ABSTRACT
Aphids are well known for their association with endosymbiont bacteria. Almost all aphids harbor Buchnera aphidicola as an obligate symbiont and several other bacteria as facultative symbionts. Associations of facultative symbionts and aphids are quite variable in terms of diversity and prevalence across aphid species. Facultative symbionts can have a major impact on aphid bioecological traits. A number of factors shape the outcome of the facultative symbiont-aphid association, including aphid clone, bacterial genotype, geography, and host plant association. The effects of host plant on aphid-facultative symbiont associations are the least understood. We performed deep sequencing of the bacterial community associated with field populations of the oligophagous aphid Aphis (Toxoptera) citricidus collected from different host plants. We demonstrate that (i) A. citricidus has low symbiont diversity, (ii) symbiont diversity is affected by host plant, and (iii) host plants affect the relative abundance of the obligate symbiont Buchnera and an unknown genus of Enterobacteriaceae.
Subject(s)
Aphids/microbiology , Buchnera/isolation & purification , Enterobacteriaceae/isolation & purification , Proteobacteria/isolation & purification , Animals , Biodiversity , Buchnera/genetics , Enterobacteriaceae/genetics , Proteobacteria/genetics , SymbiosisABSTRACT
Aphids harbor a variety of bacterial endosymbionts, including the obligate symbiont Buchnera aphidicola and diverse facultative symbionts. The former supplies its host with essential amino acids. The latter are not indispensable for insect survival, but often improve their host's fitness. To date, the study of such associations was restricted to aphids of Holarctic origin. The bacterial microbiota of seven Aphis species from Argentina was investigated. The presence of B. aphidicola was assessed by specific PCR. Additional symbionts were identified through PCR with eubacterial universal primers, cloning, and sequencing of nearly complete 16S rRNA gene, intergenic spacer region, and partial 23S rRNA gene and subjected to phylogenetic analysis. Infection with B. aphidicola was confirmed in every species analyzed. The facultative symbiont Serratia symbiotica was detected in Aphis malalhuina Mier Durante, Nieto Nafría & Ortego, 2003, Aphis senecionicoides Blanchard, 1944, and Aphis schinifoliae Blanchard, 1939, while Hamiltonella defensa was identified in Aphis mendocina Mier Durante, Ortego & Nieto Nafría, 2006. Arsenophonus sp. was found infecting Aphis melosae Mier Durante & Ortego, 1999, and a new, undescribed Aphis sp. In Aphis danielae Remaudière, 1994, no facultative symbionts could be recorded. When analyzing the highly conserved 16S rRNA gene, the phylogenetic tree grouped the S. symbiotica, H. defensa, and Arsenophonus isolates into three well-defined clusters showing little variability among clones corresponding to the same aphid host species. This article reports for the first time the endosymbionts associated with aphids native to South America. Despite their geographic origin, the qualitative composition of their microbiota revealed no evident differences from that described for aphids in the Northern Hemisphere.