Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.054
Filter
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 902-910, 2024 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-39170019

ABSTRACT

Objective: Sepsis-induced acute respiratory distress syndrome (ARDS) is an independent risk factor for mortality in critically ill septic patients. However, effective therapeutic targets are still unavailable due to the lack of understanding of its unclear pathogenesis. With increasing understanding in the roles of circulating histones and endothelial dysfunction in sepsis, we aimed to investigate the mechanism of histone-induced endothelial dysfunction leading to sepsis-induced ARDS and to provide experimental support for histone-targeted treatment of sepsis-induced ARDS. Methods: First of all, in vitro experiments were conducted. Human umbilical vein endothelial cells (HUVEC) were stimulated with gradient concentrations of histones to explore for the optimal stimulation concentration in vitro. Then, HUVEC were exposed to histones at an optimal concentration with or without resatorvid (TAK-242), a selective inhibitor of Toll-like receptor 4 (TLR4), for 24 hours for modeling. The cells were divided into 4 groups: 1) the blank control group, 2) the blank control+TAK-242 intervention group, 3) the histone stimulation group, and 4) the histone+TAK-242 intervention group. HUVEC apoptosis was determined by flow cytometry, VE-Cadherin expression in endothelial cells was determined by Western blot, and the integrity of adhesion connections between endothelial cells was evaluated with confocal fluorescence microscopic images. Male C57BL/6 mice aged 6-8 weeks and weighing 22-25 g were used for the in vivo experiment. Then, the mice were given cecal ligation and puncture (CLP) as well as histone injection at 50 mg/kg via the tail vein for sepsis modeling. The experimental animals were divided into 6 groups: 1) the blank control group, 2) the blank control+TAK-242 intervention group, 3) the CLP model group, 4) the CLP+TAK-242 intervention group, 5) the histone model group, and 6) the histone+TAK-242 intervention group. After 24 h, the concentrations of serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined using ELISA kits. Western blot was performed to determine the expression of vascular endothelial (VE)-cadherin in the lung tissue. Hematoxylin and eosin (HE) staining was performed to observe the pathological changes in the lung tissue of the mice. Evans Blue was injected via the tail vein 30 min before the mice were sacrificed. Lung tissue was collected after the mice were sacrificed. Then, the concentrations of Evans blue dye per unit mass in the lung tissue from mice of different groups were evaluated, the rates of pulmonary endothelial leakage were calculated, and the integrity of the pulmonary endothelial barrier was evaluated. Results: The results of the in vitro experiment showed that, compared with those of the control group, HUVEC apoptosis was significantly increased under histone stimulation (P<0.05), the expression of VE-cadherin was decreased (P<0.05), and the integrity of adherens junctions between endothelial cells was damaged. TAK-242 can significantly inhibit histone-induced HUVEC apoptosis and VE-cadherin expression reduction and maintain the integrity of adherens junctions between endothelial cells. According to the findings from the in vivo experiments, in mice with CLP-induced and histone-induced sepsis, TAK-242 effectively alleviated the increase in serum concentrations of IL-6 and TNF-α, reduced the downregulation of VE-cadherin expression in the lung tissue (P<0.05), decreased endothelial permeability of the lung vessels, and improved pathological injury in the lung tissue. Conclusion: By binding to TLR-4, histone decreases VE-cadherin expression on the surface of vascular endothelial cells, disrupts the integrity of intercellular adherens junctions, and triggers pathological damage to lung tissue. Using TLR-4 inhibitors can prevent sepsis-induced ARDS in histone-induced sepsis.


Subject(s)
Apoptosis , Histones , Human Umbilical Vein Endothelial Cells , Mice, Inbred C57BL , Respiratory Distress Syndrome , Sepsis , Toll-Like Receptor 4 , Sepsis/complications , Sepsis/metabolism , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Humans , Animals , Mice , Histones/metabolism , Toll-Like Receptor 4/metabolism , Male , Cadherins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Antigens, CD/metabolism , Sulfonamides
2.
Mar Drugs ; 22(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39195457

ABSTRACT

Tight junctional complexes (TJCs) between cerebral microvascular endothelial cells (CMECs) are essential parts of the blood-brain barrier (BBB), whose regulation closely correlates to the BBB's integrity and function. hCMEC/D3 is the typical cell line used to imitate and investigate the barrier function of the BBB via the construction of an in vitro model. This study aims to investigate the protective effect of the deep-sea-derived fibrinolytic compound FGFC1 against H2O2-induced dysfunction of TJCs and to elucidate the underlying mechanism. The barrier function was shown to decline following exposure to 1 mM H2O2 in an in vitro model of hCMEC/D3 cells, with a decreasing temperature-corrected transendothelial electrical resistance (tcTEER) value. The decrease in the tcTEER value was significantly inhibited by 80 or 100 µM FGFC1, which suggested it efficiently protected the barrier integrity, allowing it to maintain its function against the H2O2-induced dysfunction. According to immunofluorescence microscopy (IFM) and quantitative real-time polymerase chain reaction (qRT-PCR), compared to the H2O2-treated group, 80~100 µM FGFC1 enhanced the expression of claudin-5 (CLDN-5) and VE-cadherin (VE-cad). And this enhancement was indicated to be mainly achieved by both up-regulation of CLDN-5 and inhibition of the down-regulation by H2O2 of VE-cad at the transcriptional level. Supported by FGFC1's molecular docking to these proteins with reasonable binding energy, FGFC1 was proved to exert a positive effect on TJCs' barrier function in hCMEC/D3 cells via targeting CLDN-5 and VE-cad. This is the first report on the protection against H2O2-induced barrier dysfunction by FGFC1 in addition to its thrombolytic effect. With CLDN-5 and VE-cad as the potential target proteins of FGFC1, this study provides evidence at the cellular and molecular levels for FGFC1's reducing the risk of bleeding transformation following its application in thrombolytic therapy for cerebral thrombosis.


Subject(s)
Cadherins , Endothelial Cells , Hydrogen Peroxide , Tight Junctions , Humans , Tight Junctions/drug effects , Tight Junctions/metabolism , Cell Line , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/pharmacology , Cadherins/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Fibrinolytic Agents/pharmacology , Claudin-5/metabolism , Antigens, CD/metabolism , Molecular Docking Simulation , Fibroblast Growth Factors/pharmacology
3.
Mol Med Rep ; 30(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39155876

ABSTRACT

Endometrial receptivity is essential for successful embryo implantation and pregnancy initiation and is regulated via various signaling pathways. Adiponectin, an important adipokine, may be a potential regulator of reproductive system functions. The aim of the present study was to elucidate the regulatory role of adiponectin receptor 1 (ADIPOR1) in endometrial receptivity. The endometrial receptivity between RL95­2 and AN3CA cell lines was confirmed using an in vitro JAr spheroid attachment model. 293T cells were transfected with control or short hairpin (sh)ADIPOR1 vectors and RL95­2 cells were transduced with lentiviral particles targeting ADIPOR1. Reverse transcription­quantitative PCR and immunoblot assays were also performed. ADIPOR1 was consistently upregulated in the endometrium during the mid­secretory phase compared with that in the proliferative phase and in receptive RL95­2 cells compared with that in non­receptive AN3CA cells. Stable cell lines with diminished ADIPOR1 expression caused by shRNA showed reduced E­cadherin expression and attenuated in vitro endometrial receptivity. ADIPOR1 regulated AMP­activated protein kinase (AMPK) activity in endometrial epithelial cells. Regulation of AMPK activity via dorsomorphin and 5­aminoimidazole­4­carboxamide ribonucleotide affected E­cadherin expression and in vitro endometrial receptivity. The ADIPOR1/AMPK/E­cadherin axis is vital to endometrial receptivity. These findings can help improve fertility treatments and outcomes.


Subject(s)
AMP-Activated Protein Kinases , Cadherins , Endometrium , Receptors, Adiponectin , Signal Transduction , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Humans , Female , Endometrium/metabolism , Cadherins/metabolism , Cadherins/genetics , AMP-Activated Protein Kinases/metabolism , Cell Line , Embryo Implantation , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Adult , Aminoimidazole Carboxamide/analogs & derivatives , Ribonucleotides
4.
Anal Chem ; 96(32): 13270-13277, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39093913

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a complex process that plays a critical role in tumor progression. In this study, we present an EMT sensing panel for the classification of cancer cells at different EMT stages. This sensing panel consists of three types of fluorescent probes based on boronic acid-functionalized carbon-nitride nanosheet (BCN) derivatives. The selective response toward different EMT-associated biomarkers, namely, EpCAM, N-cadherin, and sialic acid (SA), was achieved by conjugating the corresponding antibodies to each BCN derivative, whereas the rare-earth-doping ensures simultaneous sensing of the three biomarkers with fluorescent emission of the three probes at different wavelengths. Sensitive sensing of the three biomarkers was achieved at the protein level with LODs reaching 1.35 ng mL-1 for EpCAM, 1.62 ng mL-1 for N-cadherin, and 1.54 ng mL-1 for SA. The selective response of these biomarkers on the cell surface also facilitated sensitive detection of MCF-7 cells and MDA-MB-231 cells with LODs of 2 cells/mL and 2 cells/mL, respectively. Based on the simultaneous sensing of the three biomarkers on cancer cells that underwent different extents of EMT, precise discrimination and classification of cells at various EMT stages were also achieved with an accuracy of 93.3%. This EMT sensing panel provided a versatile tool for monitoring the EMT evolution process and has the potential to be used for the evaluation of the EMT-targeting therapy and metastasis prediction.


Subject(s)
Biomarkers, Tumor , Cadherins , Epithelial-Mesenchymal Transition , Humans , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Cadherins/analysis , Cadherins/metabolism , Fluorescent Dyes/chemistry , Cell Line, Tumor , Epithelial Cell Adhesion Molecule/metabolism , MCF-7 Cells , Boronic Acids/chemistry , N-Acetylneuraminic Acid/analysis , N-Acetylneuraminic Acid/metabolism
5.
Sci Rep ; 14(1): 18553, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122790

ABSTRACT

Increased protein-bound uremic toxins (PBUTs) in patients with chronic kidney disease (CKD) are associated with cardiovascular diseases (CVDs); however, whether retention of PBUTs causes CVD remains unclear. Previous studies assessing the impacts of PBUTs on the vasculature have relied on 2D cell cultures lacking in vivo microenvironments. Here, we investigated the impact of various PBUTs (p-cresol (PC), indoxyl sulfate (IS), and p-cresyl sulfate (PCS)) on microvascular function using an organ-on-a-chip (OOC). Human umbilical vein endothelial cells were used to develop 3D vessels. Chronic exposure to PC resulted in significant vascular leakage compared with controls, whereas IS or PCS treatment did not alter the permeability of 3D vessels. Increased permeability induced by PC was correlated with derangement of cell adherens junction complex, vascular endothelial (VE)-cadherin and filamentous (F)-actin. Additionally, PC decreased endothelial viability in a concentration-dependent manner with a lower IC50 in 3D vessels than in 2D cultures. IS slightly decreased cell viability, while PCS did not affect viability. PC induced inflammatory responses by increasing monocyte adhesion to endothelial surfaces of 3D vessels and IL-6 production. In conclusion, this study leveraged an OOC to determine the diverse effects of PBUTs, demonstrating that PC accumulation is detrimental to ECs during kidney insufficiency.


Subject(s)
Cresols , Human Umbilical Vein Endothelial Cells , Inflammation , Humans , Cresols/metabolism , Cresols/toxicity , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/metabolism , Inflammation/pathology , Indican/metabolism , Indican/toxicity , Cadherins/metabolism , Cell Survival/drug effects , Uremic Toxins/metabolism , Capillary Permeability/drug effects , Lab-On-A-Chip Devices , Sulfuric Acid Esters/metabolism
6.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3868-3877, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099360

ABSTRACT

The study investigated the effect of Compound Shougong Powder(CSGP) on the biological functions of triple-negative breast cancer(TNBC) cells and whether its mechanism of action was related to the epithelial-mesenchymal transition(EMT) signaling pathway. TNBC cells(MDA-MB-231 and BT-549) were treated with different concentrations of CSGP-containing serum. MTS assay was used to detect the effect of CSGP on the proliferation of TNBC cells. The EdU staining was used to detect the effect of CSGP on the proliferation of TNBC cells. Flow cytometry was used to examine the impact of CSGP on apoptosis of TNBC cells. Wound-healing and Transwell assays were used to evaluate the effects of different concentrations of CSGP on the migration and invasion capabilities of TNBC cells. RNA sequencing technology was utilized to elucidate its mechanism. Subsequently, qRT-PCR was performed to measure the mRNA expression levels of E-cadherin, N-cadherin, Slug, Snail, Vimentin, Twist, Zinc finger E-box-Binding homeobox 1(Zeb1), and Zinc finger E-box-Binding homeobox 2(Zeb2). Western blot was used to assess the protein expression levels of Slug, Vimentin, and E-cadherin. After intervention with CSGP, the proliferation of MDA-MB-231 and BT-549 cells significantly decreased, while the apoptosis rate markedly increased. The expression levels of the epithelial marker protein E-cadherin significantly increased, while the expression levels of the EMT-related transcription factors Slug and Vimentin showed a decrease. In conclusion, CSGP inhibits the EMT, thereby suppressing the malignant progression of TNBC.


Subject(s)
Apoptosis , Cell Proliferation , Drugs, Chinese Herbal , Epithelial-Mesenchymal Transition , Triple Negative Breast Neoplasms , Epithelial-Mesenchymal Transition/drug effects , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Drugs, Chinese Herbal/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Apoptosis/drug effects , Cell Movement/drug effects , Powders/chemistry , Cadherins/genetics , Cadherins/metabolism
7.
Commun Biol ; 7(1): 940, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097636

ABSTRACT

Endothelial cell physiology is governed by its unique microenvironment at the interface between blood and tissue. A major contributor to the endothelial biophysical environment is blood hydrostatic pressure, which in mechanical terms applies isotropic compressive stress on the cells. While other mechanical factors, such as shear stress and circumferential stretch, have been extensively studied, little is known about the role of hydrostatic pressure in the regulation of endothelial cell behavior. Here we show that hydrostatic pressure triggers partial and transient endothelial-to-mesenchymal transition in endothelial monolayers of different vascular beds. Values mimicking microvascular pressure environments promote proliferative and migratory behavior and impair barrier properties that are characteristic of a mesenchymal transition, resulting in increased sprouting angiogenesis in 3D organotypic model systems ex vivo and in vitro. Mechanistically, this response is linked to differential cadherin expression at the adherens junctions, and to an increased YAP expression, nuclear localization, and transcriptional activity. Inhibition of YAP transcriptional activity prevents pressure-induced sprouting angiogenesis. Together, this work establishes hydrostatic pressure as a key modulator of endothelial homeostasis and as a crucial component of the endothelial mechanical niche.


Subject(s)
Adherens Junctions , Hydrostatic Pressure , Neovascularization, Physiologic , Signal Transduction , YAP-Signaling Proteins , Animals , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adherens Junctions/metabolism , Cadherins/metabolism , Cadherins/genetics , Cell Movement , Endothelial Cells/metabolism , Endothelial Cells/physiology , Human Umbilical Vein Endothelial Cells/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism
8.
BMC Ophthalmol ; 24(1): 373, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187782

ABSTRACT

BACKGROUND: Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases. However, it is still not well understand about the relationship between PCDH15 variants and RP. METHODS: In this study, we enrolled a Chinese autosomal recessive retinitis pigmentosa (arRP) pedigree and identified the causative gene in the proband by targeted whole exome sequencing (WES). The variants were validated in the family members by Sanger sequencing and co-segregation analysis. RESULTS: Novel compound heterozygous, Frame shift variants of the PCDH15 gene, NM_001384140.1:c.4368 - 2147_4368-2131del and NM_001384140.1:c exon19:c.2505del: p. T836Lfs*6 were identified in the arRP pedigree, which co-segregated with the clinical RP phenotypes. The PCDH15 protein is highly conserved among species. CONCLUSION: This is the first study to identify novel compound heterozygous variants c.4368 - 2147_4368-2131del and c.2505del(p.T836Lfs*6) in the PCDH15 gene which might be disease-causing variants, and extending the variant spectra. All above findings may be contribute to genetic counseling, molecular diagnosis and clinical management of arRP disease.


Subject(s)
Cadherin Related Proteins , Cadherins , Heterozygote , Pedigree , Retinitis Pigmentosa , Humans , Male , Female , Cadherins/genetics , Retinitis Pigmentosa/genetics , Adult , China/epidemiology , Exome Sequencing , DNA Mutational Analysis , Asian People/genetics , Phenotype , Middle Aged , East Asian People
9.
J Transl Med ; 22(1): 734, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103891

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is associated with increased risk of stroke and mortality. It has been reported that the process of atrial fibrosis was regulated by ß-catenin in rats with AF. However, pathophysiological mechanisms of this process in human with AF remain unclear. This study aims to investigate the possible mechanisms of ß-catenin in participating in the atrial fibrosis using human right atrial appendage (hRAA) tissues . METHODS: We compared the difference of ß-catenin expression in hRAA tissues between the patients with AF and sinus rhythm (SR). The possible function of ß-catenin in the development of AF was also explored in mice and primary cells. RESULTS: Firstly, the space between the membrane of the gap junctions of cardiomyocytes was wider in the AF group. Secondly, the expression of the gap junction function related proteins, Connexin40 and Connexin43, was decreased, while the expression of ß-catenin and its binding partner E-cadherin was increased in hRAA and cardiomyocytes of the AF group. Thirdly, ß-catenin colocalized with E-cadherin on the plasma membrane of cardiomyocytes in the SR group, while they were dissociated and accumulated intracellularly in the AF group. Furthermore, the expression of glycogen synthase kinase 3ß (GSK-3ß) and Adenomatous Polyposis Coli (APC), which participated in the degradation of ß-catenin, was decreased in hRAA tissues and cardiomyocytes of the AF group. Finally, the development of atrial fibrosis and AF were proved to be prevented after inhibiting ß-catenin expression in the AF model mice. CONCLUSIONS: Based on human atrial pathological and molecular analyses, our findings provided evidence that ß-catenin was associated with atrial fibrosis and AF progression.


Subject(s)
Atrial Fibrillation , Fibrosis , Heart Atria , Myocytes, Cardiac , beta Catenin , Humans , Atrial Fibrillation/pathology , Atrial Fibrillation/metabolism , beta Catenin/metabolism , Animals , Heart Atria/metabolism , Heart Atria/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Glycogen Synthase Kinase 3 beta/metabolism , Cadherins/metabolism , Gap Junctions/metabolism , Middle Aged , Mice , Female , Connexin 43/metabolism , Mice, Inbred C57BL , Aged
11.
Zhonghua Zhong Liu Za Zhi ; 46(8): 755-763, 2024 Aug 23.
Article in Chinese | MEDLINE | ID: mdl-39143798

ABSTRACT

Objective: To explore the gene mutation characteristics and the relationship between gene mutations and long-term prognosis in clinical stage ⅠA lung adenocarcinoma patients. Methods: A retrospective analysis was conducted on 63 clinical stage ⅠA lung adenocarcinoma patients who underwent surgical resection at the Cancer Hospital of the Chinese Academy of Medical Sciences from January 2007 to October 2012, with documented postoperative recurrence or metastasis, as well as those who had a follow-up duration of 10 years or more without recurrence or metastasis. Whole exome sequencing (WES) technology was used to analyze the gene mutation profiles in tumor tissues and univariate and multivariate Cox regression analysis were used to clarify the influencing factors for patient prognosis. Results: After long term follow-up, 13 out of the 63 patients (21%) experienced recurrence or metastasis. WES technology analysis revealed that the most common tumor related gene mutations occurred in epidermal growth factor receptor (EGFR), with a mutation rate of 65.1% (41/63), followed by tumor protein p53 (TP53), fatatypical cadherin 1 (FAT1), low density lipoprotein receptor-related protein 1B (LRP1B), mechanistic target of rapamycin (MTOR), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (PIK3CG), and SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily A, member 4 (SMARCA4), with mutation rates of 30.2% (19/63), 20.6% (13/63), 15.9% (10/63), 15.9% (10/63), 15.9% (10/63), and 15.9% (10/63), respectively. Multivariate Cox regression analysis showed that PIK3CG mutations (HR=21.52, 95% CI: 3.19-145.01),smoothened (SMO) mutations (HR=35.28, 95% CI: 3.12-398.39), catenin beta 1 (CTNNB1) mutations (HR=332.86, 95% CI: 15.76-7 029.05), colony stimulating factor 1 receptor (CSF1R) mutations (HR=8 109.60, 95% CI: 114.19-575 955.17), and v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutations (HR=23.65, 95% CI: 1.86-300.43) were independent risk factors affecting the prognosis of clinical stage ⅠA lung adenocarcinoma patients. Conclusions: PIK3CG, SMO, CTNNB1, CSF1R, BRAF gene mutations are closely related to long-term recurrence or metastasis in clinical stage ⅠA lung adenocarcinoma. Patients with these gene mutations should be given closer clinical attention.


Subject(s)
Adenocarcinoma of Lung , ErbB Receptors , Lung Neoplasms , Mutation , Neoplasm Recurrence, Local , Neoplasm Staging , Tumor Suppressor Protein p53 , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Retrospective Studies , Prognosis , ErbB Receptors/genetics , Tumor Suppressor Protein p53/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Cadherins/genetics , Cadherins/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Exome Sequencing , Follow-Up Studies , Male , Female , Middle Aged , DNA-Binding Proteins , Receptors, LDL , Transcription Factors
12.
Pathol Oncol Res ; 30: 1611813, 2024.
Article in English | MEDLINE | ID: mdl-39148954

ABSTRACT

Hereditary breast and ovarian cancer is a well-known genetic condition, inherited mainly in an autosomal dominant way, which elevates the risk of developing malignancies at a young age in heterozygous carriers. Advances in new generation sequencing have enabled medical professionals to determine whether a patient is harbouring mutations in moderate- or high penetrance susceptibility genes. We conducted a retrospective analysis among 275 patients who underwent genetic counselling and multigene panel testing for hereditary breast and ovarian cancer syndrome in our department. From these patients 74.5% (205/275) were affected by some type of malignancy, while the remaining 25.5% (70/275) had a positive family history of different cancers, suggesting a genetic predisposition. These tests confirmed a genetic variant in 29.8% and 28.6% of these patient groups respectively. The results also mirrored our general knowledge concerning the genetic background of hereditary breast and ovarian cancer, as variants in either one of the BRCA1 and BRCA2 genes proved to be the most common cause among our patients with 41.5%. Our test also detected a novel mutation in the CDH1 gene and three patients with double heterozygosity in two different susceptibility genes. This study demonstrates the relevance of genetic counselling and non-BRCA gene sequencing among cancer patients and patients who fulfil the criteria for genetic testing, while also providing important details about the genetic profile of Hungarian patients.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Mutation , Ovarian Neoplasms , Humans , Female , Retrospective Studies , Adult , Middle Aged , BRCA2 Protein/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , BRCA1 Protein/genetics , High-Throughput Nucleotide Sequencing/methods , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Aged , Genetic Testing/methods , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Genetic Counseling , Young Adult , Biomarkers, Tumor/genetics , Antigens, CD , Cadherins
13.
Article in Russian | MEDLINE | ID: mdl-39113443

ABSTRACT

Mutations in the human PCDH19 gene lead to epileptic encephalopathy of early childhood. It is characterized by the early onset of serial seizures, cognitive impairment and behavioral disorders (including autistic personality traits). In most cases, difficulties arise in selecting therapy due to pharmacoresistance. The pathogenesis of the disease is complex. The data available to us at the moment from numerous studies present the pathogenesis of «PCDH19 syndrome¼ as multi-level, affecting both the epigenetic support of cell life, and development of stem cells and progenitor cells in the process of neuroontogenesis, and the influence on the neurotransmitter mechanisms of the brain, and disruption of the formation of neural networks with an inevitable increase in the excitability of the cerebral cortex as a whole, and local changes in the highly labile regulatory structures of the hippocampal region. And it is not surprising that all these changes entail not only (and perhaps not so much) epileptization, but a profound disruption of the regulation of brain activity, accompanied by autism spectrum disorders, more profound disorders in the form of schizophrenia or cyclothymia, and the formation of delayed psychomotor development. A «side branch¼ of these pathogenetic processes can also be considered the participation of PCDH19 dysfunctions in certain variants of oncogenesis. The need for polypharmacy (in most cases) confirms the diversity of mechanisms involved in the pathogenesis of the disease and makes the prospects for the development of effective and rational treatment regimens very vague. Cautious optimism is caused only by attempts at relatively specific treatment with ganaxolone.


Subject(s)
Epilepsy , Polypharmacy , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/drug therapy , Brain , Cadherins/genetics , Epilepsy/drug therapy , Epilepsy/genetics , Mutation , Protocadherins
14.
BMC Cardiovasc Disord ; 24(1): 431, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39148029

ABSTRACT

BACKGROUND: Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis (AS). Endothelial mesenchymal transition (EndMT) refers to the process in which endothelial cells lose endothelial cell morphology and characteristic gene expression, and acquire phenotypic characteristics and gene expression related to mesenchymal cells. Numerous studies have confirmed that EndMT is involved in the formation of atherosclerosis. Catalpol is one of the active components of Rehmannia, which has antioxidant, anti-inflammatory, anti-tumor, neuroprotective and other biological activities. Studies have shown that catalpol can reduce atherosclerotic plaque induced by high sugar or fat. However, the effect of catalpol on HHCY-induced EndMT is unclear. METHODS AND RESULTS: In vitro HHcy-treated primary human umbilical vein endothelial cells (HUVECs) were used to construct a cell model, and the antioxidants N-acetylcysteine (NAC) and catalase alcohol were administered. In vivo C57BL/6N mice were given a diet fed with 4.4% high methionine chow to construct a HHcy mice model and were treated with catalpol. The results showed that hhcy could induce morphological transformation of endothelial cells into mesenchymal cells, increase intracellular ROS content, up-regulate α-SMA, N-cadherin, p-p65 protein expression, down-regulate VE-cadherin, CD31 protein expression, induce pathological changes of aortic root endothelium, and increase aortic endothelial ROS content. Catalpol reversed these hhcy induced outcomes. CONCLUSIONS: Catalpol inhibits HHcy-induced EndMT, and the underlying mechanism may be related to the ROS/NF-κB signaling pathway. Catalpol may be a potential drug for the treatment of HHcy-related AS.


Subject(s)
Atherosclerosis , Endothelial-Mesenchymal Transition , Hyperhomocysteinemia , Iridoid Glucosides , NF-kappa B , Reactive Oxygen Species , Animals , Humans , Antigens, CD/metabolism , Antioxidants/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/etiology , Atherosclerosis/pathology , Cadherins/metabolism , Cells, Cultured , Disease Models, Animal , Endothelial-Mesenchymal Transition/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/pathology , Hyperhomocysteinemia/drug therapy , Hyperhomocysteinemia/metabolism , Hyperhomocysteinemia/complications , Iridoid Glucosides/pharmacology , Iridoid Glucosides/therapeutic use , Mice, Inbred C57BL , NF-kappa B/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Mice
15.
Cell Mol Life Sci ; 81(1): 333, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112663

ABSTRACT

Synaptic dysfunction is an early pathogenic event leading to cognitive decline in Huntington's disease (HD). We previously reported that the active ADAM10 level is increased in the HD cortex and striatum, causing excessive proteolysis of the synaptic cell adhesion protein N-Cadherin. Conversely, ADAM10 inhibition is neuroprotective and prevents cognitive decline in HD mice. Although the breakdown of cortico-striatal connection has been historically linked to cognitive deterioration in HD, dendritic spine loss and long-term potentiation (LTP) defects identified in the HD hippocampus are also thought to contribute to the cognitive symptoms of the disease. The aim of this study is to investigate the contribution of ADAM10 to spine pathology and LTP defects of the HD hippocampus. We provide evidence that active ADAM10 is increased in the hippocampus of two mouse models of HD, leading to extensive proteolysis of N-Cadherin, which has a widely recognized role in spine morphology and synaptic plasticity. Importantly, the conditional heterozygous deletion of ADAM10 in the forebrain of HD mice resulted in the recovery of spine loss and ultrastructural synaptic defects in CA1 pyramidal neurons. Meanwhile, normalization of the active ADAM10 level increased the pool of synaptic BDNF protein and activated ERK neuroprotective signaling in the HD hippocampus. We also show that the ADAM10 inhibitor GI254023X restored LTP defects and increased the density of mushroom spines enriched with GluA1-AMPA receptors in HD hippocampal neurons. Notably, we report that administration of the TrkB antagonist ANA12 to HD hippocampal neurons reduced the beneficial effect of GI254023X, indicating that the BDNF receptor TrkB contributes to mediate the neuroprotective activity exerted by ADAM10 inhibition in HD. Collectively, these findings indicate that ADAM10 inhibition coupled with TrkB signaling represents an efficacious strategy to prevent hippocampal synaptic plasticity defects and cognitive dysfunction in HD.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Hippocampus , Huntington Disease , Long-Term Potentiation , Membrane Proteins , Receptor, trkB , Signal Transduction , Animals , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Mice , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Hippocampus/metabolism , Hippocampus/pathology , Receptor, trkB/metabolism , Receptor, trkB/antagonists & inhibitors , Long-Term Potentiation/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Cadherins/metabolism , Dendritic Spines/metabolism , Dendritic Spines/pathology , Neuroprotection , Male , Mice, Inbred C57BL , Neuronal Plasticity , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Mice, Knockout
16.
Nat Cardiovasc Res ; 3(7): 799-818, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39196173

ABSTRACT

Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension arising from EIF2AK4 gene mutations or mitomycin C (MMC) administration. The lack of effective PVOD therapies is compounded by a limited understanding of the mechanisms driving vascular remodeling in PVOD. Here we show that administration of MMC in rats mediates activation of protein kinase R (PKR) and the integrated stress response (ISR), which leads to the release of the endothelial adhesion molecule vascular endothelial (VE) cadherin (VE-Cad) in complex with RAD51 to the circulation, disruption of endothelial barrier and vascular remodeling. Pharmacological inhibition of PKR or ISR attenuates VE-Cad depletion, elevation of vascular permeability and vascular remodeling instigated by MMC, suggesting potential clinical intervention for PVOD. Finally, the severity of PVOD phenotypes was increased by a heterozygous BMPR2 mutation that truncates the carboxyl tail of the receptor BMPR2, underscoring the role of deregulated bone morphogenetic protein signaling in the development of PVOD.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II , Disease Models, Animal , Phenotype , Pulmonary Veno-Occlusive Disease , Animals , Pulmonary Veno-Occlusive Disease/genetics , Pulmonary Veno-Occlusive Disease/drug therapy , Pulmonary Veno-Occlusive Disease/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Vascular Remodeling/drug effects , Cadherins/genetics , Cadherins/metabolism , Humans , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Rats, Sprague-Dawley , Signal Transduction/drug effects , Mutation , Capillary Permeability/drug effects , Rats , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 987-992, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39192387

ABSTRACT

OBJECTIVE: To investigate the changes in serum homeobox A9 (HOXA9 ), soluble E-cadherin (SE-CAD) and type Ⅲ procollagen (PCⅢ) levels in acute myeloid leukemia (AML) patients after chemotherapy with DCAG regimen and their relationship with prognosis. METHODS: The clinical data of 80 patients with relapsed/refractory AML diagnosed and treated in our hospital from March 2018 to December 2021 were retrospectively analyzed. According to different treatment regimen, the patients were divided into DCAG group (n=40) and CAG group (n=40). The clinical efficacy and changes of HOXA9 , SE-CAD and PCⅢ levels before and after treatment were compared. In addition, all patients were divided into remission group (n=58) and non-remission group (n=22) according to the clinical efficacy. Univariate and multivariate analyses were performed to analyze the risk factors affecting the prognosis of AML patients. The predictive efficacy of the three single indicators, HOXA9 , SE-CAD, and PC III, and their combination on prognosis was analyzed. RESULTS: Compared with before treatment, the levels of HOXA9 , SE-CAD and PCⅢ in both the DCAG and CAG groups were decreased after treatment, and the improvement of each indicator and the clinical efficacy in the DCAG group were significantly better than those in the CAG group (all P < 0.05). Multivariate analysis showed that increased bone marrow blast count, HOXA9 mRNA, SE-CAD and PCⅢ levels were independent risk factors affecting the efficacy of chemotherapy in AML patients (all P < 0.05). ROC curves showed that the combination of HOXA9 mRNA, SE-CAD and PCIII could effectively predict the prognosis of AML patients, with a sensitivity of 84.80% and a specificity of 88.20%. CONCLUSION: DCAG regimen can significantly improve the levels of HOXA9 mRNA, SE-CAD and PCⅢ in AML patients, these three indicators are all independent risk factors affecting the prognosis of AML patients, and the combination of the three indicators can effectively predict the prognosis of the patients.


Subject(s)
Cadherins , Homeodomain Proteins , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Prognosis , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Male , Female
18.
Sci Rep ; 14(1): 19560, 2024 08 22.
Article in English | MEDLINE | ID: mdl-39174579

ABSTRACT

Three-dimensional (3D) bioprinting culture models capable of reproducing the pathological architecture of diseases are increasingly advancing. In this study, 3D scaffolds were created using extrusion-based bioprinting method with alginate, gelatin, and hyaluronic acid to investigate the effects of hyaluronic acid on the physical properties of the bioscaffold as well as on the formation of liver cancer spheroids. Conformational analysis, rheological characterization, and swelling-degradation tests were performed to characterize the scaffolds. After generating spheroids from hepatocellular carcinoma cells on the 3D scaffolds, cell viability and proliferation assays were performed. Flow cytometry and immunofluorescence microscopy were used into examine the expression of albumin, CD44, and E-cadherin to demonstrate functional capability and maturation levels of the spheroid-forming cells. The results show that hyaluronic acid in the scaffolds correlates with spheroid formation and provides high survival rates. It is also associated with an increase in CD44 expression and a decrease in E-cadherin, while there is no significant change in the albumin expression in the cells. Overall, the findings demonstrate that hyaluronic acid in a 3D hydrogel scaffold supports spheroid formation and may induce stemness. We present a promising 3D scaffold model for enhancing liver cancer spheroid formation and mimicking solid tumors. This model also has the potential for further studies to examine stem cell properties in 3D models.


Subject(s)
Hyaluronan Receptors , Hyaluronic Acid , Neoplastic Stem Cells , Spheroids, Cellular , Tissue Scaffolds , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Humans , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Tissue Scaffolds/chemistry , Hyaluronan Receptors/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Survival/drug effects , Cadherins/metabolism , Cell Proliferation/drug effects , Bioprinting/methods , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology
19.
ACS Nano ; 18(34): 23637-23654, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39150223

ABSTRACT

During the metastatic cascade, cancer cells travel through the bloodstream as circulating tumor cells (CTCs) to a secondary site. Clustered CTCs have greater shear stress and treatment resistance, yet their biology remains poorly understood. We therefore engineered a tunable superhydrophobic array device (SHArD). The SHArD-C was applied to culture a clinically relevant model of CTC clusters. Using our device, we cultured a model of cancer cell aggregates of various sizes with immortalized cancer cell lines. These exhibited higher E-cadherin expression and are significantly more capable of surviving high fluid shear stress-related forces compared to single cells and model clusters grown using the control method, helping to explain why clustering may provide a metastatic advantage. Additionally, the SHArD-S, when compared with the AggreWell 800 method, provides a more consistent spheroid-forming device culturing reproducible sizes of spheroids for multiple cancer cell lines. Overall, we designed, fabricated, and validated an easily tunable engineered device which grows physiologically relevant three-dimensional (3D) cancer models containing tens to thousands of cells.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , Cell Line, Tumor , Cell Culture Techniques/instrumentation , Cadherins/metabolism
20.
J Pharmacol Sci ; 156(2): 49-56, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39179334

ABSTRACT

The need for novel anti-thyroid cancer (TC) medications is urgent due to the rising incidence and metastatic rates of malignant TC. In this study, we investigated the effect of Polyphyllin VII (PPVII) to TC cells, and explored their potential mechanism. B-CPAP and TPC-1 cells, were used to analyze the antitumor activity of PPVII by quantifying cell growth and metastasis as well as to study the effect on epithelial mesenchymal transition (EMT). The results showed that PPVII dramatically reduced the capacity of B-CPAP and TPC-1 cells to proliferate and migrate in a dose-response manner. Following PPVII treatment of TC cells, the expression levels of E-cadherin progressively increased and were higher than the control group, while the expression levels of EMT-related genes Vimentin, N-cadherin, Slug, Zeb-1, and Foxe1 gradually declined and were lower than the control group. It was proposed that PPVII might prevent TC from undergoing EMT. The Foxe1 gene was shown to be significantly expressed in TC, and a statistically significant variation in Foxe1 expression was observed across clinical stages of the disease, according to a bioinformatics database study. There was a strong link between the expression of the Foxe1 gene and the EMT-related gene. In the meantime, TC cells' expression of Foxe1 can be inhibited by PPVII. In conclusion, our results showed that PPVII may as a potential medication for targeting EMT in thyroid cancer.


Subject(s)
Cadherins , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Saponins , Thyroid Neoplasms , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Humans , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Cell Proliferation/drug effects , Cadherins/metabolism , Cadherins/genetics , Saponins/pharmacology , Saponins/therapeutic use , Cell Line, Tumor , Cell Movement/drug effects , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Dose-Response Relationship, Drug , Gene Expression/drug effects , Molecular Targeted Therapy , Antineoplastic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL