Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 287
Filter
1.
Molecules ; 29(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39339457

ABSTRACT

In recent times, exploring the protective potential of medicinal plants has attracted increasing attention. To fight reactive oxygen species (ROS), which are key players in hepatic, cerebral and renal diseases, scientists have directed their efforts towards identifying novel compounds with antioxidant effects. Due to its unique composition, significant attention has been given to Cactus Seed Oil (CSO). Iron, as a metal, can be a potent generator of reactive oxygen species, especially hydroxyl radicals, via the Fenton and Haber-Weiss reactions. Here, we employed ferrous sulfate (FeSO4) to induce oxidative stress and DNA damage in mice. Then, we used CSO and Colza oil (CO) and evaluated the levels of the antioxidants (superoxide dismutase [SOD], glutathione peroxidase [GPx] and glutathione [GSH]) as well as a metabolite marker for lipid peroxidation (malondialdehyde [MDA]) relating to the antioxidant balance in the liver, brain and kidney. In addition, we measured DNA damage levels in hepatic tissue and the effects of CSO on it. Our study found that iron-dependent GPx activity decreases in the liver and the kidney tissues. Additionally, while iron decreased SOD activity in the liver, it increased it in the kidney. Interestingly, iron treatment resulted in a significant increase in hepatic MDA levels. In contrast, in brain tissue, there was a significant decrease under iron treatment. In addition, we found varying protective effects of CSO in alleviating oxidative stress in the different tissues with ameliorating DNA damage after iron overload in a mouse liver model, adding compelling evidence to the protective potential of CSO.


Subject(s)
Antioxidants , Brain , Iron , Kidney , Liver , Oxidative Stress , Plant Oils , Seeds , Animals , Oxidative Stress/drug effects , Mice , Brain/metabolism , Brain/drug effects , Antioxidants/pharmacology , Liver/metabolism , Liver/drug effects , Kidney/metabolism , Kidney/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry , Seeds/chemistry , Iron/metabolism , Male , Cactaceae/chemistry , Lipid Peroxidation/drug effects , DNA Damage/drug effects , Reactive Oxygen Species/metabolism , Glutathione Peroxidase/metabolism , Superoxide Dismutase/metabolism , Glutathione/metabolism , Ferrous Compounds/pharmacology , Malondialdehyde/metabolism
2.
J Food Sci ; 89(10): 6759-6773, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39289801

ABSTRACT

Red pitaya fruit has become a source of natural colorant, because it is rich in betalains, a pigment that imparts a red-purple color that interests the food and cosmetics industries. This fruit also possesses high nutritional value, with a range of bioactive compounds known to confer potential health benefits and prevent chronic diseases, such as diabetes, which makes it useful for use as pharmaceutical agents and dietary supplements. In order to improve its technological and biological effects, a concentration will be required. Thus, the microfiltration, followed by vacuum concentration, can be an interesting strategy for this purpose. This study aimed to explore tangential microfiltration to produce microfiltered material, which is an important step to obtain the microfiltered red-purple pitaya concentrate. Therefore, physicochemical and chemical characterization (including 1H NMR analysis) and biological properties (toxicity and diabetes) of this concentrate were assessed, using adult zebrafish as a model. The results show that microfiltration was carried out efficiently, with an average consumption of 95.75 ± 3.13 and 74.12 ± 3.58 kW h m-3, varying according to the material used ("unpeeled pitaya pulp" or "pitaya pulp with peel," respectively). The in vivo tests indicated non-toxicity and hypoglycemic effect of the concentrate, since the blood glucose levels were significantly lower in the zebrafish groups treated with this concentrate in comparison with that of control group. Thus, this study suggests the potential of microfiltered red-purple pitaya concentrate as a promising multifunctional food-derived colorant, exhibiting beneficial biological effects far beyond its attractive color. PRACTICAL APPLICATION: Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose has attracted attention as a potential source of natural colorants because of its red-purple skin and flesh color. In addition, this fruit has a range of bioactive compounds, which make it a valuable resource for providing potential health benefits and preventing chronic diseases such as diabetes. In this paper, the microfiltered red-purple pitaya concentrate showed beneficial biological effects far beyond its attractive color. Thus, this product can be considered a promising multifunctional food-derived colorant to use in the food, pharmaceutical, or cosmetics industries.


Subject(s)
Cactaceae , Food Coloring Agents , Fruit , Zebrafish , Animals , Fruit/chemistry , Food Coloring Agents/pharmacology , Food Coloring Agents/chemistry , Cactaceae/chemistry , Betalains/pharmacology , Betalains/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Color , Filtration/methods , Nutritive Value
3.
Langmuir ; 40(39): 20700-20706, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39310972

ABSTRACT

Drawing inspiration from the unique properties of cactus spines and desert beetle shells, we have designed a biomimetic stainless steel mesh specifically for efficient water-in-oil emulsion separation. The tapered arrays of cactus spines are prepared by a light-curing-templating method, and the hydrophobic regions are constructed by adhering hydrophobic silica nanoparticles to the surface of the mesh. This innovative design takes full advantage of the unique properties of these two natural plants, which can agglomerate tiny emulsified water to achieve an emulsion-breaking effect only under static conditions. At the same time, the stainless steel mesh with the conical arrays has a high water-in-oil emulsion separation efficiency (up to 99.6%), high permeance (2400 L·m-2·h-1·bar-1), and good cycling performance. The concept of dual biomimetic explored in this work may extend beyond oil-water separation to encompass various applications, such as fog collection, droplet manipulation, and more.


Subject(s)
Cactaceae , Coleoptera , Emulsions , Oils , Water , Animals , Coleoptera/chemistry , Water/chemistry , Emulsions/chemistry , Cactaceae/chemistry , Oils/chemistry , Biomimetic Materials/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Hydrophobic and Hydrophilic Interactions , Biomimetics/methods , Stainless Steel/chemistry
4.
Sci Rep ; 14(1): 18307, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112542

ABSTRACT

Pitaya (Hylocereus undulatus) is a significant cash crop in the karst region of Southwest China. Ecological stoichiometry is an essential method to research biogeochemical cycles and limiting elements. The purpose of this study was to explore the stoichiometric characteristics of C, N, and P in Karst pitaya orchards and fruit quality and to elucidate the mechanism and process of nutrient cycling. The results showed that: (1) Fruit quality was highest under the combination of chemical and organic fertilizers. Compared to the control, the contents of per-fruit weight, vitamin C, and soluble sugar increased significantly by 55.5%, 60.7%, and 23.0%, respectively, while the content of titratable acidity decreased significantly by 22.0%. (2) The content of soil nutrients under fertilization stress showed a downward trend in general, as did microbial biomass and extracellular enzyme activities. (3) Different fertilization treatments significantly affected the soil-microbial stoichiometry C:N ratio, C:P ratio, with research areas being significantly limited by C and P. (4) Spearman and PLS-SEM (partial least squares-structural equation model) analysis results showed that under the influence of fertilization, there was a significant positive effect between microorganisms and soil nutrients, but a significant negative effect between soil nutrients and quality. The results of this study offer an innovative perspective on pitaya quality research in Karst areas.


Subject(s)
Cactaceae , Fertilizers , Fruit , Phosphorus , Soil , Soil/chemistry , Fertilizers/analysis , Fruit/chemistry , Fruit/growth & development , Phosphorus/analysis , Cactaceae/growth & development , Cactaceae/chemistry , Nitrogen/analysis , China , Soil Microbiology , Carbon/analysis , Biomass
5.
Sensors (Basel) ; 24(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39124082

ABSTRACT

Dragon fruit stem disease significantly affects both the quality and yield of dragon fruit. Therefore, there is an urgent need for an efficient, high-precision intelligent detection method to address the challenge of disease detection. To address the limitations of traditional methods, including slow detection and weak micro-integration capability, this paper proposes an improved YOLOv8-G algorithm. The algorithm reduces computational redundancy by introducing the C2f-Faster module. The loss function was modified to the structured intersection over union (SIoU), and the coordinate attention (CA) and content-aware reorganization feature extraction (CARAFE) modules were incorporated. These enhancements increased the model's stability and improved its accuracy in recognizing small targets. Experimental results showed that the YOLOv8-G algorithm achieved a mean average precision (mAP) of 83.1% and mAP50:95 of 48.3%, representing improvements of 3.3% and 2.3%, respectively, compared to the original model. The model size and floating point operations per second (FLOPS) were reduced to 4.9 MB and 6.9 G, respectively, indicating reductions of 20% and 14.8%. The improved model achieves higher accuracy in disease detection while maintaining a lighter weight, serving as a valuable reference for researchers in the field of dragon fruit stem disease detection.


Subject(s)
Algorithms , Cactaceae , Fruit , Plant Stems , Cactaceae/chemistry , Fruit/chemistry , Plant Diseases , Plant Stems/chemistry
6.
Food Res Int ; 192: 114820, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147472

ABSTRACT

This study evaluated the potential of red pitaya pulp fermented with Lacticaseibacillus paracasei subsp. paracasei F-19 (F-19) as a base for probiotic products. Physicochemical parameters, sugar, betacyanin, and phenolic contents, and antioxidant activity were analyzed over 28 days at 4 °C and compared to a non-fermented pulp, and to a pulp fermented with Bifidobacterium animalis subsp. lactis BB-12 (BB-12). Volatile compounds were identified using HS-SPME/GC-MS. Probiotic viability during storage and survival through in vitro-simulated gastrointestinal tract (GIT) stress were assessed. Red pitaya pulp, rich in moisture (85.83 g/100 g), carbohydrates (11.65 g/100 g), and fibers (2.49 g/100 g), supported fermentation by both strains. F-19 and BB-12 lowered pH, with F-19 showing stronger acidification, and maintained high viability (8.85-8.90 log CFU/mL). Fermentation altered sugar profiles and produced unique volatile compounds, enhancing aroma and sensory attributes. F-19 generated 2-phenylethanol, a unique flavor compound, absent in BB-12. Phenolic content initially increased but antioxidant activity decreased during storage. Betacyanin remained stable for up to 14 days. Red pitaya improved F-19 viability through the simulated GIT, while BB-12 populations significantly decreased (p < 0.05). These results suggest red pitaya pulp is a promising plant-based matrix for F-19, offering protection during digestion and highlighting its potential as a functional food with enhanced bioactive compound bioavailability and sensory attributes.


Subject(s)
Antioxidants , Betacyanins , Cactaceae , Fermentation , Probiotics , Volatile Organic Compounds , Betacyanins/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Antioxidants/analysis , Antioxidants/metabolism , Cactaceae/chemistry , Humans , Lacticaseibacillus paracasei/metabolism , Phenols/analysis , Phenols/metabolism , Taste , Bifidobacterium animalis/physiology , Bifidobacterium animalis/metabolism , Fruit/chemistry , Flavoring Agents , Hydrogen-Ion Concentration
7.
Int J Biol Macromol ; 279(Pt 1): 135111, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39208881

ABSTRACT

The Portland cement industry is continuously exploring new admixture alternatives to manipulate building materials properties, including mechanical, rheological, and durability properties. Cactus mucilage is such an admixture alternative. This study reviews the literature on the use of cactus mucilage (specifically, prickly pear cactus) as a bioadmixture in building materials, particularly Portland-cement-based materials. Moreover, the influences on mechanical strength, rheology, and durability are examined. The results show that cactus mucilage, which has been used since ancient times in America, could enhance materials like lime-, Portland-cement-, and earth-based building materials.


Subject(s)
Cactaceae , Construction Materials , Plant Mucilage , Rheology , Plant Mucilage/chemistry , Cactaceae/chemistry , Construction Materials/analysis , Chemical Phenomena
8.
PeerJ ; 12: e17719, 2024.
Article in English | MEDLINE | ID: mdl-39006035

ABSTRACT

Dragon fruit has significant economic value in many countries due to has excellent nutritional content, health advantages, and adaptability to different climates, making it an important crop in the global fruit industry. This study aimed to gather comprehensive nutritional data on three dragon fruit cultivars by analysing the levels of micronutrients, fibre, carbohydrates, antioxidants, vitamins, and minerals in their pulps. Uniform dragon fruit samples underwent thorough analysis for proximate composition, mineral content, pigments, antioxidants, and vitamin C, with statistical methods used to assess significant differences among the parameters studied. The proximate composition analysis revealed significant differences among the three dragon fruit cultivars. Among the proximate components, protein (0.40 ± 0.02 g/100 g), moisture (91.33 ± 0.88%), crude fibre (0.32 ± 0.07 g/100 g), and ash (1.27 ± 0.09 g/100 g) were more abundant in Hylocereus costaricensis than in Hylocereus undatus and Hylocereus megalanthus. On the other hand, Hylocereus undatus had higher carbohydrate (17.02 ± 0.63 g/100 g) and energy (69.74 ± 2.44 kcal/100 g) contents. K (7.23 ± 0.35 mg/100 g), Ca (1.61 ± 0.13 mg/100 g), Fe (1.84 ± 0.05 mg/100 g), and Zn (0.37 ± 0.034 mg/100 g) are highly abundant in H. costaricensis. Additionally, Hylocereus costaricensis had the highest anthocyanin content (120.15 ± 3.29 mg/g FW) and total carotenoid content (72.51 ± 1.62 mg/g FW), along with the highest vitamin C content (8.92 ± 0.13 mg/g FW) and total soluble phenolic content (572.48 ± 20.77 mg/100 g). Its remarkable antioxidant activity was further highlighted by the lowest SC50 value (13.50 ± 0.4 mg/mL) for its DPPH radical scavenging capacity. The total soluble sugar content was highest in Hylocereus megalanthus (8.72 ± 0.30 g/100 g FW). Hierarchical clustering analysis revealed distinct trait and genotype associations; among the studied cultivars, Hylocereus costaricensis demonstrated superior performance across multiple traits. Correlation analysis indicated significant positive correlations among several traits, while principal component analysis highlighted the contribution of each trait to overall variance, with PC1 explaining 73.95% of the total variance. This study highlights the nutritional variations among dragon fruit cultivars, with Hylocereus costaricensis showing superior performance, guiding dietary planning and functional food development.


Subject(s)
Antioxidants , Fruit , Nutritive Value , Antioxidants/analysis , Fruit/chemistry , Cactaceae/chemistry , Nutrients/analysis , Ascorbic Acid/analysis
9.
Int J Biol Macromol ; 277(Pt 1): 133852, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39025171

ABSTRACT

The potential of Hylocereus polyrhizus peel (HPP) as a new eco-friendly reinforcement for thermoplastic sago starch/agar composite (TPSS/agar) was investigated. The integration of HPP into TPSS/agar composite aimed to enhance its mechanical and thermal characteristics. The study employed Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), and Differential Scanning Calorimetry (DSC), as well as mechanical, physical properties and soil burial testing to analyse the composites. The results showed a favourable miscibility between the matrix and filler, while at higher concentrations of HPP, the starch granules became more visible. The tensile and impact properties of the composites improved significantly after incorporating HPP at 20 wt%, with values of 12.73 MPa and 1.87 kJ/m2, respectively. The glass transition temperature (Tg) and initial decomposition temperature (Ton) decreased with the addition of HPP. The density of the composites reduced from 1.51 ± 0.01 to 1.26 ± 0.01 g/cm3 as the HPP amount increased. The environmental properties indicated that the composites can be composted, with weight loss accelerating from 35 to 60 % and 61 to 91 % by the addition of HPP in 2- and 4-weeks' time, respectively. The study demonstrates the potential of TPSS/agar/HPP composites as eco-friendly materials for various applications.


Subject(s)
Agar , Cactaceae , Fruit , Starch , Agar/chemistry , Starch/chemistry , Cactaceae/chemistry , Fruit/chemistry , Temperature , Thermogravimetry , Biodegradation, Environmental , Spectroscopy, Fourier Transform Infrared , Calorimetry, Differential Scanning , Tensile Strength
10.
Int J Biol Macromol ; 276(Pt 1): 133804, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996891

ABSTRACT

Pectin was extracted from red dragon fruit (Hylocereus polyrhizus) peel using two different extraction methods: subcritical water extraction (SCWE) and conventional acid extraction (AE), from two different types of peels, fresh peel puree and dried peel powder. SCWE method on fresh peel puree showed an ∼18.88 % increase in pectin yield compared to AE. Extracted pectin is classified as low methoxyl pectin (DE: 8.51-50.64 %), with an average molecular weight ranging from 115.23 kDa to 577.84 kDa and a Gal-A content of 44.09 % - 53.90 %. The potential of pectin from fresh peel puree to be applied as a biodegradable film was further explored. Different pectin concentrations (3-5 % w/v) were used to prepare the films. Regarding the film performance, PF-S5, which was produced from SCWE with 5 % of pectin concentration, exhibits better thermal stability (Tdmax 250 °C, residue of 28.69 %) and higher moisture barrier (WVP 5.59 × 10-11 g.cm-1.s-1.Pa-1). In comparison, PF-A showed lower water solubility (45.14-69.15 %), higher water contact angle (33.01° - 44.35°), and better mechanical properties (TS: 2.12-4.11 MPa, EB: 48.72-61.39 %). Higher molecular weight accompanied by higher DE and Gal-A content contributes to better pectin film properties.


Subject(s)
Cactaceae , Edible Films , Fruit , Molecular Weight , Pectins , Pectins/chemistry , Pectins/isolation & purification , Cactaceae/chemistry , Fruit/chemistry , Water/chemistry
11.
An Acad Bras Cienc ; 96(3): e20221001, 2024.
Article in English | MEDLINE | ID: mdl-38865505

ABSTRACT

The objective was to evaluate the chemical composition and in vitro fermentation of spineless cactus of the genus Nopalea, F-21 (Nopalea cochenillifera Dyck), IPA-Sertânia (Nopalea cochenillifera Dyck) and Miúda (Nopalea cochenillifera Salm Dyck), in different phenophases. There was no effect (P < 0.05) of the phenological phases of spineless cactus on DM, ash, OM, EE, and CP. Varieties F-21 and Miúda presented higher values of DM and OM, whereas the CP was higher for IPA-Sertânia. The contents of NDF, ADF, and ADL, as well as the fractions of carbohydrates B2 and C were higher in the mature stage, irrespective of the variety. The Miúda variety showed higher levels of NFC and fractions A + B1 and the lower levels of pectin compared to the F-21 and IPA-Sertânia varieties, but not differ of TC to F-21. The volume of gas produced via the degradation of NFC was higher for young phenological phases. The young and intermediate stages showed a higher in vitro digestibility of DM. Based on the results, varieties IPA-Sertânia and Miúda have a high potential for use in animal feed because of their high nutritional quality. Mature cladodes showed a higher fibrous fraction and lower digestibility in all varieties.


Subject(s)
Cactaceae , Fermentation , Nutritive Value , Cactaceae/chemistry , Cactaceae/classification , Kinetics , Animal Feed/analysis
12.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791472

ABSTRACT

Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.


Subject(s)
Acetates , Cactaceae , Carotenoids , Cyclopentanes , Food Storage , Fruit , Oxylipins , Salicylic Acid , Fruit/chemistry , Fruit/drug effects , Fruit/metabolism , Fruit/growth & development , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Acetates/pharmacology , Carotenoids/metabolism , Food Storage/methods , Cactaceae/chemistry , Cactaceae/growth & development , Cactaceae/metabolism , Salicylic Acid/pharmacology , Salicylates/pharmacology , Salicylates/metabolism , Phenols/analysis , Oxalic Acid/metabolism
13.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792103

ABSTRACT

The aim of this work was to assess the chemical composition and physico-chemical, techno-functional, and in vitro antioxidant properties of flours obtained from the peel and flesh of pitahaya (Hylocereus ocamponis) to determine their potential for use as ingredients for food enrichment. The chemical composition, including total betalains, mineral content, and polyphenolic profile, was determined. The techno-functional properties (water holding, oil holding, and swelling capacities) were also evaluated. For the antioxidant capacity, four different methodologies, namely ferrous ion-chelating ability assay, ferric-reducing antioxidant power assay; 1,1-Diphenyl-2-picrylhydrazyl radical scavenging ability assay, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical assay, were used. Pitahaya-peel flour had higher values for protein (6.72 g/100 g), ash (11.63 g/100 g), and dietary fiber 56.56 g/100 g) than pitahaya-flesh flour, with values of 6.06, 3.63, and 8.22 g/100 g for protein, ash, and dietary fiber, respectively. In the same way, pitahaya peel showed a higher content of minerals, betalains, and polyphenolic compounds than pitahaya-flesh flour, with potassium (4.43 g/100 g), catechin (25.85 mg/g), quercetin-3-rhamnoside (11.66 mg/g) and myricetrin (12.10 mg/g) as principal compounds found in the peel. Again, pitahaya-peel flour showed better techno-functional and antioxidant properties than pitahaya-flesh flour. The results obtained suggest that the flours obtained from the peel and pulp of pitahaya (H. ocamponis) constitute a potential material to be utilized as an ingredient in the food industry due to the high content of bioactive compounds such as betalains, phenolic acids, and flavonoids, with notable antioxidant capacity.


Subject(s)
Antioxidants , Cactaceae , Flour , Fruit , Polyphenols , Cactaceae/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Fruit/chemistry , Flour/analysis , Polyphenols/analysis , Polyphenols/chemistry , Betalains/chemistry , Betalains/analysis , Plant Extracts/chemistry
14.
Food Chem ; 452: 139594, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38749142

ABSTRACT

Protein glycation closely intertwines with the pathogenesis of various diseases, sparking a growing interest in exploring natural antiglycation agents. Herein, high-purity betacyanins (betanin and phyllocactin) derived from Hylocereus polyrhizus peel were studied for their antiglycation potential using an in vitro bovine serum albumin (BSA)-glucose model. Notably, betacyanins outperformed aminoguanidine, a recognized antiglycation agent, in inhibiting glycation product formation across different stages, especially advanced glycation end-products (AGEs). Interestingly, phyllocactin displayed stronger antiglycation activity than betanin. Subsequent mechanistic studies employing molecular docking analysis and fluorescence quenching assay unveiled that betacyanins interact with BSA endothermically and spontaneously, with hydrophobic forces playing a dominant role. Remarkably, phyllocactin demonstrated higher binding affinity and stability to BSA than betanin. Furthermore, the incorporation of betacyanins into bread dose-dependently suppressed AGEs formation during baking and shows promise for inhibiting in vivo glycation process post-consumption. Overall, this study highlights the substantial potential of betacyanins as natural antiglycation agents.


Subject(s)
Betacyanins , Bread , Glycation End Products, Advanced , Molecular Docking Simulation , Plant Extracts , Serum Albumin, Bovine , Glycosylation , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/chemistry , Betacyanins/chemistry , Betacyanins/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Bread/analysis , Cactaceae/chemistry , Cactaceae/metabolism , Animals , Cattle
15.
BMC Plant Biol ; 24(1): 344, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684949

ABSTRACT

BACKGROUND: Geographical factors affect the nutritional, therapeutic and commercial values of fruits. Dragon fruit (Hylocereus spp) is a popular fruit in Asia and a potential functional food with diverse pharmacological attributes. Although it is produced in various localities, the information related to the altitudinal variation of dragon fruit nutrients and active compounds is scarce. Hence, this study aimed to investigate the variations in metabolite profiles of H. polyrhizus (variety Jindu1) fruit pulps from three different altitudes of China, including Wangmo (WM, 650 m), Luodian (LD, 420 m), and Zhenning (ZN, 356 m). Jindu1 is the main cultivated pitaya variety in Guizhou province, China. RESULTS: The LC-MS (liquid chromatography-mass spectroscopy)-based widely targeted metabolic profiling identified 645 metabolites, of which flavonoids (22.64%), lipids (13.80%), phenolic acids (12.40%), amino acids and derivatives (10.39%), alkaloids (8.84%), and organic acids (8.37%) were dominant. Multivariate analyses unveiled that the metabolite profiles of the fruit differed regarding the altitude. Fruits from WM (highest altitude) were prime in quality, with higher levels of flavonoids, alkaloids, nucleotides and derivatives, amino acids and derivatives, and vitamins. Fruits from LD and ZN had the highest relative content of phenolic acids and terpenoids, respectively. We identified 69 significantly differentially accumulated metabolites across the pulps of the fruits from the three locations. KEGG analysis revealed that flavone and flavonol biosynthesis and isoflavonoid biosynthesis were the most differentially regulated. It was noteworthy that most active flavonoid compounds exhibited an increasing accumulation pattern along with the increase in altitude. Vitexin and isovitexin were the major differentially accumulated flavonoids. Furthermore, we identified two potential metabolic biomarkers (vitexin and kaempferol 3-O-[2-O-ß-D-galactose-6-O-a-L-rhamnose]-ß-D-glucoside) to discriminate between dragon fruits from different geographical origins. CONCLUSION: Our findings provide insights into metabolic changes in dragon fruits grown at different altitudes. Furthermore, they show that growing pitaya at high altitudes can produce fruit with higher levels of bioactive compounds, particularly flavonoids.


Subject(s)
Altitude , Cactaceae , Fruit , Metabolomics , Cactaceae/metabolism , Cactaceae/chemistry , China , Chromatography, High Pressure Liquid , Chromatography, Liquid/methods , Flavonoids/metabolism , Fruit/metabolism , Fruit/chemistry , Liquid Chromatography-Mass Spectrometry , Metabolome , Metabolomics/methods , Tandem Mass Spectrometry/methods
16.
J Pharm Biomed Anal ; 244: 116121, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38581932

ABSTRACT

Natural approach became a high demand for the prevention and treatment of such diseases for their proven safety and efficacy. This study is aimed to perform comparative phytochemical analysis of white pitaya (Hylocereus undatus) peel, pulp and seed extracts via determination of total flavonoid content, phenolic content, and antioxidant capacity, coupled with HPLC-ESI/MS-MS analysis. Further, we evaluated the synergistic cytotoxic potential with Cisplatin against cervical cancer cells with investigation of underlying mechanism. The highest content of phenolics and antioxidants were found in both seed and peel extracts. The HPLC-ESI/MS-MS revealed identification of flavonoids, phenolic acids, anthocyanin glycosides, lignans, stilbenes, and coumarins. The cytotoxicity effects were evaluated by MTT assay against prostate, breast and cervical (HeLa) and Vero cell lines. The seed and peel extracts showed remarkable cytotoxic effect against all tested cell lines. Moreover, the selectivity index confirmed high selectivity of pitaya extracts to cancer cells and safety on normal cells. The combined therapy with Cisplatin effectively enhanced its efficacy and optimized the treatment outcomes, through the apoptotic ability of pitaya extracts in HeLa cells, as evaluated by flow cytometry. Besides, RT-PCR and western blotting analysis showed downregulation of Bcl-2 and overexpression of P53, BAX among HeLa cells treated with pitaya extracts, which eventually activated apoptosis process. Thus, pitaya extract could be used as adjuvant therapy with cisplatin for treatment of cervical cancer. Furthermore, in-vivo extensive studies on the seed and peel extracts, and their compounds are recommended to gain more clarification about the required dose, and side effects.


Subject(s)
Apoptosis , Cactaceae , Cisplatin , Drug Synergism , Fruit , Plant Extracts , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , HeLa Cells , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Female , Animals , Cactaceae/chemistry , Apoptosis/drug effects , Cisplatin/pharmacology , Vero Cells , Chlorocebus aethiops , Seeds/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Flavonoids/pharmacology , Flavonoids/analysis , Antioxidants/pharmacology , Phenols/pharmacology , Phenols/analysis , Metabolomics/methods
17.
Food Chem ; 451: 139467, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678661

ABSTRACT

Betacyanins have garnered escalating research interest for their promising bioactivities. However, substantial challenges in purification and separation have impeded a holistic comprehension of the distinct bioactivities of individual betacyanins and their underlying mechanisms. Herein, betanin and phyllocactin monomers with purity exceeding 95% were successfully obtained from Hylocereus polyrhizus peel using a feasible protocol. These monomers were subsequently employed for comparative bioactivity assessments to uncover underlying mechanisms and illuminate structure-activity relationships. Interestingly, phyllocactin exhibited superior antioxidant activities and 36.1% stronger inhibitory activity on α-glucosidase compared to betanin. Mechanistic studies have revealed that they function as mixed-type inhibitors of α-amylase and competitive inhibitors of α-glucosidase, with interactions predominantly driven by hydrogen bonding. Notably, phyllocactin demonstrated a greater binding affinity with enzymes than betanin, thereby substantiating its heightened inhibitory activity. Overall, our results highlight novel bioactivities of betacyanin monomers and provide profound insights into the intricate interplay between structures and properties.


Subject(s)
Antioxidants , Betacyanins , Cactaceae , Hypoglycemic Agents , Plant Extracts , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Betacyanins/chemistry , Betacyanins/pharmacology , Betacyanins/isolation & purification , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Cactaceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry , Structure-Activity Relationship
18.
Food Funct ; 15(10): 5414-5428, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38639438

ABSTRACT

Pitaya is a well-known fruit widely cultivated in tropical and subtropical tropical regions, and is characterized by its flesh colour into red, white, and yellow pitaya. Red pitaya has dark red flesh and is the preferred choice among consumers due to its superior taste compared to other varieties. Red pitaya has been known to cause diarrhoea, and studies have reported that pitaya does this by drawing moisture into the intestines, resulting in defecation. However, the exact mechanism of action is still unclear. In this study, mass spectrometry was employed to identify small molecular compounds in red pitaya powder, and a loperamide hydrochloride-induced early constipation mouse model was used to assess the efficacy of red pitaya. 16S rDNA and non-targeted metabolomics techniques were used to systematically reveal the regulatory characteristics of the intestinal flora and to identify the intestinal metabolites associated with constipation. The results showed that 44 novel small molecular compounds were identified from red pitaya powder, including a variety of phenolic acids and flavonoids. Pathological results showed that administration of red pitaya powder at a high dose (1000 mg kg-1) significantly ameliorated the abnormal expansion of intestinal goblet cells observed in the early stages of constipation. In addition, early constipation increased metabolites such as serotonin and 5-hydroxytryptophol, which were normalized following the ingestion of red pitaya powder. Furthermore, Erysipelatoclostridium, Parasutterella, and other abnormal gut microbiota associated with early constipation returned to healthy levels after the ingestion of red pitaya powder. Finally, significant correlations were observed between the expression of 33 different serum metabolites and the abundance of eight kinds of intestinal flora. Consequently, red pitaya holds potential as a safe food supplement for the prevention or amelioration of early-stage constipation.


Subject(s)
Constipation , Gastrointestinal Microbiome , Constipation/drug therapy , Constipation/metabolism , Animals , Mice , Gastrointestinal Microbiome/drug effects , Male , Cactaceae/chemistry , Fruit/chemistry , Metabolome , Disease Models, Animal , Metabolomics , Humans
19.
Plant Foods Hum Nutr ; 79(2): 474-481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38363439

ABSTRACT

Red dragon fruit is gaining popularity globally due to its nutritional value and bioactive components. The study aimed to assess the phytochemical, nutritional composition, antioxidant, antibacterial, and cytotoxic properties of extracts from the South Chinese red dragon fruit peel, flesh, and seeds. Extract fractions with increasing polarity (ethyl acetate

Subject(s)
Anti-Bacterial Agents , Antioxidants , Cactaceae , Fruit , Phytochemicals , Plant Extracts , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Antioxidants/pharmacology , Antioxidants/analysis , Cactaceae/chemistry , Computer Simulation , Fruit/chemistry , HaCaT Cells , Microbial Sensitivity Tests , Nutritive Value , Phytochemicals/pharmacology , Phytochemicals/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Quercetin/analysis , Quercetin/pharmacology , Seeds/chemistry , Tandem Mass Spectrometry
20.
J Sci Food Agric ; 104(9): 5513-5521, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38353869

ABSTRACT

BACKGROUND: Pitaya is a fruit with high consumer acceptance and health benefits. Pitaya peel is a waste product with potential in the food industry, as an antioxidant enrichment and natural colouring. Therefore, there is an interest in recovering its constituents and searching for pitaya species with greater potential. This work aimed to obtain bioactive extracts from the dried peel of pitaya fruits of the species Selenicereus monacanthus (Lem.), S. costaricensis W. and S. undatus H. using supercritical fluids at different pressures (100, 250 and 400 bar) and ethanol-water 15% v/v or ethanol 100% as co-solvents. The extraction yield, antioxidant activity, colour and total betalain content were evaluated. RESULTS: The extract obtained from S. monacanthus showed the highest extraction yield (49.6 g kg-1), followed by S. costaricensis (27.5 g kg-1) and S. undatus (17.7 g kg-1) at 400 bar and 35 °C using ethanol 15%, v/v. The antioxidant capacity was strongly influenced by pressure, favouring the obtaining of betalain-rich extracts at higher pressures, especially in the species S. costaricensis (0.6 g kg-1) and S. monacanthus (0.3 g kg-1). To improve the extraction of S. undatus (the most cultivated species), the procedure of subsequential extractions was applied. This procedure considerably increased the extraction yield, antioxidant activity and total content of betalains. The use of ethanol 100% provided more bioactive fractions and achieved a good separation of betalains. CONCLUSION: The supercritical extraction method can overcome the challenge of efficiently extracting compounds from pitaya peel, due to the presence of bioactive compounds of great polarity. © 2024 Society of Chemical Industry.


Subject(s)
Antioxidants , Betalains , Cactaceae , Chromatography, Supercritical Fluid , Fruit , Plant Extracts , Betalains/chemistry , Betalains/isolation & purification , Cactaceae/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Chromatography, Supercritical Fluid/methods , Antioxidants/chemistry , Antioxidants/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL