Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928441

ABSTRACT

Hybridization is common between invasive and native species and may produce more adaptive hybrids. The hybrid (Sphagneticola × guangdongensis) of Sphagneticola trilobata (an invasive species) and S. calendulacea (a native species) was found in South China. In this study, S. trilobata, S. calendulacea, and Sphagneticola × guangdongensis were used as research materials to explore their adaptability to flooding stress. Under flooding stress, the ethylene content and the expression of key enzyme genes related to ethylene synthesis in Sphagneticola × guangdongensis and S. calendulacea were significantly higher than those in S. trilobata. A large number of adventitious roots and aerenchyma were generated in Sphagneticola × guangdongensis and S. calendulacea. The contents of reactive oxygen species and malondialdehyde in Sphagneticola × guangdongensis and S. calendulacea were lower than those in S. trilobata, and the leaves of S. trilobata were the most severely damaged under flooding stress. The results indicate that hybridization catalyzed the tolerance of Sphagneticola × guangdongensis to flooding stress, and the responses of Sphagneticola × guangdongensis to flooding stress were more similar to that of its native parent. This suggests that hybridization with native relatives is an important way for invasive species to overcome environmental pressure and achieve invasion.


Subject(s)
Floods , Hybridization, Genetic , Introduced Species , Stress, Physiological , Adaptation, Physiological/genetics , Plant Roots/genetics , Plant Roots/metabolism , Ethylenes/metabolism , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant , China , Brassicaceae/genetics , Brassicaceae/physiology , Plant Leaves/genetics , Plant Leaves/metabolism
2.
Planta ; 260(1): 24, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858226

ABSTRACT

MAIN CONCLUSION: The resurrection plant Boea hygrometrica selectively recruits and assembles drought-specific microbial communities across the plant-soil compartments, which may benefit plant growth and fitness under extreme drought conditions. Plant-associated microbes are essential for facilitating plant growth and fitness under drought stress. The resurrection plant Boea hygrometrica in natural habitats with seasonal rainfall can survive rapid desiccation, yet their interaction with microbiomes under drought conditions remains unexplored. This study examined the bacterial and fungal microbiome structure and drought response across plant-soil compartments of B. hygrometrica by high-throughput amplicon sequencing of 16S rRNA gene and internal transcribed spacer. Our results demonstrated that the diversity, composition, and functional profile of the microbial community varied considerably across the plant-soil compartments and were strongly affected by drought stress. Bacterial and fungal diversity was significantly reduced from soil to endosphere and belowground to aboveground compartments. The compartment-specific enrichment of the dominant bacteria phylum Cyanobacteriota and genus Methylorubrum in leaf endosphere, genera Pseudonocardia in rhizosphere soil and Actinoplanes in root endosphere, and fungal phylum Ascomycota in the aboveground compartments and genera Knufia in root endosphere and Cladosporium in leaf endosphere composed part of the core microbiota with corresponding enrichment of beneficial functions for plant growth and fitness. Moreover, the recruitment of dominant microbial genera Sphingosinicella and Plectosphaerella, Ceratobasidiaceae mycorrhizal fungi, and numerous plant growth-promoting bacteria involving nutrient supply and auxin regulation was observed in desiccated B. hygrometrica plants. Our results suggest that the stable assembled drought-specific microbial community of B. hygrometrica may contribute to plant survival under extreme environments and provide valuable microbial resources for the microbe-mediated drought tolerance enhancement in crops.


Subject(s)
Droughts , Microbiota , Soil Microbiology , Microbiota/genetics , Stress, Physiological , Bacteria/genetics , Bacteria/classification , Plant Roots/microbiology , Plant Roots/genetics , RNA, Ribosomal, 16S/genetics , Fungi/physiology , Fungi/genetics , Rhizosphere , Brassicaceae/microbiology , Brassicaceae/genetics , Brassicaceae/physiology , Plant Leaves/microbiology , Plant Leaves/genetics
3.
Nat Plants ; 10(6): 1018-1026, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806655

ABSTRACT

The endosperm is a reproductive tissue supporting embryo development. In most flowering plants, the initial divisions of endosperm nuclei are not succeeded by cellularization; this process occurs only after a specific number of mitotic cycles have taken place. The timing of cellularization significantly influences seed viability and size. Previous research implicated auxin as a key factor in initiating nuclear divisions and determining the timing of cellularization. Here we uncover the involvement of a family of clustered auxin response factors (cARFs) as dosage-sensitive regulators of endosperm cellularization. cARFs, maternally expressed and paternally silenced, are shown to induce cellularization, thereby restricting seed growth. Our findings align with the predictions of the parental conflict theory, suggesting that cARFs represent major molecular targets in this conflict. We further demonstrate a recurring amplification of cARFs in the Brassicaceae, suggesting an evolutionary response to parental conflict by reinforcing maternal control over endosperm cellularization. Our study highlights that antagonistic parental control on endosperm cellularization converges on auxin biosynthesis and signalling.


Subject(s)
Arabidopsis , Endosperm , Gene Expression Regulation, Plant , Indoleacetic Acids , Endosperm/metabolism , Endosperm/genetics , Indoleacetic Acids/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Brassicaceae/genetics , Brassicaceae/metabolism , Brassicaceae/physiology , Plant Growth Regulators/metabolism
4.
Cell ; 187(13): 3319-3337.e18, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38810645

ABSTRACT

The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.


Subject(s)
Brassicaceae , Flowers , Gene Expression Regulation, Plant , Brassicaceae/genetics , Brassicaceae/physiology , Crops, Agricultural/genetics , Flowers/genetics , Flowers/physiology , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Plant Physiological Phenomena , Chromosome Mapping , Mutation
5.
New Phytol ; 243(1): 58-71, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655662

ABSTRACT

Climate change is simultaneously increasing carbon dioxide concentrations ([CO2]) and temperature. These factors could interact to influence plant physiology and performance. Alternatively, increased [CO2] may offset costs associated with elevated temperatures. Furthermore, the interaction between elevated temperature and [CO2] may differentially affect populations from along an elevational gradient and disrupt local adaptation. We conducted a multifactorial growth chamber experiment to examine the interactive effects of temperature and [CO2] on fitness and ecophysiology of diverse accessions of Boechera stricta (Brassicaceae) sourced from a broad elevational gradient in Colorado. We tested whether increased [CO2] would enhance photosynthesis across accessions, and whether warmer conditions would depress the fitness of high-elevation accessions owing to steep reductions in temperature with increasing elevation in this system. Elevational clines in [CO2] are not as evident, making it challenging to predict how locally adapted ecotypes will respond to elevated [CO2]. This experiment revealed that elevated [CO2] increased photosynthesis and intrinsic water use efficiency across all accessions. However, these instantaneous responses to treatments did not translate to changes in fitness. Instead, increased temperatures reduced the probability of reproduction for all accessions. Elevated [CO2] and increased temperatures interacted to shift the adaptive landscape, favoring lower elevation accessions for the probability of survival and fecundity. Our results suggest that elevated temperatures and [CO2] associated with climate change could have severe negative consequences, especially for high-elevation populations.


Subject(s)
Brassicaceae , Carbon Dioxide , Photosynthesis , Temperature , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Brassicaceae/physiology , Genetic Fitness , Altitude , Water , Colorado , Climate Change , Reproduction
6.
Nat Ecol Evol ; 8(6): 1129-1139, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38637692

ABSTRACT

Self-incompatibility and recurrent transitions to self-compatibility have shaped the extant mating systems underlying the nonrandom mating critical for speciation in angiosperms. Linkage between self-incompatibility and speciation is illustrated by the shared pollen rejection pathway between self-incompatibility and interspecific unilateral incompatibility (UI) in the Brassicaceae. However, the pollen discrimination system that activates this shared pathway for heterospecific pollen rejection remains unknown. Here we show that Stigma UI3.1, the genetically identified stigma determinant of UI in Arabidopsis lyrata × Arabidopsis arenosa crosses, encodes the S-locus-related glycoprotein 1 (SLR1). Heterologous expression of A. lyrata or Capsella grandiflora SLR1 confers on some Arabidopsis thaliana accessions the ability to discriminate against heterospecific pollen. Acquisition of this ability also requires a functional S-locus receptor kinase (SRK), whose ligand-induced dimerization activates the self-pollen rejection pathway in the stigma. SLR1 interacts with SRK and interferes with SRK homomer formation. We propose a pollen discrimination system based on competition between basal or ligand-induced SLR1-SRK and SRK-SRK complex formation. The resulting SRK homomer levels would be sensed by the common pollen rejection pathway, allowing discrimination among conspecific self- and cross-pollen as well as heterospecific pollen. Our results establish a mechanistic link at the pollen recognition phase between self-incompatibility and interspecific incompatibility.


Subject(s)
Arabidopsis , Pollen , Arabidopsis/genetics , Arabidopsis/physiology , Brassicaceae/genetics , Brassicaceae/physiology , Self-Incompatibility in Flowering Plants , Pollination , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Capsella/genetics
7.
Methods Mol Biol ; 2787: 39-53, 2024.
Article in English | MEDLINE | ID: mdl-38656480

ABSTRACT

The study of natural variations in photosynthesis in the Brassicaceae family offers the possibility of identifying mechanisms to enhance photosynthetic efficiency in crop plants. Indeed, this family, and particularly its tribe Brassiceae, has been shown to harbor species that have a higher-than-expected photosynthetic efficiency, possibly as a result of a complex evolutionary history. Over the past two decades, methods have been developed to measure photosynthetic efficiency based on chlorophyll fluorescence. Chlorophyll fluorescence measurements are performed with special cameras, such as the FluorCams, which can be included in robotic systems to create high-throughput phenotyping platforms. While these platforms have so far demonstrated high efficiency in measuring small model species like Arabidopsis thaliana, they have the drawback of limited adaptability to accommodate different plant sizes. As a result, the range of species that can be analyzed is restricted. This chapter presents our approach to analyze the photosynthetic parameters: ϕPSII and Fv/Fm for a panel of Brassicaceae species, including a high-photosynthesis species, Hirschfeldia incana, and the adaptations to the phenotyping platform that are required to accommodate this varied group of plants.


Subject(s)
Brassicaceae , Chlorophyll , Photosynthesis , Brassicaceae/physiology , Brassicaceae/metabolism , Brassicaceae/genetics , Chlorophyll/metabolism , High-Throughput Screening Assays/methods , Phenotype , Fluorescence
8.
Plant Cell ; 36(7): 2465-2490, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38513609

ABSTRACT

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.


Subject(s)
Brassicaceae , Fruit , Gene Expression Regulation, Plant , Germination , Seeds , Temperature , Germination/genetics , Germination/physiology , Seeds/genetics , Seeds/physiology , Seeds/growth & development , Seeds/metabolism , Brassicaceae/genetics , Brassicaceae/physiology , Brassicaceae/metabolism , Fruit/genetics , Fruit/physiology , Fruit/growth & development , Fruit/metabolism , Plant Growth Regulators/metabolism , Transcriptome/genetics , Plant Dormancy/genetics , Plant Dormancy/physiology , Abscisic Acid/metabolism
9.
Plant J ; 116(3): 921-941, 2023 11.
Article in English | MEDLINE | ID: mdl-37609706

ABSTRACT

Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.


Subject(s)
Arabidopsis , Brassicaceae , Brassicaceae/physiology , Arabidopsis/physiology , Flowers , Salt Stress , Stress, Physiological , Water
10.
PLoS One ; 18(1): e0280246, 2023.
Article in English | MEDLINE | ID: mdl-36652493

ABSTRACT

Annexins (Anns) play an important role in plant development, growth and responses to various stresses. Although Ann genes have been characterized in some plants, their role in adaptation mechanisms and tolerance to environmental stresses have not been studied in extremophile plants. In this study, Ann genes in Schrenkiella parvula and Eutrema salsugineum were identified using a genome-wide method and phylogenetic relationships, subcellular distribution, gene structures, conserved residues and motifs and also promoter prediction have been studied through bioinformatics analysis. We identified ten and eight encoding putative Ann genes in S. parvula and E. salsugineum genome respectively, which were divided into six subfamilies according to phylogenetic relationships. By observing conservation in gene structures and protein motifs we found that the majority of Ann members in two extremophile plants are similar. Furthermore, promoter analysis revealed a greater number of GATA, Dof, bHLH and NAC transcription factor binding sites, as well as ABRE, ABRE3a, ABRE4, MYB and Myc cis-acting elements in compare to Arabidopsis thaliana. To gain additional insight into the putative roles of candidate Ann genes, the expression of SpAnn1, SpAnn2 and SpAnn6 in S. parvula was studied in response to salt stress, which indicated that their expression level in shoot increased. Similarly, salt stress induced expression of EsAnn1, 5 and 7, in roots and EsAnn1, 2 and 5 in leaves of E. salsugineum. Our comparative analysis implies that both halophytes have different regulatory mechanisms compared to A. thaliana and suggest SpAnn2 gene play important roles in mediating salt stress.


Subject(s)
Arabidopsis , Brassicaceae , Phylogeny , Salt Tolerance/genetics , Brassicaceae/physiology , Arabidopsis/metabolism , Salt Stress/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Am J Bot ; 109(11): 1939-1961, 2022 11.
Article in English | MEDLINE | ID: mdl-36371714

ABSTRACT

Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.


Subject(s)
Apomixis , Arabidopsis , Brassicaceae , Genome-Wide Association Study , Brassicaceae/physiology , Selection, Genetic , Phenotype , Arabidopsis/genetics
12.
Sci Total Environ ; 838(Pt 2): 155899, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35569660

ABSTRACT

Biscutella laevigata is the strongest known thallium (Tl) hyperaccumulator plant species. However, little is known about the ecophysiological processes leading to root uptake and translocation of Tl in this species, and the interactions between Tl and its chemical analogue potassium (K). Biscutella laevigata was subjected to hydroponics experimentation in which it was exposed to Tl and K, and it was investigated in a rhizobox experiment. Laboratory-based micro-X-ray fluorescence spectroscopy (µ-XRF) was used to reveal the Tl distribution in the roots and leaves, while synchrotron-based µ-XRF was utilised to reveal elemental distribution in the seed. The results show that in the seed Tl was mainly localised in the endosperm and cotyledons. In mature plants, Tl was highest in the intermediate leaves (16,100 µg g-1), while it was one order of magnitude lower in the stem and roots. Potassium did not inhibit or enhance Tl uptake in B.laevigata. At the organ level, Tl was localised in the blade and margins of the leaves. Roots foraged for Tl and cycled Tl across roots growing in the control soils. Biscutella laevigata has ostensibly evolved specialised mechanisms to tolerate high Tl concentrations in its shoots. The lack of interactions and competition between Tl and K suggests that it is unlikely that Tl is taken up via K channels, but high affinity Tl transporters remain to be identified in this species. Thallium is not only highly toxic but also a valuable metal and Tl phytoextraction using B. laevigata should be explored.


Subject(s)
Brassicaceae , Soil Pollutants , Brassicaceae/physiology , Plants , Potassium , Soil , Thallium
13.
Physiol Plant ; 174(2): e13653, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35187664

ABSTRACT

Overexpression of the vacuolar sugar transporter TST1 in Arabidopsis leads to higher seed lipid levels and higher total seed yield per plant. However, effects on fruit biomass have not been observed in crop plants like melon, strawberry, cotton, apple, or tomato with increased tonoplast sugar transporter (TST) activity. Thus, it was unclear whether overexpression of TST in selected crops might lead to increased fruit yield, as observed in Arabidopsis. Here, we report that constitutive overexpression of TST1 from sugar beet in the important crop species Camelina sativa (false flax) resembles the seed characteristics observed for Arabidopsis upon increased TST activity. These effects go along with a stimulation of sugar export from source leaves and not only provoke optimised seed properties like higher lipid levels and increased overall seed yield per plant, but also modify the root architecture of BvTST1 overexpressing Camelina lines. Such mutants grew longer primary roots and showed an increased number of lateral roots, especially when developed under conditions of limited water supply. These changes in root properties result in a stabilisation of total seed yield under drought conditions. In summary, we demonstrate that increased vacuolar TST activity may lead to optimised yield of an oil-seed crop species with high levels of healthy ω3 fatty acids in storage lipids. Moreover, since BvTST1 overexpressing Camelina mutants, in addition, exhibit optimised yield under limited water availability, we might devise a strategy to create crops with improved tolerance against drought, representing one of the most challenging environmental cues today and in future.


Subject(s)
Arabidopsis , Beta vulgaris , Brassicaceae , Arabidopsis/genetics , Beta vulgaris/genetics , Brassicaceae/physiology , Carbohydrates , Crops, Agricultural , Lipids , Plants, Genetically Modified , Seeds/genetics , Sugars
14.
Trends Plant Sci ; 27(5): 472-487, 2022 05.
Article in English | MEDLINE | ID: mdl-34848142

ABSTRACT

Self-incompatibility (SI) is a mechanism that many plant families employ to prevent self-fertilization. In the Brassicaceae, the S-haplotype-specific interaction of the pollen-borne ligand, and a stigma-specific receptor protein kinase triggers a signaling cascade that culminates in the rejection of self-pollen. While the upstream molecular components at the receptor level of the signaling pathway have been extensively studied, the intracellular responses beyond receptor activation were not as well understood. Recent research has uncovered several key molecules and signaling events that operate in concert for the manifestation of the self-incompatible responses in Brassicaceae stigmas. Here, we review the recent discoveries in both the compatible and self-incompatible pathways and provide new perspectives on the early stages of Brassicaceae pollen-pistil interactions.


Subject(s)
Brassicaceae , Brassicaceae/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/physiology , Pollination , Protein Kinases/metabolism , Signal Transduction
15.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: mdl-34649989

ABSTRACT

Deserts exert strong selection pressures on plants, but the underlying genomic drivers of ecological adaptation and subsequent speciation remain largely unknown. Here, we generated de novo genome assemblies and conducted population genomic analyses of the psammophytic genus Pugionium (Brassicaceae). Our results indicated that this bispecific genus had undergone an allopolyploid event, and the two parental genomes were derived from two ancestral lineages with different chromosome numbers and structures. The postpolyploid expansion of gene families related to abiotic stress responses and lignin biosynthesis facilitated environmental adaptations of the genus to desert habitats. Population genomic analyses of both species further revealed their recent divergence with continuous gene flow, and the most divergent regions were found to be centered on three highly structurally reshuffled chromosomes. Genes under selection in these regions, which were mainly located in one of the two subgenomes, contributed greatly to the interspecific divergence in microhabitat adaptation.


Subject(s)
Adaptation, Physiological/genetics , Brassicaceae/genetics , Ecosystem , Genetic Speciation , Genome, Plant , Brassicaceae/classification , Brassicaceae/physiology , Phylogeny , Polyploidy
16.
Plant Physiol ; 186(4): 2137-2151, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34618102

ABSTRACT

When growing in search for light, plants can experience continuous or occasional shading by other plants. Plant proximity causes a decrease in the ratio of R to far-red light (low R:FR) due to the preferential absorbance of R light and reflection of FR light by photosynthetic tissues of neighboring plants. This signal is often perceived before actual shading causes a reduction in photosynthetically active radiation (low PAR). Here, we investigated how several Brassicaceae species from different habitats respond to low R:FR and low PAR in terms of elongation, photosynthesis, and photoacclimation. Shade-tolerant plants such as hairy bittercress (Cardamine hirsuta) displayed a good adaptation to low PAR but a poor or null response to low R:FR exposure. In contrast, shade-avoider species, such as Arabidopsis (Arabidopsis thaliana), showed a weak photosynthetic performance under low PAR but they strongly elongated when exposed to low R:FR. These responses could be genetically uncoupled. Most interestingly, exposure to low R:FR of shade-avoider (but not shade-tolerant) plants improved their photoacclimation to low PAR by triggering changes in photosynthesis-related gene expression, pigment accumulation, and chloroplast ultrastructure. These results indicate that low R:FR signaling unleashes molecular, metabolic, and developmental responses that allow shade-avoider plants (including most crops) to adjust their photosynthetic capacity in anticipation of eventual shading by nearby plants.


Subject(s)
Acclimatization , Brassicaceae/physiology , Light , Brassicaceae/radiation effects , Species Specificity
17.
PLoS One ; 16(9): e0257745, 2021.
Article in English | MEDLINE | ID: mdl-34570827

ABSTRACT

In recent years, much effort has been devoted to understanding the response of plants to various light sources, largely due to advances in industry light-emitting diodes (LEDs). In this study, the effect of different light modes on rocket (Eruca sativa. Mill.) photosynthetic performance and other physiological traits was evaluated using an orthogonal design based on a combination between light intensity, quality, and photoperiod factors. Some morphological and biochemical parameters and photosynthetic efficiency of the plants were analyzed. Plants grew in a closed chamber where three light intensities (160, 190, and 220 µmol m-2 s-1) provided by LEDs with a combination of different ratios of red, green, and blue (R:G:B- 7:0:3, 3:0:7, and 5:2:3) and three different photoperiods (light/dark -10/14 h, 12/12 h, and 14/10 h) were used and compared with white fluorescent light (control). This experimental setup allowed us to study the effect of 9 light modes (LM) compared to white light. The analyzes performed showed that the highest levels of chlorophyll a, chlorophyll b, and carotenoids occurred under LM4, LM3, and LM1, respectively. Chlorophyll a fluorescence measurement showed that the best effective quantum yield of PSII photochemistry Y(II), non-photochemical quenching (NPQ), photochemical quenching coefficient (qP), and electron transport ratio (ETR) were obtained under LM2. The data showed that the application of R7:G0:B3 light mode with a shorter photoperiod than 14/10 h (light/dark), regardless of the light intensity used, resulted in a significant increase in growth as well as higher photosynthetic capacity of rocket plants. Since, a clear correlation between the studied traits under the applied light modes was not found, more features should be studied in future experiments.


Subject(s)
Brassicaceae/physiology , Photosynthesis , Brassicaceae/growth & development , Carotenoids/metabolism , Chlorophyll/metabolism , Light , Photoperiod
18.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576106

ABSTRACT

We investigated low-temperature plasma effects on two Brassicaceae seeds (A. thaliana and C. sativa) using dielectric barrier discharge in air. Comparisons of plasma treatments on seeds showed distinct responses on germination rate and speed. Optimal treatment time giving optimal germination is 15 min for A. thaliana with 85% increase compared to control after 48 h of germination and 1 min for C. sativa with 75% increase compared to control after 32 h of germination. Such germination increases are associated with morphological changes shown by SEM of seed surface. For better understanding at the biochemical level, seed surfaces were analyzed using gas chromatography-mass spectrometry which underlined changes of lipidic composition. For both treated seeds, there is a decrease of saturated (palmitic and stearic) fatty acids while treated C. sativa showed a decrease of unsaturated (oleic and linoleic) acids and treated A. thaliana an increase of unsaturated ones. Such lipid changes, specifically a decrease of hydrophobic saturated fatty acids, are coherent with the other analyses (SEM, water uptake and contact angle). Moreover, an increase in A. thaliana of unsaturated acids (very reactive) probably neutralizes plasma RONS effects thus needing longer plasma exposure time (15 min) to reach optimal germination. For C. sativa, 1 min is enough because unsaturated linoleic acid becomes lower in treated C. sativa (1.2 × 107) compared to treated A. thaliana (3.7 × 107).


Subject(s)
Air , Arabidopsis/physiology , Brassicaceae/physiology , Electricity , Plasma Gases/pharmacology , Seeds/drug effects , Arabidopsis/drug effects , Arabidopsis/ultrastructure , Brassicaceae/drug effects , Brassicaceae/ultrastructure , Fatty Acids/metabolism , Germination/drug effects , Lipidomics , Permeability , Seeds/anatomy & histology , Seeds/ultrastructure , Time Factors , Water , Wettability
19.
Methods Mol Biol ; 2288: 73-88, 2021.
Article in English | MEDLINE | ID: mdl-34270005

ABSTRACT

In the context of plant regeneration, in vitro systems to produce embryos are frequently used. In many of these protocols, nonzygotic embryos are initiated that will produce shoot-like structures but may lack a primary root. By increasing the auxin-to-cytokinin ratio in the growth medium, roots are then regenerated in a second step. Therefore, in vitro systems might not or only partially execute a similar developmental program as employed during zygotic embryogenesis. There are, however, in vitro systems that can remarkably mimic zygotic embryogenesis such as Brassica microspore-derived embryos. In this case, the patterning process of these haploid embryos closely follows zygotic embryogenesis and all fundamental tissue types are generated in a rather similar manner. In this review, we discuss the most fundamental molecular events during early zygotic embryogenesis and hope that this brief summary can serve as a reference for studying and developing in vitro embryogenesis systems in the context of doubled haploid production.


Subject(s)
Magnoliopsida/embryology , Body Patterning/genetics , Body Patterning/physiology , Brassicaceae/embryology , Brassicaceae/genetics , Brassicaceae/physiology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Indoleacetic Acids/metabolism , MAP Kinase Signaling System , Magnoliopsida/genetics , Magnoliopsida/physiology , Models, Biological , Molecular Biology/methods , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/physiology , Regeneration/genetics , Regeneration/physiology , Stem Cell Niche/genetics , Stem Cell Niche/physiology , Zygote
20.
Int J Mol Sci ; 22(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068347

ABSTRACT

To ensure global food security under the changing climate, there is a strong need for developing 'climate resilient crops' that can thrive and produce better yields under extreme environmental conditions such as drought, salinity, and high temperature. To enhance plant productivity under the adverse conditions, we constitutively overexpressed a bifunctional wax synthase/acyl-CoA:diacylglycerol acyltransferase (WSD1) gene, which plays a critical role in wax ester synthesis in Arabidopsis stem and leaf tissues. The qRT-PCR analysis showed a strong upregulation of WSD1 transcripts by mannitol, NaCl, and abscisic acid (ABA) treatments, particularly in Arabidopsis thaliana shoots. Gas chromatography and electron microscopy analyses of Arabidopsis seedlings overexpressing WSD1 showed higher deposition of epicuticular wax crystals and increased leaf and stem wax loading in WSD1 transgenics compared to wildtype (WT) plants. WSD1 transgenics exhibited enhanced tolerance to ABA, mannitol, drought and salinity, which suggested new physiological roles for WSD1 in stress response aside from its wax synthase activity. Transgenic plants were able to recover from drought and salinity better than the WT plants. Furthermore, transgenics showed reduced cuticular transpirational rates and cuticle permeability, as well as less chlorophyll leaching than the WT. The knowledge from Arabidopsis was translated to the oilseed crop Camelina sativa (L.) Crantz. Similar to Arabidopsis, transgenic Camelina lines overexpressing WSD1 also showed enhanced tolerance to drought stress. Our results clearly show that the manipulation of cuticular waxes will be advantageous for enhancing plant productivity under a changing climate.


Subject(s)
Acyltransferases/metabolism , Arabidopsis/physiology , Brassicaceae/physiology , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Stress, Physiological , Waxes/metabolism , Acyl Coenzyme A/metabolism , Acyltransferases/genetics , Esters/metabolism , Osmotic Pressure , Plant Proteins/genetics , Waxes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...