Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.507
Filter
1.
Clin Transl Med ; 14(8): e1738, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39095323

ABSTRACT

BACKGROUND: The therapeutic potential of immune checkpoint blockade (ICB) extends across various cancers; however, its effectiveness in treating hepatocellular carcinoma (HCC) is frequently curtailed by both inherent and developed resistance. OBJECTIVE: This research explored the effectiveness of integrating anlotinib (a broad-spectrum tyrosine kinase inhibitor) with programmed death-1 (PD-1) blockade and offers mechanistic insights into more effective strategies for treating HCC. METHODS: Using patient-derived organotypic tissue spheroids and orthotopic HCC mouse models, we assessed the effectiveness of anlotinib combined with PD-1 blockade. The impact on the tumour immune microenvironment and underlying mechanisms were assessed using time-of-flight mass cytometry, RNA sequencing, and proteomics across cell lines, mouse models, and HCC patient samples. RESULTS: The combination of anlotinib with an anti-PD-1 antibody enhanced the immune response against HCC in preclinical models. Anlotinib remarkably suppressed the expression of transferrin receptor (TFRC) via the VEGFR2/AKT/HIF-1α signaling axis. CD8+ T-cell infiltration into the tumour microenvironment correlated with low expression of TFRC. Anlotinib additionally increased the levels of the chemokine CXCL14, crucial for attracting CD8+ T cells. CXCL14 emerged as a downstream effector of TFRC, exhibiting elevated expression following the silencing of TFRC. Importantly, low TFRC expression was also associated with a better prognosis, enhanced sensitivity to combination therapy, and a favourable response to anti-PD-1 therapy in patients with HCC. CONCLUSIONS: Our findings highlight anlotinib's potential to augment the efficacy of anti-PD-1 immunotherapy in HCC by targeting TFRC and enhancing CXCL14-mediated CD8+ T-cell infiltration. This study contributes to developing novel therapeutic strategies for HCC, emphasizing the role of precision medicine in oncology. HIGHLIGHTS: Synergistic effects of anlotinib and anti-PD-1 immunotherapy demonstrated in HCC preclinical models. Anlotinib inhibits TFRC expression via the VEGFR2/AKT/HIF-1α pathway. CXCL14 upregulation via TFRC suppression boosts CD8+ T-cell recruitment. TFRC emerges as a potential biomarker for evaluating prognosis and predicting response to anti-PD-1-based therapies in advanced HCC patients.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Immunotherapy , Indoles , Liver Neoplasms , Quinolines , Receptors, Transferrin , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Quinolines/pharmacology , Quinolines/therapeutic use , Quinolines/administration & dosage , Animals , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Indoles/pharmacology , Indoles/therapeutic use , Humans , Immunotherapy/methods , Receptors, Transferrin/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
2.
Commun Biol ; 7(1): 934, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095531

ABSTRACT

Epigenetic clocks are age predictors that use machine-learning models trained on DNA CpG methylation values to predict chronological or biological age. Increases in predicted epigenetic age relative to chronological age (epigenetic age acceleration) are connected to aging-associated pathologies, and changes in epigenetic age are linked to canonical aging hallmarks. However, epigenetic clocks rely on training data from bulk tissues whose cellular composition changes with age. Here, we found that human naive CD8+ T cells, which decrease in frequency during aging, exhibit an epigenetic age 15-20 years younger than effector memory CD8+ T cells from the same individual. Importantly, homogenous naive T cells isolated from individuals of different ages show a progressive increase in epigenetic age, indicating that current epigenetic clocks measure two independent variables, aging and immune cell composition. To isolate the age-associated cell intrinsic changes, we created an epigenetic clock, the IntrinClock, that did not change among 10 immune cell types tested. IntrinClock shows a robust predicted epigenetic age increase in a model of replicative senescence in vitro and age reversal during OSKM-mediated reprogramming.


Subject(s)
Aging , CD8-Positive T-Lymphocytes , DNA Methylation , Epigenesis, Genetic , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Aging/genetics , Aging/immunology , Adult , Female , Male , Young Adult , Middle Aged , Aged , Cellular Senescence/genetics , Cellular Senescence/immunology , Adolescent
3.
Cancer Immunol Immunother ; 73(10): 198, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105866

ABSTRACT

CD27 belongs to the tumor necrosis factor receptor superfamily and acts as a co-stimulatory molecule, modulating T and B cell responses. CD27 stimulation enhances T cell survival and effector functions, thus providing opportunities to develop therapeutic strategies. The current study aims to investigate the role of endogenous CD27 signaling in tumor growth and metastasis. CD8 + T cell-specific CD27 knockout (CD8Cre-CD27fl) mice were developed, while global CD27 knockout (KO) mice were also used in our studies. Flow cytometry analyses confirmed that CD27 was deleted specifically from CD8 + T cells without affecting CD4 + T cells, B cells, and HSPCs in the CD8Cre-CD27fl mice, while CD27 was deleted from all cell types in global CD27 KO mice. Tumor growth and metastasis studies were performed by injecting B16-F10 melanoma cells subcutaneously (right flank) or intravenously into the mice. We have found that global CD27 KO mice succumbed to significantly accelerated tumor growth compared to WT controls. In addition, global CD27 KO mice showed a significantly higher burden of metastatic tumor nests in the lungs compared to WT controls. However, there was no significant difference in tumor growth curves, survival, metastatic tumor nest counts between the CD8Cre-CD27fl mice and WT controls. These results suggest that endogenous CD27 signaling inhibits tumor growth and metastasis via CD8 + T cell-independent mechanisms in this commonly used melanoma model, presumably through stimulating antitumor activities of other types of immune cells.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma, Experimental , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Tumor Necrosis Factor Receptor Superfamily, Member 7 , Animals , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Neoplasm Metastasis , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Disease Models, Animal
4.
Medicine (Baltimore) ; 103(31): e38691, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093774

ABSTRACT

Renal clear cell carcinoma (RCC) is a type of malignant tumor, which, in addition to surgical resection, radiotherapy, and chemotherapy, has been widely treated through immunotherapy recently. However, the influence of the tumor microenvironment and the infiltrating immune cells within it on immunotherapy remains unclear. It is imperative to study the interactions between various immune cells of RCC. The scRNA-seq dataset from GEO's database was used to analyze the immune cells present in tumor tissue and peripheral blood samples. Through quality control, clustering, and identification, the types and proportions of infiltrating immune cells were determined. The cellular differences were determined, and gene expression levels of the differentially present cells were investigated. A protein-protein interaction network analysis was performed using string. KEGG and GO analyses were performed to investigate abnormal activities. The microglia marker CD68 and CD1C+ B dendritic cells marker CD11C were detected using multiplex immunofluorescence staining. Many depleted CD8+ T cells (exhausted CD8+ T cells) appeared in tumor tissues as well as microglia. CD1C+ B dendritic cells did not infiltrate tumor tissues. HSPA1A was correlated with DNAJB1 in microglia. Compared with Paracancer tissues, microglia increased while CD1C+ B dendritic cells decreased in pathological stages I and I-II in cancerous tissues. An altered tumor microenvironment caused by increases in microglia in RCC in the early stage resulted in an inability of CD1C+ B dendritic cells to infiltrate, resulting in CD8+ T cells being unable to receive the antigens presented by them, and in turn being depleted in large quantities.


Subject(s)
Antigens, CD1 , CD8-Positive T-Lymphocytes , Carcinoma, Renal Cell , Dendritic Cells , Kidney Neoplasms , Microglia , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Dendritic Cells/immunology , Dendritic Cells/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Microglia/immunology , Microglia/metabolism , Antigens, CD1/metabolism , Male , Neoplasm Staging , Female , Glycoproteins
5.
Cell ; 187(16): 4336-4354.e19, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121847

ABSTRACT

Exhausted CD8 T (Tex) cells in chronic viral infection and cancer have sustained co-expression of inhibitory receptors (IRs). Tex cells can be reinvigorated by blocking IRs, such as PD-1, but synergistic reinvigoration and enhanced disease control can be achieved by co-targeting multiple IRs including PD-1 and LAG-3. To dissect the molecular changes intrinsic when these IR pathways are disrupted, we investigated the impact of loss of PD-1 and/or LAG-3 on Tex cells during chronic infection. These analyses revealed distinct roles of PD-1 and LAG-3 in regulating Tex cell proliferation and effector functions, respectively. Moreover, these studies identified an essential role for LAG-3 in sustaining TOX and Tex cell durability as well as a LAG-3-dependent circuit that generated a CD94/NKG2+ subset of Tex cells with enhanced cytotoxicity mediated by recognition of the stress ligand Qa-1b, with similar observations in humans. These analyses disentangle the non-redundant mechanisms of PD-1 and LAG-3 and their synergy in regulating Tex cells.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I , Lymphocyte Activation Gene 3 Protein , NK Cell Lectin-Like Receptor Subfamily D , Programmed Cell Death 1 Receptor , Animals , Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Programmed Cell Death 1 Receptor/metabolism , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Histocompatibility Antigens Class I/metabolism , Humans , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Mice, Inbred C57BL , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Cytotoxicity, Immunologic , Cell Proliferation , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology
6.
Cell ; 187(16): 4373-4388.e15, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121849

ABSTRACT

Relatlimab (rela; anti-LAG-3) plus nivolumab (nivo; anti-PD-1) is safe and effective for treatment of advanced melanoma. We designed a trial (NCT03743766) where advanced melanoma patients received rela, nivo, or rela+nivo to interrogate the immunologic mechanisms of rela+nivo. Analysis of biospecimens from this ongoing trial demonstrated that rela+nivo led to enhanced capacity for CD8+ T cell receptor signaling and altered CD8+ T cell differentiation, leading to heightened cytotoxicity despite the retention of an exhaustion profile. Co-expression of cytotoxic and exhaustion signatures was driven by PRDM1, BATF, ETV7, and TOX. Effector function was upregulated in clonally expanded CD8+ T cells that emerged after rela+nivo. A rela+nivo intratumoral CD8+ T cell signature was associated with a favorable prognosis. This intratumoral rela+nivo signature was validated in peripheral blood as an elevated frequency of CD38+TIM3+CD8+ T cells. Overall, we demonstrated that cytotoxicity can be enhanced despite the retention of exhaustion signatures, which will inform future therapeutic strategies.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocyte Activation Gene 3 Protein , Melanoma , Programmed Cell Death 1 Receptor , Humans , Antigens, CD/metabolism , Antigens, CD/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cytotoxicity, Immunologic , High Mobility Group Proteins , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Lymphocyte Activation Gene 3 Protein/antagonists & inhibitors , Melanoma/immunology , Melanoma/drug therapy , Melanoma/genetics , Nivolumab/therapeutic use , Nivolumab/pharmacology , Positive Regulatory Domain I-Binding Factor 1/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Signal Transduction
7.
Cancer Immunol Immunother ; 73(10): 208, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110249

ABSTRACT

Immunotherapy for pancreatic ductal carcinoma (PDAC) remains disappointing due to the repressive tumor microenvironment and T cell exhaustion, in which the roles of interferon-stimulated genes were largely unknown. Here, we focused on a typical interferon-stimulated gene, GBP4, and investigated its potential diagnostic and therapeutic value in pancreatic cancer. Expression analysis on both local samples and public databases indicated that GBP4 was one of the most dominant GBP family members present in the PDAC microenvironment, and the expression level of GBP4 was negatively associated with patient survival. We then identified DNA hypo-methylation in regulatory regions of GBP4 in PDAC, and validated its regulatory role on GBP4 expression via performing targeted methylation using dCas9-SunTag-DNMAT3A-sgRNA-targeted methylation system on selected DNA locus. After that, we investigated the downstream functions of GBP4, and chemotaxis assays indicated that GBP4 overexpression significantly improved the infiltration of CD8+T cells, but also induced upregulation of immune checkpoint genes and T cell exhaustion. Lastly, in vitro T cell killing assays using primary organoids suggested that the PDAC samples with high level of GBP4 expression displayed significantly higher sensitivity to anti-PD-1 treatment. Taken together, our studies revealed the expression patterns and epigenetic regulatory mechanisms of GBP4 in pancreatic cancer and clarified the effects of GBP4 on T cell exhaustion and antitumor immunology.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Animals , T-Cell Exhaustion
8.
Int J Surg ; 110(8): 4695-4707, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39143706

ABSTRACT

BACKGROUND: The chemokine receptor CXCR6 is critical for sustained tumor control mediated by CD8+ cytotoxic T cells (CTLs) in tumors. Previous studies have shown that ionizing radiation induces an inflamed immune contexture by upregulating CXCR6. However, the clinical significance of CXCR6 expression in triple-negative breast cancer (TNBC) and its correlation with radiotherapy remains unknown. This study aimed to clarify the prognostic value of CXCR6 and its role in the breast tumor microenvironment (TME). METHODS: The messenger RNA and protein expression of CXCR6 in human TNBC and their association with survival were analyzed. The role of CXCR6 in the immune context was investigated using a combination of single-cell RNA sequencing, bulk transcriptome sequencing data, and fluorescence-based multiplex immunohistochemistry (mIHC) techniques. RESULTS: Elevated CXCR6 expression correlated with better clinical outcomes and superior response to adjuvant radiotherapy and immunotherapy in TNBC. CXCR6 fostered an immunostimulatory microenvironment characterized by upregulated cytotoxic markers. We also found that CXCR6 plays a crucial role in regulating the differentiation of CD8+ T cells and the intercellular communication of immune cell subtypes, thus shaping the TME. CONCLUSIONS: This study highlights the emerging role of CXCR6 in shaping the TME and targeting CXCR6 may be a promising strategy for improving the effectiveness of radiotherapy and immunotherapy in TNBC.


Subject(s)
Receptors, CXCR6 , Triple Negative Breast Neoplasms , Tumor Microenvironment , Humans , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/immunology , Female , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Prognosis , Immunotherapy/methods , Radiotherapy, Adjuvant
9.
Int J Surg ; 110(8): 4716-4726, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39143707

ABSTRACT

BACKGROUND: In recent years, the widespread use of lipid-lowering drugs, especially statins, has attracted people's attention. Statin use may be potentially associated with a reduced risk of breast cancer. OBJECTIVE: To explore the relationship between statin use and cancer risk. And further explore the potential role of statins in the adjuvant treatment of breast cancer. METHODS: Data for the Mendelian randomization portion of the study were obtained from genome-wide association studies of common cancers in the UK Biobank and FinnGen studies and from the Global Lipid Genetics Consortium's low density lipoprotein (LDL). In addition, the impacts of statins and chemotherapy drugs on breast cancer were examined using both in vitro and in vivo models, with particular attention to the expression levels of the immune checkpoint protein PD-L1 and its potential to suppress tumor growth. RESULTS: Data from about 3.8 million cancer patients and ~1.3 million LDL-measuring individuals were analyzed. Genetically proxied HMGCR inhibition (statins) was associated with breast cancer risk reduction (P=0.0005). In vitro experiments showed that lovastatin significantly inhibited paclitaxel-induced PD-L1 expression and assisted paclitaxel in suppressing tumor cell growth. Furthermore, the combination therapy involving lovastatin and paclitaxel amplified CD8+ T-cell infiltration, bolstering their tumor-killing capacity and enhancing in vivo efficacy. CONCLUSION: The utilization of statins is correlated with improved prognoses for breast cancer patients and may play a role in facilitating the transition from cold to hot tumors. Combination therapy with lovastatin and paclitaxel enhances CD8+ T-cell activity and leads to better prognostic characteristics.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , CD8-Positive T-Lymphocytes , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Paclitaxel , Breast Neoplasms/drug therapy , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Female , Paclitaxel/pharmacology , Paclitaxel/administration & dosage , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Prognosis , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Animals , Lovastatin/pharmacology , Lovastatin/administration & dosage , Genome-Wide Association Study
10.
J Immunother Cancer ; 12(8)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142716

ABSTRACT

BACKGROUND: Anti-PD-1 antibodies have revolutionized cancer immunotherapy due to their ability to induce long-lasting complete remissions in a proportion of patients. Current research efforts are attempting to identify biomarkers and suitable combination partners to predict or further improve the activity of immune checkpoint inhibitors. Antibody-cytokine fusions are a class of pharmaceuticals that showed the potential to boost the anticancer properties of other immunotherapies. Extradomain A-fibronectin (EDA-FN), which is expressed in most solid and hematological tumors but is virtually undetectable in healthy adult tissues, is an attractive target for the delivery of cytokine at the site of the disease. METHODS: In this work, we describe the generation and characterization of a novel interleukin-7-based fusion protein targeting EDA-FN termed F8(scDb)-IL7. The product consists of the F8 antibody specific to the alternatively spliced EDA of FN in the single-chain diabody (scDb) format fused to human IL-7. RESULTS: F8(scDb)-IL7 efficiently stimulates human peripheral blood mononuclear cells in vitro. Moreover, the product significantly increases the expression of T Cell Factor 1 (TCF-1) on CD8+T cells compared with an IL2-fusion protein. TCF-1 has emerged as a pivotal transcription factor that influences the durability and potency of immune responses against tumors. In preclinical cancer models, F8(scDb)-IL7 demonstrates potent single-agent activity and eradicates sarcoma lesions when combined with anti-PD-1. CONCLUSIONS: Our results provide the rationale to explore the combination of F8(scDb)-IL7 with anti-PD-1 antibodies for the treatment of patients with cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Fibronectins , Interleukin-7 , Humans , Fibronectins/metabolism , Fibronectins/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Interleukin-7/metabolism , Interleukin-7/pharmacology , Animals , Mice , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Up-Regulation , Female , Cell Line, Tumor
11.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125946

ABSTRACT

Despite the numerous studies on the clinical aspects of early-onset preeclampsia, our understanding of the immunological consequences of inadequate placenta development remains incomplete. The Th1-predominance characteristic of early-onset preeclampsia significantly impacts maternal immunotolerance, and the role of immune checkpoint molecules in these mechanisms is yet to be fully elucidated. Our study aims to fill these crucial knowledge gaps. A total of 34 pregnant women diagnosed with early-onset preeclampsia and 34 healthy pregnant women were enrolled in this study. A mononuclear cell fragment from the venous blood was separated and frozen. The CD8+ and CD8- NK cell subpopulations were identified and compared to their immune checkpoint molecule expressions using multicolor flow cytometry. The serum CD226 levels were measured by ELISA. Based on our measures, the frequency of the CD8- subpopulation was significantly higher than that of the CD8+ counterpart in both the NKdim and NKbright subsets. Significantly lower CD226 surface expressions were detected in the preeclamptic group compared to healthy women in all the investigated subpopulations. However, while no difference was observed in the level of the soluble CD226 molecule between the two groups, the CD112 and CD155 surface expressions were significantly different. Our study's findings underscore the significant role of the CD8+ and CD8- NK subpopulations in the Th1-dominated immune environment. This deepens our understanding of early-onset preeclampsia and suggests that each subpopulation could contribute to the compensation mechanisms and the restoration of the immunological balance in this condition, a crucial step toward developing effective interventions.


Subject(s)
CD8-Positive T-Lymphocytes , Killer Cells, Natural , Pre-Eclampsia , Humans , Female , Pregnancy , Pre-Eclampsia/immunology , Pre-Eclampsia/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Adult , Antigens, Differentiation, T-Lymphocyte/metabolism , Immune Checkpoint Proteins/metabolism , Case-Control Studies
12.
Sci Rep ; 14(1): 18823, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138291

ABSTRACT

Heart failure (HF) is a terminal condition of multiple cardiovascular disorders. Cancer is a deadly disease worldwide. The relationship between HF and cancer remains poorly understood. The Gene Expression Omnibus database was used to download the RNA sequencing data of 356 patients with hypertrophic cardiomyopathy-induced HF and non-HF. A co-expression network was established through the weighted correlation network analysis (WGCNA) to identify hub genes of HF and cancer. Cox risk analysis was performed to predict the prognostic risks of HF hub genes in pan-cancer. HF was linked to immune response pathway by the analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). A positive correlation was observed between the expression levels of 4 hub genes and the infiltration of CD8+T-cells in pan-cancer. 4 hub genes were identified as beneficial prognostic factors in several cancers. Western blotting and real-time polymerase chain reaction validated the high expression of GZMM, NKG7, and ZAP70 in both mice and patients with HF compared to control groups. Our study highlights the shared immune pathogenesis of HF and cancer and provides valuable insights for developing novel therapeutic strategies, offering new opportunities for improving the management and treatment outcomes of both HF and cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Heart Failure , Neoplasms , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Neoplasms/genetics , Neoplasms/immunology , Animals , Mice , Heart Failure/genetics , Gene Regulatory Networks , Prognosis , Gene Expression Profiling , Male , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/metabolism , Gene Expression Regulation, Neoplastic , Female
13.
Cell Death Dis ; 15(8): 561, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097608

ABSTRACT

The obstacle to effectively treating Diffuse Large B-cell Lymphoma (DLBCL) lies in the resistance observed toward standard therapies. Identifying therapeutic targets that prove effective for relapsed or refractory patients poses a significant challenge. OTUD3, a deubiquitinase enzyme, is overexpressed in DLBCL tissues. However, its role in DLBCL has not been investigated. Our study has brought to light the multifaceted impact of OTUD3 in DLBCL. Not only does it enhance cell survival through the deubiquitination of MYL12A, but it also induces CD8+ T cell exhaustion within the local environment by deubiquitinating PD-L1. Our findings indicate that the OTUD3 inhibitor, Rupatadine, exerts its influence through competitive binding with OTUD3. This operation diminishes the deubiquitination of both MYL12A and PD-L1 by OTUD3. This research unveils the central and oncogenic role of OTUD3 in DLBCL and highlights the potential clinical application value of the OTUD3 inhibitor, Rupatadine. These findings contribute valuable insights into addressing the challenges of resistant DLBCL cases and offer a promising avenue for further clinical exploration.


Subject(s)
B7-H1 Antigen , Lymphoma, Large B-Cell, Diffuse , Ubiquitination , Animals , Humans , Mice , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Progression , Immune Evasion , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/antagonists & inhibitors , Ubiquitination/drug effects
14.
Actas Esp Psiquiatr ; 52(4): 484-494, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39129701

ABSTRACT

BACKGROUND: Hip fractures are prevalent in the elderly; however, Postoperative Cognitive Dysfunction (POCD) is a possible complication of hip fracture surgery in elderly patients. This study examines the influence and the underlying mechanism of dexmedetomidine on POCD in elderly patients following hip fracture surgery. METHODS: The retrospective study involved elderly patients with hip fracture who were treated at the Fifth Affiliated Hospital of Xinjiang Medical University from October 2021 to August 2022. During the surgery procedures, dexmedetomidine was administrated and the peripheral blood samples were collected from the patients. Inflammatory factors were measured using Enzyme-linked immunosorbent assay (ELISA), while pyroptosis-related proteins were detected through quantitative reverse transcription PCR (RT-qPCR) and western blot. Additionally, the levels of CD4+T and CD8+T cells were assessed using flow cytometry. An aged rats hip fracture model was established to further investigate the impact of dexmedetomidine on postoperative mobility, cognition function, pyroptosis and immune cells in rats. RESULTS: Postoperative cognitive function in patients did not show significant alteration when compared with pre-operation levels (p > 0.05). There were notable reduction in the levels of interleukin-18 (IL-18), Caspase-3, Gasdermin-D (GSDMD) and NLR Family Pyrin Domain Containing 3 (NLRP3) (p < 0.001), accompanied by an increase in the proportion of CD4+T cells and an decrease in CD8+T cells after operation (p < 0.01). In aged rats, postoperative exploratory activities increased compared to their preoperative state. Compared with preoperative levels, the levels of interleukin-1ß (IL-1ß), IL-18, Caspase-3, GSDMD, and NLRP3 were significantly decreased (p < 0.001), the proportion of CD4+T cells was increased, and the proportion of CD8+T cells was decreased postoperatively (p < 0.01). CONCLUSIONS: Although there was no significant alteration in postoperative cognitive function in patients, dexmedetomidine may still play a role in mitigating POCD potentially due to its effects on reducing immune inflammation and pyroptosis markers. Further research is needed to fully understand the underlying mechanisms and its clinical implications.


Subject(s)
Dexmedetomidine , Hip Fractures , Postoperative Cognitive Complications , Dexmedetomidine/pharmacology , Hip Fractures/surgery , Humans , Male , Postoperative Cognitive Complications/prevention & control , Postoperative Cognitive Complications/etiology , Female , Aged , Retrospective Studies , Rats , Animals , Pyroptosis/drug effects , Aged, 80 and over , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Rats, Sprague-Dawley
15.
Cancer Control ; 31: 10732748241270583, 2024.
Article in English | MEDLINE | ID: mdl-39152700

ABSTRACT

OBJECTIVE: The aim of this study was to analyze the clinical significance and prognostic value of CD8+ T cell-related regulatory genes in hepatocellular carcinoma (HCC). METHODS: This was a retrospective study. We combined TCGA-LIHC and single-cell RNA sequencing data for Lasso-Cox regression analysis to screen for CD8+ T cell-associated genes to construct a novel signature. The expression of the signature genes was detected at cellular and tissue levels using qRT-PCR, immunohistochemistry, and tissue microarrays. The CIBERSORT algorithm was then used to assess the immune microenvironmental differences between the different risk groups and a drug sensitivity analysis was performed to screen for potential HCC therapeutic agents. RESULTS: An 8-gene CD8 + T cell-associated signature (FABP5, GZMH, ANXA2, KLRB1, CD7, IL7R, BATF, and RGS2) was constructed. Survival analysis showed that high-risk patients had a poorer prognosis in all cohorts. Tumor immune microenvironment analysis revealed 22 immune cell types that differed significantly between patients in different risk groups, with patients in the low-risk group having an immune system that was more active in terms of immune function. Patients in the high-risk group were more prone to immune escape and had a poorer response to immunotherapy, and AZD7762 was screened as the most sensitive drug in the high-risk group. Finally, preliminary experiments have shown that BATF has a promoting effect on the proliferation, migration and invasion of HuH-7 cells. CONCLUSIONS: The CD8+ T-cell-associated signature is expected to be a tool for optimizing individual patient decision-making and monitoring protocols, and to provide new ideas for treatment and prognostic assessment of HCC.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/mortality , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Prognosis , Tumor Microenvironment/immunology , Retrospective Studies , Male , Female , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic
16.
Front Immunol ; 15: 1436717, 2024.
Article in English | MEDLINE | ID: mdl-39108272

ABSTRACT

Neurological disorders, including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS), may be associated with alterations in blood cell composition and phenotype. Here, we focused our attention on circulating mucosal-associated invariant T (MAIT) cells, a CD8+ T cell memory population expressing the invariant Vα7.2 region in the T cell receptor and high surface levels of the CD161 marker. Transcriptomics data relative to peripheral blood mononuclear cells (PBMC) highlighted downregulation of CD161 and other MAIT-associated markers in progressive MS and not relapsing remitting (RR)-MS when gene expressions relative to each disease course were compared to those from healthy controls. Multiparametric flow cytometry of freshly isolated PBMC samples from untreated RR-MS, primary or secondary progressive MS (PP- or SP-MS), ALS and age- and sex-matched healthy controls revealed specific loss of circulating CD8+ MAIT cells in PP-MS and no other MS courses or another neurological disorder such as ALS. Overall, these observations point to the existence of immunological changes in blood specific for the primary progressive course of MS that may support clinical definition of disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Mucosal-Associated Invariant T Cells , Humans , Amyotrophic Lateral Sclerosis/immunology , Amyotrophic Lateral Sclerosis/blood , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Male , Middle Aged , Female , Adult , Aged , Multiple Sclerosis/immunology , Multiple Sclerosis/blood , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Biomarkers , Flow Cytometry
17.
J Exp Med ; 221(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39150482

ABSTRACT

Coordination of cellular metabolism is essential for optimal T cell responses. Here, we identify cytosolic acetyl-CoA production as an essential metabolic node for CD8 T cell function in vivo. We show that CD8 T cell responses to infection depend on acetyl-CoA derived from citrate via the enzyme ATP citrate lyase (ACLY). However, ablation of ACLY triggers an alternative, acetate-dependent pathway for acetyl-CoA production mediated by acyl-CoA synthetase short-chain family member 2 (ACSS2). Mechanistically, acetate fuels both the TCA cycle and cytosolic acetyl-CoA production, impacting T cell effector responses, acetate-dependent histone acetylation, and chromatin accessibility at effector gene loci. When ACLY is functional, ACSS2 is not required, suggesting acetate is not an obligate metabolic substrate for CD8 T cell function. However, loss of ACLY renders CD8 T cells dependent on acetate (via ACSS2) to maintain acetyl-CoA production and effector function. Together, ACLY and ACSS2 coordinate cytosolic acetyl-CoA production in CD8 T cells to maintain chromatin accessibility and T cell effector function.


Subject(s)
ATP Citrate (pro-S)-Lyase , Acetates , Acetyl Coenzyme A , CD8-Positive T-Lymphocytes , Chromatin , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Chromatin/metabolism , Acetyl Coenzyme A/metabolism , ATP Citrate (pro-S)-Lyase/metabolism , ATP Citrate (pro-S)-Lyase/genetics , Mice , Acetates/metabolism , Acetate-CoA Ligase/metabolism , Acetate-CoA Ligase/genetics , Acetylation , Mice, Knockout , Cytosol/metabolism , Histones/metabolism
18.
Sci Adv ; 10(33): eado4313, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39141734

ABSTRACT

αß T cell receptors (TCRs) principally recognize aberrant peptides bound to major histocompatibility complex molecules (pMHCs) on unhealthy cells, amplifying specificity and sensitivity through physical load placed on the TCR-pMHC bond during immunosurveillance. To understand this mechanobiology, TCRs stimulated by abundantly and sparsely arrayed epitopes (NP366-374/Db and PA224-233/Db, respectively) following in vivo influenza A virus infection were studied with optical tweezers. While certain NP repertoire CD8 T lymphocytes require many ligands for activation, others are digital, needing just few. Conversely, all PA TCRs perform digitally, exhibiting pronounced bond lifetime increases through sustained, energizing volleys of structural transitioning. Optimal digital performance is superior in vivo, correlating with ERK phosphorylation, CD3 loss, and activation marker up-regulation in vitro. Given neoantigen array paucity, digital TCRs are likely critical for immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Influenza A virus/immunology , Humans , Lymphocyte Activation/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Optical Tweezers
19.
Cell ; 187(16): 4355-4372.e22, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121848

ABSTRACT

Overcoming immune-mediated resistance to PD-1 blockade remains a major clinical challenge. Enhanced efficacy has been demonstrated in melanoma patients with combined nivolumab (anti-PD-1) and relatlimab (anti-LAG-3) treatment, the first in its class to be FDA approved. However, how these two inhibitory receptors synergize to hinder anti-tumor immunity remains unknown. Here, we show that CD8+ T cells deficient in both PD-1 and LAG-3, in contrast to CD8+ T cells lacking either receptor, mediate enhanced tumor clearance and long-term survival in mouse models of melanoma. PD-1- and LAG-3-deficient CD8+ T cells were transcriptionally distinct, with broad TCR clonality and enrichment of effector-like and interferon-responsive genes, resulting in enhanced IFN-γ release indicative of functionality. LAG-3 and PD-1 combined to drive T cell exhaustion, playing a dominant role in modulating TOX expression. Mechanistically, autocrine, cell-intrinsic IFN-γ signaling was required for PD-1- and LAG-3-deficient CD8+ T cells to enhance anti-tumor immunity, providing insight into how combinatorial targeting of LAG-3 and PD-1 enhances efficacy.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Interferon-gamma , Lymphocyte Activation Gene 3 Protein , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Interferon-gamma/metabolism , Mice , Antigens, CD/metabolism , Autocrine Communication , Humans , Melanoma/immunology , Melanoma/drug therapy , Female , Cell Line, Tumor , Melanoma, Experimental/immunology , T-Cell Exhaustion
20.
JCI Insight ; 9(15)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39114979

ABSTRACT

Psoriatic arthritis (PsA) is a complex inflammatory disease that challenges diagnosis and complicates the rational selection of effective therapies. Although T cells are considered active effectors in psoriasis and PsA, the role of CD8+ T cells in pathogenesis is not well understood. We selected the humanized mouse model NSG-SGM3 transgenic strain to examine psoriasis and PsA endotypes. Injection of PBMCs and sera from patients with psoriasis and PsA generated parallel skin and joint phenotypes in the recipient mouse. The transfer of human circulating memory T cells was followed by migration and accumulation in the skin and synovia of these immunodeficient mice. Unexpectedly, immunoglobulins were required for recapitulation of the clinical phenotype of psoriasiform lesions and PsA domains (dactylitis, enthesitis, bone erosion). Human CD8+ T cells expressing T-bet, IL-32 and CXCL14 were detected by spatial transcriptomics in murine synovia and by immunofluorescence in the human PsA synovia. Importantly, depletion of human CD8+ T cells prevented skin and synovial inflammation in mice humanized with PsA peripheral blood cells. The humanized model of psoriasis and PsA represents a valid platform for accelerating the understanding of disease pathogenesis, improving the design of personalized therapies, and revealing psoriatic disease targets.


Subject(s)
Arthritis, Psoriatic , CD8-Positive T-Lymphocytes , Disease Models, Animal , Animals , Arthritis, Psoriatic/immunology , Arthritis, Psoriatic/pathology , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice, Transgenic , Skin/pathology , Skin/immunology , Female , Male , Phenotype , Psoriasis/immunology , Psoriasis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL