Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.500
Filter
1.
J Chem Inf Model ; 64(12): 4739-4758, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38863138

ABSTRACT

Despite recent success in the computational approaches of cyclic peptide design, current studies face challenges in modeling noncanonical amino acids and nonstandard cyclizations due to limited data. To address this challenge, we developed an integrated framework for the tailored design of stapled peptides (SPs) targeting the bromodomain of CREBBP (CREBBP-BrD). We introduce a powerful combination of anchored stapling and hierarchical molecular dynamics to design and optimize SPs by employing the MultiScale integrative conformational dynamics assessment (MSICDA) strategy, which involves an initial virtual screening of over 1.5 million SPs, followed by comprehensive simulations amounting to 154.54 µs across 5418 of instances. The MSICDA method provides a detailed and holistic stability view of peptide-protein interactions, systematically isolated optimized peptides and identified two leading candidates, DA#430 and DA#99409, characterized by their enhanced stability, optimized binding, and high affinity toward the CREBBP-BrD. In cell-free assays, DA#430 and DA#99409 exhibited 2- to 12-fold greater potency than inhibitor SGC-CBP30. Cell studies revealed higher peptide selectivity for cancerous versus normal cells over small molecules. DA#430 combined with (+)-JQ-1 showed promising synergistic effects. Our approach enables the identification of peptides with optimized binding, high affinity, and enhanced stability, leading to more precise and effective cyclic peptide design, thereby establishing MSICDA as a generalizable and transformative tool for uncovering novel targeted drug development in various therapeutic areas.


Subject(s)
CREB-Binding Protein , Molecular Dynamics Simulation , CREB-Binding Protein/chemistry , CREB-Binding Protein/metabolism , CREB-Binding Protein/antagonists & inhibitors , Humans , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/metabolism , Protein Domains , Protein Conformation , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Cell Line, Tumor , Protein Binding
2.
J Med Chem ; 67(11): 9194-9213, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38829718

ABSTRACT

The epigenetic target CREB (cyclic-AMP responsive element binding protein) binding protein (CBP) and its homologue p300 were promising therapeutic targets for the treatment of acute myeloid leukemia (AML). Herein, we report the design, synthesis, and evaluation of a class of CBP/p300 PROTAC degraders based on our previously reported highly potent and selective CBP/p300 inhibitor 5. Among the compounds synthesized, 11c (XYD129) demonstrated high potency and formed a ternary complex between CBP/p300 and CRBN (AlphaScreen). The compound effectively degraded CBP/p300 proteins and exhibited greater inhibition of growth in acute leukemia cell lines compared to its parent compound 5. Furthermore, 11c demonstrated significant inhibition of tumor growth in a MOLM-16 xenograft model (TGI = 60%) at tolerated dose schedules. Our findings suggest that 11c is a promising lead compound for the treatment of AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Mice , E1A-Associated p300 Protein/antagonists & inhibitors , E1A-Associated p300 Protein/metabolism , Structure-Activity Relationship , Drug Discovery , CREB-Binding Protein/antagonists & inhibitors , CREB-Binding Protein/metabolism , Xenograft Model Antitumor Assays , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism , Proteolysis/drug effects , Cell Proliferation/drug effects
3.
Medicina (Kaunas) ; 60(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929606

ABSTRACT

Background and Objectives: This study aimed to investigate the relationship between neuropathic pain and CREB-binding protein (CBP) and methyl-CpG-binding protein 2 (MeCP2) expression levels in a rat model with spared nerve injury (SNI). Materials and Methods: Rat (male Sprague-Dawley white rats) models with surgical SNI (n = 6) were prepared, and naive rats (n = 5) were used as controls. The expression levels of CBP and MeCP2 in the spinal cord and dorsal root ganglion (DRG) were compared through immunohistochemistry at 7 and 14 days after surgery. The relationship between neuropathic pain and CBP/MeCP2 was also analyzed through intrathecal siRNA administration. Results: SNI induced a significant increase in the number of CBPs in L4 compared with contralateral DRG as well as with naive rats. The number of MeCP2 cells in the dorsal horn on the ipsilateral side decreased significantly compared with the contralateral dorsal horn and the control group. SNI induced a significant decrease in the number of MeCP2 neurons in the L4 ipsilateral DRG compared with the contralateral DRG and naive rats. The intrathecal injection of CBP siRNA significantly inhibited mechanical allodynia induced by SNI compared with non-targeting siRNA treatment. MeCP2 siRNA injection showed no significant effect on mechanical allodynia. Conclusions: The results suggest that CBP and MeCP2 may play an important role in the generation of neuropathic pain following peripheral nerve injury.


Subject(s)
CREB-Binding Protein , Disease Models, Animal , Methyl-CpG-Binding Protein 2 , Neuralgia , Rats, Sprague-Dawley , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Neuralgia/metabolism , Neuralgia/etiology , Male , Rats , CREB-Binding Protein/metabolism , Ganglia, Spinal/metabolism , RNA, Small Interfering , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/metabolism , Spinal Cord/metabolism , Immunohistochemistry
4.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718570

ABSTRACT

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Subject(s)
Apigenin , Epithelial-Mesenchymal Transition , Glucose , Histones , Retinal Pigment Epithelium , Epithelial-Mesenchymal Transition/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Animals , Apigenin/pharmacology , Acetylation/drug effects , Humans , Glucose/metabolism , Glucose/toxicity , Histones/metabolism , Cell Line , Mice , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Mice, Inbred C57BL , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Diabetic Retinopathy/drug therapy , E1A-Associated p300 Protein/metabolism , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , CREB-Binding Protein/metabolism , CREB-Binding Protein/genetics
5.
Oncogene ; 43(28): 2172-2183, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38783101

ABSTRACT

Loss-of-function mutations in CREBBP, which encodes for a histone acetyltransferase, occur frequently in B-cell malignancies, highlighting CREBBP deficiency as an attractive therapeutic target. Using established isogenic cell models, we demonstrated that CREBBP-deficient cells are selectively vulnerable to AURKA inhibition. Mechanistically, we found that co-targeting CREBBP and AURKA suppressed MYC transcriptionally and post-translationally to induce replication stress and apoptosis. Inhibition of AURKA dramatically decreased MYC protein level in CREBBP-deficient cells, implying a dependency on AURKA to sustain MYC stability. Furthermore, in vivo studies showed that pharmacological inhibition of AURKA was efficacious in delaying tumor progression in CREBBP-deficient cells and was synergistic with CREBBP inhibitors in CREBBP-proficient cells. Our study sheds light on a novel synthetic lethal interaction between CREBBP and AURKA, indicating that targeting AURKA represents a potential therapeutic strategy for high-risk B-cell malignancies harboring CREBBP inactivating mutations.


Subject(s)
Aurora Kinase A , CREB-Binding Protein , Proto-Oncogene Proteins c-myc , Synthetic Lethal Mutations , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/antagonists & inhibitors , Humans , Animals , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Xenograft Model Antitumor Assays
6.
J Appl Physiol (1985) ; 136(6): 1559-1567, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38722753

ABSTRACT

Mice with skeletal muscle-specific and inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle and ultimately die within 7 days. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and, thus, whether they could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle from adult i-mPCKO mice, there was ∼90% reduction in ex vivo contractile function in the extensor digitorum longus (EDL) and a ∼65% reduction in in vivo ankle dorsiflexion torque, as compared with wild type (WT; i.e., Cre negative) littermates. Despite this profound loss of contractile force in i-mPCKO mice, there were no genotype-driven differences in fatigability during repeated contractions, nor were there genotype differences in mitochondrial-specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume, or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca2+ and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca2+ concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor actomyosin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice.NEW & NOTEWORTHY The mechanism underlying dramatic loss of muscle contractile function with inducible deletion of both E1A binding protein p300 (p300) and cAMP-response element-binding protein binding protein (CBP) in skeletal muscle remains unknown. Here, we find that impairments in mitochondrial function or cross-bridge cycling are not the underlying mechanism of action. Future work will investigate other aspects of excitation-contraction coupling, such as Ca2+ handling and membrane excitability, as contractile function could be rescued by permeabilizing skeletal muscle, which provides exogenous Ca2+ and bypasses membrane depolarization.


Subject(s)
Mice, Knockout , Muscle Contraction , Muscle, Skeletal , Animals , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Mice , Protein Processing, Post-Translational , E1A-Associated p300 Protein/metabolism , CREB-Binding Protein/metabolism , Male , Calcium/metabolism , Adenosine Triphosphate/metabolism , Acetylation
7.
Stem Cell Res ; 78: 103456, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820863

ABSTRACT

Rubinstein Taybi Syndrome (RSTS) is a rare genetic disorder which is caused by mutations in either CREBBP or EP300. RSTS with mutations in CREBBP is known as RSTS-1. We have generated an induced pluripotent stem cell (iPSC) line, IGIBi018-A from an Indian RSTS-patient using the episomal reprogramming method. The CREBBP gene in the patient harbours a nonsense mutation at position NM_004380.3(c.6876 del C). IGIBi018-A iPSC showed expression of pluripotent stem cell markers, has a normal karyotype and could be differentiated into three germ layers. This iPSC line will help to explore the role of CREBBP in RSTS associated developmental defects.


Subject(s)
Induced Pluripotent Stem Cells , Rubinstein-Taybi Syndrome , Humans , Induced Pluripotent Stem Cells/metabolism , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/metabolism , Rubinstein-Taybi Syndrome/pathology , Cell Line , Cell Differentiation , India , Male , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism
8.
Endocrinology ; 165(6)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38717933

ABSTRACT

CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.


Subject(s)
Aromatase , Gene Expression Regulation , Placenta , RNA Stability , Transcription Factor AP-2 , Promoter Regions, Genetic , Aromatase/genetics , Humans , Cell Line , Placenta/cytology , Placenta/metabolism , CREB-Binding Protein/metabolism , Chromatin , Transcription Factor AP-2/metabolism , Adenosine/analogs & derivatives , Adenosine/therapeutic use
9.
J Med Chem ; 67(9): 6952-6986, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38649304

ABSTRACT

The transcriptional coactivator cAMP response element binding protein (CREB)-binding protein (CBP) and its homologue p300 have emerged as attractive therapeutic targets for human cancers such as acute myeloid leukemia (AML). Herein, we report the design, synthesis, and biological evaluation of a series of cereblon (CRBN)-recruiting CBP/p300 proteolysis targeting chimeras (PROTACs) based on the inhibitor CCS1477. The representative compounds 14g (XYD190) and 14h (XYD198) potently inhibited the growth of AML cells with low nanomolar IC50 values and effectively degraded CBP and p300 proteins in a concentration- and time-dependent manner. Mechanistic studies confirmed that 14g and 14h can selectively bind to CBP/p300 bromodomains and induce CBP and p300 degradation in bromodomain family proteins in a CRBN- and proteasome-dependent manner. 14g and 14h displayed remarkable antitumor efficacy in the MV4;11 xenograft model (TGI = 88% and 93%, respectively). Our findings demonstrated that 14g and 14h are useful lead compounds and deserve further optimization and activity evaluation for the treatment of human cancers.


Subject(s)
Antineoplastic Agents , Proteolysis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Animals , Mice , Proteolysis/drug effects , Cell Line, Tumor , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/antagonists & inhibitors , CREB-Binding Protein/metabolism , CREB-Binding Protein/antagonists & inhibitors , Drug Discovery , Xenograft Model Antitumor Assays , Structure-Activity Relationship , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Cell Proliferation/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice, Nude
10.
Funct Integr Genomics ; 24(2): 75, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600341

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally. Many herbal medicines and their bioactive compounds have shown anti-tumor properties. This study was conducted to examine the effect of psilostachyin C (PSC), a sesquiterpenoid lactone isolated from Artemisia vulgaris L., in the malignant properties of HCC cells. CCK-8, flow cytometry, wound healing, and Transwell assays revealed that 25 µM PSC treatment significantly suppressed proliferation, cell cycle progression, migration, and invasion of two HCC cell lines (Hep 3B and Huh7) while promoting cell apoptosis. Bioinformatics prediction suggests CREB binding protein (CREBBP) as a promising target of PSC. CREBBP activated transcription of GATA zinc finger domain containing 2B (GATAD2B) by binding to its promoter. CREBBP and GATAD2B were highly expressed in clinical HCC tissues and the acquired HCC cell lines, but their expression was reduced by PSC. Either upregulation of CREBBP or GATAD2B restored the malignant properties of HCC cells blocked by PSC. Collectively, this evidence demonstrates that PSC pocessess anti-tumor functions in HCC cells by blocking CREBBP-mediated transcription of GATAD2B.


Subject(s)
Carcinoma, Hepatocellular , Heterocyclic Compounds, 3-Ring , Liver Neoplasms , Pyrones , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic
11.
Oncogene ; 43(25): 1900-1916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671157

ABSTRACT

The long-term maintenance of leukaemia stem cells (LSCs) is responsible for the high degree of malignancy in MLL (mixed-lineage leukaemia) rearranged acute myeloid leukaemia (AML). The DNA damage response (DDR) and DOT1L/H3K79me pathways are required to maintain LSCs in MLLr-AML, but little is known about their interplay. This study revealed that the DDR enzyme ATM regulates the maintenance of LSCs in MLLr-AML with a sequential protein-posttranslational-modification manner via CBP-DOT1L. We identified the phosphorylation of CBP by ATM, which confers the stability of CBP by preventing its proteasomal degradation, and characterised the acetylation of DOT1L by CBP, which mediates the high level of H3K79me2 for the expression of leukaemia genes in MLLr-AML. In addition, we revealed that the regulation of CBP-DOT1L axis in MLLr-AML by ATM was independent of DNA damage activation. Our findings provide insight into the signalling pathways involoved in MLLr-AML and broaden the understanding of the role of DDR enzymes beyond processing DNA damage, as well as identigying them as potent cancer targets.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Damage , Histone-Lysine N-Methyltransferase , Leukemia, Myeloid, Acute , Myeloid-Lymphoid Leukemia Protein , Signal Transduction , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , DNA Damage/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Signal Transduction/genetics , Animals , Mice , Cell Line, Tumor , Methyltransferases/metabolism , Methyltransferases/genetics , CREB-Binding Protein/metabolism , CREB-Binding Protein/genetics , Gene Rearrangement , Histones/metabolism , Histones/genetics , Phosphorylation , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Acetylation
12.
Am J Pathol ; 194(1): 52-70, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37820926

ABSTRACT

Loss of hepatocyte nuclear factor 4α (HNF4α) expression is frequently observed in end-stage liver disease and associated with loss of vital liver functions, thus increasing mortality. Loss of HNF4α expression is mediated by inflammatory cytokines, such as transforming growth factor (TGF)-ß. However, details of how HNF4α is suppressed are largely unknown to date. Herein, TGF-ß did not directly inhibit HNF4α but contributed to its transcriptional regulation by SMAD2/3 recruiting acetyltransferase CREB-binding protein/p300 to the HNF4α promoter. The recruitment of CREB-binding protein/p300 is indispensable for CCAAT/enhancer-binding protein α (C/EBPα) binding, another essential requirement for constitutive HNF4α expression in hepatocytes. Consistent with the in vitro observation, 67 of 98 patients with hepatic HNF4α expressed both phospho-SMAD2 and C/EBPα, whereas 22 patients without HNF4α expression lacked either phospho-SMAD2 or C/EBPα. In contrast to the observed induction of HNF4α, SMAD2/3 inhibited C/EBPα transcription. Long-term TGF-ß incubation resulted in C/EBPα depletion, which abrogated HNF4α expression. Intriguingly, SMAD2/3 inhibitory binding to the C/EBPα promoter was abolished by insulin. Two-thirds of patients without C/EBPα lacked membrane glucose transporter type 2 expression in hepatocytes, indicating insulin resistance. Taken together, these data indicate that hepatic insulin sensitivity is essential for hepatic HNF4α expression in the condition of inflammation.


Subject(s)
CREB-Binding Protein , Insulin , Humans , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CREB-Binding Protein/metabolism , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Liver/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/metabolism
13.
Cell Rep ; 43(1): 113576, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38128530

ABSTRACT

Neuronal activity-dependent transcription plays a key role in plasticity and pathology in the brain. An intriguing question is how neuronal activity controls gene expression via interactions of transcription factors with DNA and chromatin modifiers in the nucleus. By utilizing single-molecule imaging in human embryonic stem cell (ESC)-derived cortical neurons, we demonstrate that neuronal activity increases repetitive emergence of cAMP response element-binding protein (CREB) at histone acetylation sites in the nucleus, where RNA polymerase II (RNAPII) accumulation and FOS expression occur rapidly. Neuronal activity also enhances co-localization of CREB and CREB-binding protein (CBP). Increased binding of a constitutively active CREB to CBP efficiently induces CREB repetitive emergence. On the other hand, the formation of histone acetylation sites is dependent on CBP histone modification via acetyltransferase (HAT) activity but is not affected by neuronal activity. Taken together, our results suggest that neuronal activity promotes repetitive CREB-CRE and CREB-CBP interactions at predetermined histone acetylation sites, leading to rapid gene expression.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Histones , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Histones/metabolism , DNA/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Gene Expression , Neurons/metabolism , Acetylation , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism
14.
J Bone Miner Res ; 38(12): 1885-1899, 2023 12.
Article in English | MEDLINE | ID: mdl-37850815

ABSTRACT

CREB-binding protein (CBP) (CREBBP) and p300 (EP300) are multifunctional histone acetyltransferases (HATs) with extensive homology. Germline mutations of CBP or p300 cause skeletal abnormalities in humans and mice. However, the precise roles of CBP/p300 in bone homeostasis remain elusive. Here, we report that conditional knockout of CBP or p300 in osteoblasts results in reduced bone mass and strength due to suppressed bone formation. The HAT activity is further confirmed to be responsible for CBP/p300-mediated osteogenesis using A-485, a selective inhibitor of CBP/p300 HAT. Mechanistically, CBP/p300 HAT governs osteogenic gene expression in part through transcriptional activation of ß-catenin and inhibition of Stat1. Furthermore, acetylation of histone H3K27 and the transcription factor Foxo1 are demonstrated to be involved in CBP/p300 HAT-regulated ß-catenin and Stat1 transcription, respectively. Taken together, these data identify acetyltransferases CBP/p300 as critical regulators that promote osteoblast differentiation and reveal an epigenetic mechanism responsible for maintaining bone homeostasis. © 2023 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
CREB-Binding Protein , p300-CBP Transcription Factors , Animals , Humans , Mice , Acetylation , beta Catenin/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Osteogenesis/genetics , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism , STAT1 Transcription Factor/metabolism
15.
Sci Rep ; 13(1): 17112, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816914

ABSTRACT

The activation of stress response pathways in synovial fibroblasts (SF) is a hallmark of rheumatoid arthritis (RA). CBP and p300 are two highly homologous histone acetyl transferases and writers of activating histone 3 lysine 27 acetylation (H3K27ac) marks. Furthermore, they serve as co-factors for transcription factors and acetylate many non-histone proteins. Here we showed that p300 but not CBP protein expression was down regulated by TNF and 4-hydroxynonenal, two factors that mimic inflammation and oxidative stress in the synovial microenvironment. We used existing RNA-sequencing data sets as a basis for a further in-depth investigation of individual functions of CBP and p300 in regulating different stress response pathways in SF. Pathway enrichment analysis pointed to a profound role of CBP and/ or p300 in regulating stress response-related gene expression, with an enrichment of pathways associated with oxidative stress, hypoxia, autophagy and proteasome function. We silenced CBP or p300, and performed confirmatory experiments on transcriptome, protein and functional levels. We have identified some overlap of CBP and p300 target genes in the oxidative stress response pathway, however, with several genes being regulated in opposite directions. The majority of stress response genes was regulated by p300, with a specific function of p300 in regulating hypoxia response genes and genes encoding proteasome subunits. Silencing of p300 suppressed proteasome enzymatic activities. CBP and p300 regulated autophagy on transcriptome and functional levels. Whereas CBP was indispensable for autophagy synthesis, silencing of p300 affected late-stage autophagy. In line with impaired autophagy and proteasome function, poly-ubiquitinated proteins accumulated after silencing of p300.


Subject(s)
CREB-Binding Protein , p300-CBP Transcription Factors , Humans , Acetylation , CREB-Binding Protein/metabolism , Fibroblasts/metabolism , Hypoxia , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism , Proteasome Endopeptidase Complex/metabolism
16.
FASEB J ; 37(9): e22996, 2023 09.
Article in English | MEDLINE | ID: mdl-37566526

ABSTRACT

Myocardial ischemia/reperfusion injury (MIRI) is a prevalent condition associated with numerous critical clinical conditions. miR-322 has been implicated in MIRI through poorly understood mechanisms. Our preliminary analysis indicated potential interaction of CREB-binding protein (CBP), a transcriptional coactivator and acetyltransferase, with HIF-1α/ß-catenin, which might regulate miR-322 expression. We, therefore, hypothesized that CBP/HIF-1α/ß-catenin/miR-322 axis might play a role in MIRI. Rat cardiomyocytes subjected to oxygen-glucose deprivation /reperfusion (OGD/R) and Langendorff perfused heart model were used to model MIRI in vitro and in vivo, respectively. We used various techniques such as CCK-8 assay, transferase dUTP nick end labeling staining, western blotting, RT-qPCR, chromatin immunoprecipitation (ChIP), dual-luciferase assay, co-immunoprecipitation (Co-IP), hematoxylin and eosin staining, and TTC staining to assess cell viability, apoptosis, and the levels of CBP, HIF-1α, ß-catenin, miR-322, and acetylation. Our results indicate that OGD/R in cardiomyocytes decreased CBP/HIF-1α/ß-catenin/miR-322 expression, increased cell apoptosis and cytokines, and reduced cell viability. However, overexpression of CBP or miR-322 suppressed OGD/R-induced cell injury, while knockdown of HIF-1α/ß-catenin further exacerbated the damage. HIF-1α/ß-catenin bound to miR-322 promoter to promote its expression, while CBP acetylated HIF-1α/ß-catenin for stabilization. Overexpression of CBP attenuated MIRI in rats by acetylating HIF-1α/ß-catenin to stabilize their expression, resulting in stronger binding of HIF-1α/ß-catenin with the miR-322 promoter and subsequent increased miR-322 levels. Therefore, activating CBP/HIF-1α/ß-catenin/miR-322 signaling may be a potential approach to treat MIRI.


Subject(s)
MicroRNAs , Myocardial Reperfusion Injury , Animals , Rats , Apoptosis , beta Catenin/genetics , beta Catenin/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism
17.
J Immunol ; 211(6): 1006-1019, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37548504

ABSTRACT

Liver X receptors (LXRs) are nuclear receptors involved in metabolism and the immune response. Different from mammalian LXRs, which include two isoforms, LXRα and LXRß, only a single LXRα gene exists in the piscine genomes. Although a study has suggested that piscine LXR inhibits intracellular bacterial survival, the functions of piscine LXRα in viral infection are unknown. In this study, we show that overexpression of LXRα from grass carp (Ctenopharyngodon idellus), which is named as gcLXRα, increases host susceptibility to grass carp reovirus (GCRV) infection, whereas gcLXRα knockdown in CIK (C. idellus kidney) cells inhibits GCRV infection. Consistent with these functional studies, gcLXRα knockdown promotes the transcription of antiviral genes involved in the RIG-I-like receptor (RLR) antiviral signaling pathway, including IFN regulatory factor (IRF3) and the type I IFN IFN1. Further results show that gcLXRα knockdown induces the expression of CREB-binding protein (CBP), a transcriptional coactivator. In the knockdown of CBP, the inhibitory effect of gcLXRα knockdown in limiting GCRV infection is completely abolished. gcLXRα also interacts with IRF3 and CBP, which impairs the formation of the IRF3/CBP transcription complex. Moreover, gcLXRα heterodimerizes with RXRg, which cooperatively impair the transcription of the RLR antiviral signaling pathway and promote GCRV infection. Taken together, to our knowledge, our findings provide new insight into the functional correlation between nuclear receptor LXRα and the RLR antiviral signaling pathway, and they demonstrate that gcLXRα can impair the RLR antiviral signaling pathway and the production of type I IFN via forming gcLXRα/RXRg complexes and attenuating IRF3/CBP complexes.


Subject(s)
Carps , Fish Diseases , Interferon Type I , Reoviridae Infections , Reoviridae , Animals , Humans , Antiviral Agents/pharmacology , Liver X Receptors/metabolism , Carps/metabolism , CREB-Binding Protein/metabolism , Signal Transduction , Interferon Type I/metabolism , Fish Proteins/genetics , Mammals/metabolism , Interferon Regulatory Factor-3/metabolism
18.
Transl Res ; 260: 46-60, 2023 10.
Article in English | MEDLINE | ID: mdl-37353110

ABSTRACT

Head and neck cancers, which include oral squamous cell carcinoma (OSCC) as a major subsite, exhibit cellular plasticity that includes features of an epithelial-mesenchymal transition (EMT), referred to as partial-EMT (p-EMT). To identify molecular mechanisms contributing to OSCC plasticity, we performed a multiphase analysis of single cell RNA sequencing (scRNAseq) data from human OSCC. This included a multiresolution characterization of cancer cell subgroups to identify pathways and cell states that are heterogeneously represented, followed by casual inference analysis to elucidate activating and inhibitory relationships between these pathways and cell states. This approach revealed signaling networks associated with hierarchical cell state transitions, which notably included an association between ß-catenin-driven CREB-binding protein (CBP) activity and mTORC1 signaling. This network was associated with subpopulations of cancer cells that were enriched for markers of the p-EMT state and poor patient survival. Functional analyses revealed that ß-catenin/CBP induced mTORC1 activity in part through the transcriptional regulation of a raptor-interacting protein, chaperonin containing TCP1 subunit 5 (CCT5). Inhibition of ß-catenin-CBP activity through the use of the orally active small molecule, E7386, reduced the expression of CCT5 and mTORC1 activity in vitro, and inhibited p-EMT-associated markers and tumor development in a murine model of OSCC. Our study highlights the use of multiresolution network analyses of scRNAseq data to identify targetable signals for therapeutic benefit, thus defining an underappreciated association between ß-catenin/CBP and mTORC1 signaling in head and neck cancer plasticity.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Animals , Humans , Mice , beta Catenin/genetics , beta Catenin/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement , CREB-Binding Protein/metabolism , Epithelial-Mesenchymal Transition , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck , Wnt Signaling Pathway
19.
J Cell Sci ; 136(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37314181

ABSTRACT

As one of the major acetyltransferases in mammalian cells, p300 (also known as EP300) and its highly related protein CBP (also known as CREBBP), collectively termed p300/CBP, is characterized as a key regulator in gene transcription by modulating the acetylation of histones. In recent decades, proteomic analyses have revealed that p300 is also involved in the regulation of various cellular processes by acetylating many non-histone proteins. Among the identified substrates, some are key players involved in different autophagy steps, which together establish p300 as a master regulator of autophagy. Accumulating evidence has shown that p300 activity is controlled by many distinct cellular pathways to regulate autophagy in response to cellular or environmental stimuli. In addition, several small molecules have been shown to regulate autophagy by targeting p300, suggesting that manipulation of p300 activity is sufficient for controlling autophagy. Importantly, dysfunction of p300-regulated autophagy has been implicated in a number of human disorders, such as cancer, aging and neurodegeneration, highlighting p300 as a promising target for the drug development of autophagy-related human disorders. Here, we focus on the roles of p300-mediated protein acetylation in the regulation of autophagy and discuss implications for autophagy-related human disorders.


Subject(s)
Autophagy , CREB-Binding Protein , E1A-Associated p300 Protein , Proteomics , Humans , Acetylation , Acetyltransferases , Histones , E1A-Associated p300 Protein/metabolism , CREB-Binding Protein/metabolism
20.
Sci Rep ; 13(1): 6330, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072438

ABSTRACT

The kinase-inducible domain interacting (KIX) domain is an integral part of the general transcriptional coactivator CREB-binding protein, and has been associated with leukemia, cancer, and various viral diseases. Hence, the KIX domain has attracted considerable attention in drug discovery and development. Here, we rationally designed a KIX inhibitor using a peptide fragment corresponding to the transactivation domain (TAD) of the transcriptional activator, mixed-lineage leukemia protein (MLL). We performed theoretical saturation mutagenesis using the Rosetta software to search for mutants expected to bind KIX more tightly than the wild-type MLL TAD. Mutant peptides with higher helical propensities were selected for experimental characterization. We found that the T2857W mutant of the MLL TAD peptide had the highest binding affinity for KIX compared to the other 12 peptides designed in this study. Moreover, the peptide had a high inhibitory effect on the KIX-MLL interaction with a half-maximal inhibitory concentration close to the dissociation constant for this interaction. To our knowledge, this peptide has the highest affinity for KIX among all previously reported inhibitors that target the MLL site of KIX. Thus, our approach may be useful for rationally developing helical peptides that inhibit protein-protein interactions implicated in the progression of various diseases.


Subject(s)
Myeloid-Lymphoid Leukemia Protein , Transcription Factors , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Binding Sites , Protein Binding , Transcription Factors/metabolism , CREB-Binding Protein/metabolism , Peptides/pharmacology , Peptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL