Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 229(2): e13438, 2020 06.
Article in English | MEDLINE | ID: mdl-31900993

ABSTRACT

AIMS: Pathogenic variants of the SCN5A gene can cause Brugada syndrome (BrS) and long QT syndrome (LQTS), which predispose individuals to potentially fatal ventricular arrhythmias and sudden cardiac death. SCN5A encodes the NaV 1.5 protein, the pore forming α-subunit of the voltage-dependent cardiac Na+ channel. Using a WW domain, the E3 ubiquitin ligase Nedd4-2 binds to the PY-motif ([L/P]PxY) within the C-terminus of NaV 1.5, which results in decreased protein expression and current through NaV 1.5 ubiquitination. Here, we investigate the role of E3 ubiquitin ligase Nedd4-2-mediated NaV 1.5 degradation in the pathological mechanisms of the BrS-associated variant SCN5A-p.L1239P and LQTS-associated variant SCN5A-p.Y1977N. METHODS AND RESULTS: Using a combination of molecular biology, biochemical and electrophysiological approaches, we examined the expression, function and Nedd4-2 interactions of SCN5A-p.L1239P and SCN5A-p.Y1977N. SCN5A-p.L1239P is characterized as a loss-of-function, whereas SCN5A-p.Y1977N is a gain-of-function variant of the NaV 1.5 channel. Sequence alignment shows that BrS-associated SCN5A-p.L1239P has a new Nedd4-2-binding site (from LLxY to LPxY). This new Nedd4-2-binding site increases the interaction between NaV 1.5 and Nedd4-2, enhancing ubiquitination and degradation of the NaV 1.5 channel. Disruption of the new Nedd4-2-binding site of SCN5A-p.L1239P restores NaV 1.5 expression and function. However, the LQTS-associated SCN5A-p.Y1977N disrupts the usual Nedd4-2-binding site (from PPxY to PPxN). This decreases NaV 1.5-Nedd4-2 interaction, preventing ubiquitination and degradation of NaV 1.5 channels. CONCLUSIONS: Our data suggest that the PY-motif plays an essential role in modifying the expression/function of NaV 1.5 channels through Nedd4-2-mediated ubiquitination. Alterations of NaV 1.5-Nedd4-2 interaction represent a novel pathological mechanism for NaV 1.5 channel diseases caused by SCN5A variants.


Subject(s)
Brugada Syndrome/metabolism , Long QT Syndrome/metabolism , NAV1.5 Voltage-Gated Sodium Channel/chemistry , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Nedd4 Ubiquitin Protein Ligases/metabolism , Amino Acid Motifs , Brugada Syndrome/enzymology , HEK293 Cells , Humans , Long QT Syndrome/enzymology , Protein Binding
2.
Circ Cardiovasc Genet ; 7(3): 249-56, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24795344

ABSTRACT

BACKGROUND: The mechanisms of the electrocardiographic changes and arrhythmias in Brugada syndrome (BrS) remain controversial. Mutations in the sodium channel gene, SCN5A, and regulatory proteins that reduce or eliminate sodium current (INa) have been linked to BrS. We studied the properties of a BrS-associated SCN5A mutation in a protein kinase A (PKA) consensus phosphorylation site, R526H. METHODS AND RESULTS: In vitro PKA phosphorylation was detected in the I-II linker peptide of wild-type (WT) channels but not R526H or S528A (phosphorylation site) mutants. Cell surface expression of R526H and S528A channels was reduced compared with WT. Whole-cell INa through all channel variants revealed no significant differences in the steady-state activation, inactivation, and recovery from inactivation. Peak current densities of the mutants were significantly reduced compared with WT. Infection of 2D cultures of neonatal rat ventricular myocytes with WT and mutant channels increased conduction velocity compared with noninfected cells. PKA stimulation significantly increased peak INa and conduction velocity of WT but not mutant channels. Oxidant stress inhibits cardiac INa; WT and mutant INa decreases with the intracellular application of reduced nicotinamide adenine dinucleotide (NADH), an effect that is reversed by PKA stimulation in WT but not in R526H or S528A channels. CONCLUSIONS: We identified a family with BrS and an SCN5A mutation in a PKA consensus phosphorylation site. The BrS mutation R526H is associated with a reduction in the basal level of INa and a failure of PKA stimulation to augment the current that may contribute to the predisposition to arrhythmias in patients with BrS, independent of the precipitants.


Subject(s)
Brugada Syndrome/genetics , Brugada Syndrome/metabolism , Mutation, Missense , NAV1.5 Voltage-Gated Sodium Channel/genetics , Oxidants/metabolism , Sodium/metabolism , Adult , Animals , Brugada Syndrome/enzymology , Brugada Syndrome/physiopathology , Cyclic AMP-Dependent Protein Kinases/metabolism , Electrocardiography , Heart/physiopathology , Humans , Male , Muscle Cells/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...