauterine development.


Subject(s)
Brain-Derived Neurotrophic Factor , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/metabolism , Larva , Hypoxia/veterinary
17.
Ideggyogy Sz ; 76(9-10): 327-337, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37782061

ABSTRACT

Background and purpose:

Ciprofloxacin (CIP) is a broad-spectrum antibiotic widely used in clinical practice to treat musculoskeletal infections. Fluoroquinolone-induced neurotoxic adverse events have been reported in a few case reports, all the preclinical studies on its neuropsychiatric side effects involved only healthy animals. This study firstly investigated the behavioral effects of CIP in an osteoarthritis rat model with joint destruction and pain, which can simulate inflammation-associated musculoskeletal pain. Furthermore, effects of CIP on regional brain-derived neurotrophic factor (BDNF) expression were examined given its major contributions to the neuromodulation and plasticity underlying behavior and cognition. 

. Methods:

Fourteen days after induction of chronic osteoarthritis, animals were administered vehicle, 33 mg/kg or 100 mg/kg CIP for five days intraperitoneally. Motor activity, behavioral motivation, and psychomotor learning were examined in a reward-based behavioral test (Ambitus) on Day 4 and sensorimotor gating by the prepulse inhibition test on Day 5. Thereafter, the prolonged BDNF mRNA and protein expression levels were measured in the hippocampus and the prefrontal cortex. 

. Results:

CIP dose-dependently reduced both locomotion and reward-motivated exploratory activity, accompanied with impaired learning ability. In contrast, there were no significant differences in startle reflex and sensory gating among treatment groups; however, CIP treatment reduced motor activity of the animals in this test, too. These alterations were associated with reduced BDNF mRNA and protein expression levels in the hippocampus but not the prefrontal cortex. 

. Conclusion:

This study revealed the detrimental effects of CIP treatment on locomotor activity and motivation/learning ability during osteoarthritic condition, which might be due to, at least partially, deficient hippocampal BDNF expression and ensuing impairments in neural and synaptic plasticity.

.


Subject(s)
Brain-Derived Neurotrophic Factor , Ciprofloxacin , Humans , Rats , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Ciprofloxacin/adverse effects , Ciprofloxacin/metabolism , Reflex, Startle/physiology , Learning , RNA, Messenger/metabolism , RNA, Messenger/pharmacology , Hippocampus/metabolism
18.
Hear Res ; 439: 108895, 2023 11.
Article in English | MEDLINE | ID: mdl-37837701

ABSTRACT

The auditory nerve typically degenerates following loss of cochlear hair cells or synapses. In the case of hair cell loss neural degeneration hinders restoration of hearing through a cochlear implant, and in the case of synaptopathy suprathreshold hearing is affected, potentially degrading speech perception in noise. It has been established that neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) can mitigate auditory nerve degeneration. Several potential BDNF mimetics have also been investigated for neurotrophic effects in the cochlea. A recent in vitro study showed favorable effects of M3, a TrkB monoclonal antibody agonist, when compared with BDNF. In the present study we set out to examine the effect of M3 on auditory nerve preservation in vivo. Thirty-one guinea pigs were bilaterally deafened, and unilaterally treated with a single 3-µl dose of 7 mg/ml, 0.7 mg/ml M3 or vehicle-only by means of a small gelatin sponge two weeks later. During the experiment and analyses the experimenters were blinded to the three treatment groups. Four weeks after treatment, we assessed the treatment effect (1) histologically, by quantifying survival of SGCs and their peripheral processes (PPs); and (2) electrophysiologically, with two different paradigms of electrically evoked compound action potential (eCAP) recordings shown to be indicative of neural health: single-pulse stimulation with varying inter-phase gap (IPG), and pulse-train stimulation with varying inter-pulse interval. We observed a consistent and significant preservative effect of M3 on SGC survival in the lower basal turn (approximately 40% more survival than in the untreated contralateral cochlea), but also in the upper middle and lower apical turn of the cochlea. This effect was similar for the two treatment groups. Survival of PPs showed a trend similar to that of the SGCs, but was only significantly higher for the highest dose of M3. The protective effect of M3 on SGCs was not reflected in any of the eCAP measures: no statistically significant differences were observed between groups in IPG effect nor between the M3 treatment groups and the control group using the pulse-train stimulation paradigm. In short, while a clear effect of M3 was observed on SGC survival, this was not clearly translated into functional preservation.


Subject(s)
Cochlear Implants , Deafness , Guinea Pigs , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Spiral Ganglion/pathology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Cochlear Nerve , Hearing , Cochlea
19.
J Neurochem ; 167(1): 104-125, 2023 10.
Article in English | MEDLINE | ID: mdl-37688457

ABSTRACT

Brain-derived neurotrophic factor (BDNF) stimulates dendrite outgrowth and synaptic plasticity by activating downstream protein kinase A (PKA) signaling. Recently, BDNF has been shown to modulate mitochondrial respiration in isolated brain mitochondria, suggesting that BDNF can modulate mitochondrial physiology. However, the molecular mechanisms by which BDNF stimulates mitochondrial function in neurons remain to be elucidated. In this study, we surmised that BDNF binds to the TrkB receptor and translocates to mitochondria to govern mitochondrial physiology in a PKA-dependent manner. Confocal microscopy and biochemical subcellular fractionation assays confirm the localization of the TrkB receptor in mitochondria. The translocation of the TrkB receptor to mitochondria was significantly enhanced upon treating primary cortical neurons with exogenous BDNF, leading to rapid PKA activation. Showing a direct role of BDNF in regulating mitochondrial structure/function, time-lapse confocal microscopy in primary cortical neurons showed that exogenous BDNF enhances mitochondrial fusion, anterograde mitochondrial trafficking, and mitochondrial content within dendrites, which led to increased basal and ATP-linked mitochondrial respiration and glycolysis as assessed by an XF24e metabolic analyzer. BDNF-mediated regulation of mitochondrial structure/function requires PKA activity as treating primary cortical neurons with a pharmacological inhibitor of PKA or transiently expressing constructs that target an inhibitor peptide of PKA (PKI) to the mitochondrion abrogated BDNF-mediated mitochondrial fusion and trafficking. Mechanistically, western/Phos-tag blots show that BDNF stimulates PKA-mediated phosphorylation of Drp1 and Miro-2 to promote mitochondrial fusion and elevate mitochondrial content in dendrites, respectively. Effects of BDNF on mitochondrial function were associated with increased resistance of neurons to oxidative stress and dendrite retraction induced by rotenone. Overall, this study revealed new mechanisms of BDNF-mediated neuroprotection, which entails enhancing mitochondrial health and function of neurons.


Subject(s)
Brain-Derived Neurotrophic Factor , Cyclic AMP-Dependent Protein Kinases , Brain-Derived Neurotrophic Factor/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Receptor, trkB/metabolism , Neurons/metabolism , Mitochondria/metabolism , Cells, Cultured
20.
Bull Exp Biol Med ; 175(2): 219-224, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37464198

ABSTRACT

We studied the influence of recombinant IL-2 and brain-derived neurotrophic factor (BDNF) on the size of the myocardial necrosis zone of rats with systemic inflammatory response syndrome (SIRS). A significant increase in the necrosis zone and the levels of proinflammatory cytokines was revealed in animals with SIRS in comparison with the control. The administration of IL-2 to animals with SIRS significantly reduced the size of the necrosis zone, which was paralleled by a pronounced increase in IL-2 and BDNF in comparison with the corresponding parameters in rats with SIRS that did not receive IL-2. Administration of BDNF to animals with SIRS was followed by normalization of TNFα and IL-1α levels, but did not lead to a decrease in the size of the necrosis zone.


Subject(s)
Myocardial Infarction , Systemic Inflammatory Response Syndrome , Animals , Rats , Interleukin-2/pharmacology , Brain-Derived Neurotrophic Factor/pharmacology , Myocardial Infarction/complications , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Systemic Inflammatory Response Syndrome/complications , Recombinant Proteins/pharmacology , Body Weight , Feeding Behavior , Male , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL