Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.418
Filter
1.
ACS Appl Mater Interfaces ; 16(28): 37007-37016, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953613

ABSTRACT

Osteoblasts and osteoclasts are two of the most important types of cells in bone repair, and their bone-forming and bone-resorbing activities influence the process of bone repair. In this study, we proposed a physicochemical bidirectional regulation strategy via ration by physically utilizing hydroxyapatite nanopatterning to recruit and induce MSCs osteogenic differentiation and by chemically inhibiting osteolysis activity through the loaded zoledronate. The nanorod-like hydroxyapatite coating was fabricated via a modified hydrothermal process while the zoledronic acid was loaded through the chelation within the calcium ions. The fabrication of a hydroxyapatite/zoledronic acid composite biomaterial. This biomaterial promotes bone tissue regeneration by physically utilizing hydroxyapatite nanopatterning to recruit and induce MSCs osteogenic differentiation and by chemically inhibiting osteolysis activity through the loaded zoledronate. The nanorod-like hydroxyapatite coating was fabricated via a modified hydrothermal process while the zoledronic acid was loaded through the chelation within the calcium ions. The in vitro results tested on MSCs and RAW 246.7 indicated that the hydroxyapatite enhanced cells' physical sensing system, therefore enhancing the osteogenesis. At the same time the zoledronic acid inhibited osteolysis by downregulating the RANK-related genes. This research provides a promising strategy for enhancing bone regeneration and contributes to the field of orthopedic implants.


Subject(s)
Bone Regeneration , Calcium Phosphates , Mesenchymal Stem Cells , Osteogenesis , Printing, Three-Dimensional , Zoledronic Acid , Bone Regeneration/drug effects , Animals , Osteogenesis/drug effects , Mice , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Zoledronic Acid/pharmacology , Zoledronic Acid/chemistry , Osteolysis/drug therapy , Durapatite/chemistry , Durapatite/pharmacology , Cell Differentiation/drug effects , RAW 264.7 Cells
2.
ACS Appl Mater Interfaces ; 16(28): 35964-35984, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968558

ABSTRACT

Developing a neurovascular bone repair scaffold with an appropriate mechanical strength remains a challenge. Calcium phosphate (CaP) is similar to human bone, but its scaffolds are inherently brittle and inactive, which require recombination with active ions and polymers for bioactivity and suitable strength. This work discussed the synthesis of amorphous magnesium-calcium pyrophosphate (AMCP) and the subsequent development of a humidity-responsive AMCP/cassava starch (CS) scaffold. The scaffold demonstrated enhanced mechanical properties by strengthening the intermolecular hydrogen bonds and ionic bonds between AMCP and CS during the gelatinization and freeze-thawing processes. The release of active ions was rapid initially and stabilized into a long-term stable release after 3 days, which is well-matched with new bone growth. The release of pyrophosphate ions endowed the scaffold with antibacterial properties. At the cellular level, the released active ions simultaneously promoted the proliferation and mineralization of osteoblasts, the proliferation and migration of endothelial cells, and the proliferation of Schwann cells. At the animal level, the scaffold was demonstrated to promote vascular growth and peripheral nerve regeneration in a rat skull defect experiment, ultimately resulting in the significant and rapid repair of bone defects. The construction of the AMCP/CS scaffold offers practical suggestions and references for neurovascular bone repair.


Subject(s)
Bone Regeneration , Starch , Tissue Scaffolds , Animals , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Rats , Starch/chemistry , Humidity , Humans , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Diphosphates/chemistry , Diphosphates/pharmacology , Osteoblasts/drug effects , Osteoblasts/cytology , Calcium Pyrophosphate/chemistry , Calcium Pyrophosphate/pharmacology , Schwann Cells/drug effects , Schwann Cells/cytology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Skull/drug effects
3.
J Nanobiotechnology ; 22(1): 407, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987801

ABSTRACT

Segmental bone defects, arising from factors such as trauma, tumor resection, and congenital malformations, present significant clinical challenges that often necessitate complex reconstruction strategies. Hydrogels loaded with multiple osteogenesis-promoting components have emerged as promising tools for bone defect repair. While the osteogenic potential of the Piezo1 agonist Yoda1 has been demonstrated previously, its hydrophobic nature poses challenges for effective loading onto hydrogel matrices.In this study, we address this challenge by employing Yoda1-pretreated bone marrow-derived mesenchymal stem cell (BMSCs) exosomes (Exo-Yoda1) alongside exosomes derived from BMSCs (Exo-MSC). Comparatively, Exo-Yoda1-treated BMSCs exhibited enhanced osteogenic capabilities compared to both control groups and Exo-MSC-treated counterparts. Notably, Exo-Yoda1-treated cells demonstrated similar functionality to Yoda1 itself. Transcriptome analysis revealed activation of osteogenesis-associated signaling pathways, indicating the potential transduction of Yoda1-mediated signals such as ErK, a finding validated in this study. Furthermore, we successfully integrated Exo-Yoda1 into gelatin methacryloyl (GelMA)/methacrylated sodium alginate (SAMA)/ß-tricalcium phosphate (ß-TCP) hydrogels. These Exo-Yoda1-loaded hydrogels demonstrated augmented osteogenesis in subcutaneous ectopic osteogenesis nude mice models and in rat skull bone defect model. In conclusion, our study introduces Exo-Yoda1-loaded GELMA/SAMA/ß-TCP hydrogels as a promising approach to promoting osteogenesis. This innovative strategy holds significant promise for future widespread clinical applications in the realm of bone defect reconstruction.


Subject(s)
Exosomes , Hydrogels , Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/drug effects , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Hydrogels/chemistry , Mice , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Rats , Male , Alginates/chemistry , Gelatin/chemistry , Cell Differentiation/drug effects , Bone Regeneration/drug effects , Cells, Cultured
4.
BMC Biotechnol ; 24(1): 48, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982413

ABSTRACT

BACKGROUND: Enamelin is an enamel matrix protein that plays an essential role in the formation of enamel, the most mineralized tissue in the human body. Previous studies using animal models and proteins from natural sources point to a key role of enamelin in promoting mineralization events during enamel formation. However, natural sources of enamelin are scarce and with the current study we therefore aimed to establish a simple microbial production method for recombinant human enamelin to support its use as a mineralization agent. RESULTS: In the study the 32 kDa fragment of human enamelin was successfully expressed in Escherichia coli and could be obtained using immobilized metal ion affinity chromatography purification (IMAC), dialysis, and lyophilization. This workflow resulted in a yield of approximately 10 mg enamelin per liter culture. Optimal conditions for IMAC purification were obtained using Ni2+ as the metal ion, and when including 30 mM imidazole during binding and washing steps. Furthermore, in vitro mineralization assays demonstrated that the recombinant enamelin could promote calcium phosphate mineralization at a concentration of 0.5 mg/ml. CONCLUSIONS: These findings address the scarcity of enamelin by facilitating its accessibility for further investigations into the mechanism of enamel formation and open new avenues for developing enamel-inspired mineralized biomaterials.


Subject(s)
Dental Enamel Proteins , Escherichia coli , Recombinant Proteins , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Dental Enamel Proteins/metabolism , Dental Enamel Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Chromatography, Affinity , Calcium Phosphates/metabolism , Calcium Phosphates/chemistry
5.
J Agric Food Chem ; 72(28): 15523-15529, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38963614

ABSTRACT

The eggshell is a composite and highly ordered structure formed by biomineralization. Besides other functions, it has a vital and intricate role in the protection of an embryo from various potentially harsh environmental conditions. Solid-state nuclear magnetic resonance (SSNMR) has been used for detailed structural investigations of the chicken, tinamou, and flamingo eggshell materials. 31P NMR spectra reveal that hydroxyapatite and ß-tricalcium phosphate in the ratio 3:2 represent major constituents of phosphate species in the eggshells. All three eggshells exhibit similar spectra, except for the line widths, which implies different structural order of phosphate species in the chicken, tinamou, and flamingo eggshells. 1H NMR spectra for these materials are comparable, differentiating overlapped peaks in three spectral regions at around 7, 4-5, and 1-2 ppm. These spectral regions have been attributed to protons from NH or CaHCO3, water, and possibly isolated monomeric water molecules or hydroxyl groups in calcium-deficient hydroxyapatite. 1H-13C CP MAS NMR revealed the presence of organic matter in the form of lipids and proteins. Two overlapped resonances in the carbonyl region at around 173 and 169 ppm are assigned to the carbonyls of the peptide bonds and the bicarbonate unit in calcite, respectively. Fourier-transform infrared spectroscopy (FTIR) spectra confirmed the presence of structural units detected in the NMR spectra.


Subject(s)
Chickens , Egg Shell , Magnetic Resonance Spectroscopy , Animals , Egg Shell/chemistry , Magnetic Resonance Spectroscopy/methods , Durapatite/chemistry , Birds , Calcium Phosphates/chemistry
6.
Biotechnol J ; 19(7): e2300751, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987220

ABSTRACT

The compatibility of bone graft substitutes (BGS) with mesenchymal stem cells (MSCs) is an important parameter to consider for their use in repairing bone defects as it eventually affects the clinical outcome. In the present study, a few commercially available BGS - ß-tricalcium phosphate (ß-TCP), calcium sulfate, gelatin sponge, and different forms of hydroxyapatite (HAP) were screened for their interactions with MSCs from adipose tissue (ADSCs). It was demonstrated that HAP block favorably supported ADSC viability, morphology, migration, and differentiation compared to other scaffolds. The results strongly suggest the importance of preclinical evaluation of bone scaffolds for their cellular compatibility. Furthermore, the bone regenerative potential of HAP block with ADSCs was evaluated in an ex vivo bone defect model developed using patient derived trabecular bone explants. The explants were cultured for 45 days in vitro and bone formation was assessed by expression of osteogenic genes, ALP secretion, and high resolution computed tomography. Our findings confirmed active bone repair process in ex vivo settings. Addition of ADSCs significantly accelerated the repair process and improved bone microarchitecture. This ex vivo bone defect model can emerge as a viable alternative to animal experimentation and also as a potent tool to evaluate patient specific bone therapeutics under controlled conditions.


Subject(s)
Adipose Tissue , Bone Regeneration , Cell Differentiation , Mesenchymal Stem Cells , Tissue Engineering , Tissue Scaffolds , Humans , Adipose Tissue/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Femur Head , Osteogenesis , Cells, Cultured , Bone Substitutes/chemistry , Durapatite/chemistry , Calcium Phosphates/chemistry
7.
Biomed Mater ; 19(5)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38955344

ABSTRACT

Artificial bone substitutes for bone repair and reconstruction still face enormous challenges. Previous studies have shown that calcium magnesium phosphate cements (CMPCs) possess an excellent bioactive surface, but its clinical application is restricted due to short setting time. This study aimed to develop new CMPC/carboxymethyl chitosan (CMCS) comg of mixed powders of active MgO, calcined MgO and calcium dihydrogen phosphate monohydrate. With this novel strategy, it can adjust the setting time and improve the compressive strength. The results confirmed that CMPC/CMCS composite bone cements were successfully developed with a controllable setting time (18-70 min) and high compressive strength (87 MPa). In addition, the composite bone cements could gradually degrade in PBS with weight loss up to 32% at 28 d. They also promoted the proliferation of pre-osteoblasts, and induced osteogenic differentiation. The findings indicate that CMPC/CMCS composite bone cements hold great promise as a new type of bone repair material in further and in-depth studies.


Subject(s)
Biocompatible Materials , Bone Cements , Calcium Phosphates , Cell Differentiation , Cell Proliferation , Chitosan , Compressive Strength , Magnesium Compounds , Materials Testing , Osteoblasts , Osteogenesis , Chitosan/chemistry , Chitosan/analogs & derivatives , Bone Cements/chemistry , Bone Cements/pharmacology , Osteogenesis/drug effects , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Cell Differentiation/drug effects , Animals , Cell Proliferation/drug effects , Mice , Osteoblasts/drug effects , Osteoblasts/cytology , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Phosphates
8.
Biomed Mater ; 19(5)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38986475

ABSTRACT

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Subject(s)
Biocompatible Materials , Bone Regeneration , Calcium Phosphates , Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells , Osteoblasts , Polyesters , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Zinc Oxide , Tissue Scaffolds/chemistry , Calcium Phosphates/chemistry , Polyesters/chemistry , Bone Regeneration/drug effects , Tissue Engineering/methods , Mesenchymal Stem Cells/cytology , Zinc Oxide/chemistry , Biocompatible Materials/chemistry , Cell Differentiation/drug effects , Osteoblasts/cytology , Osteogenesis/drug effects , Materials Testing , Bone and Bones , Guided Tissue Regeneration/methods , Humans , Animals , Alkaline Phosphatase/metabolism , Elastic Modulus , Porosity , Surface Properties
9.
Int J Nanomedicine ; 19: 6659-6676, 2024.
Article in English | MEDLINE | ID: mdl-38975320

ABSTRACT

Background: Vital pulp therapy (VPT) is considered a conservative treatment for preserving pulp viability in caries and trauma-induced pulpitis. However, Mineral trioxide aggregate (MTA) as the most frequently used repair material, exhibits limited efficacy under inflammatory conditions. This study introduces an innovative nanocomposite hydrogel, tailored to simultaneously target anti-inflammation and dentin mineralization, aiming to efficiently preserve vital pulp tissue. Methods: The L-(CaP-ZnP)/SA nanocomposite hydrogel was designed by combining L-Arginine modified calcium phosphate/zinc phosphate nanoparticles (L-(CaP-ZnP) NPs) with sodium alginate (SA), and was characterized with TEM, SEM, FTIR, EDX, ICP-AES, and Zeta potential. In vitro, we evaluated the cytotoxicity and anti-inflammatory properties. Human dental pulp stem cells (hDPSCs) were cultured with lipopolysaccharide (LPS) to induce an inflammatory response, and the cell odontogenic differentiation was measured and possible signaling pathways were explored by alkaline phosphatase (ALP)/alizarin red S (ARS) staining, qRT-PCR, immunofluorescence staining, and Western blotting, respectively. In vivo, a pulpitis model was utilized to explore the potential of the L-(CaP-ZnP)/SA nanocomposite hydrogel in controlling pulp inflammation and enhancing dentin mineralization by Hematoxylin and eosin (HE) staining and immunohistochemistry staining. Results: In vitro experiments revealed that the nanocomposite hydrogel was synthesized successfully and presented desirable biocompatibility. Under inflammatory conditions, compared to MTA, the L-(CaP-ZnP)/SA nanocomposite hydrogel demonstrated superior anti-inflammatory and pro-odontogenesis effects. Furthermore, the nanocomposite hydrogel significantly augmented p38 phosphorylation, implicating the involvement of the p38 signaling pathway in pulp repair. Significantly, in a rat pulpitis model, the L-(CaP-ZnP)/SA nanocomposite hydrogel downregulated inflammatory markers while upregulating mineralization-related markers, thereby stimulating the formation of robust reparative dentin. Conclusion: The L-(CaP-ZnP)/SA nanocomposite hydrogel with good biocompatibility efficiently promoted inflammation resolution and enhanced dentin mineralization by activating p38 signal pathway, as a pulp-capping material, offering a promising and advanced solution for treatment of pulpitis.


Subject(s)
Alginates , Anti-Inflammatory Agents , Dental Pulp , Hydrogels , Nanocomposites , Dental Pulp/cytology , Dental Pulp/drug effects , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Nanocomposites/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Alginates/chemistry , Alginates/pharmacology , Pulpitis/therapy , Stem Cells/drug effects , Stem Cells/cytology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Silicates/chemistry , Silicates/pharmacology , Rats , Cell Differentiation/drug effects , Calcium Compounds/chemistry , Calcium Compounds/pharmacology , Cells, Cultured , Aluminum Compounds/chemistry , Aluminum Compounds/pharmacology , Arginine/chemistry , Arginine/pharmacology , Rats, Sprague-Dawley , Drug Combinations , Male , Oxides/chemistry , Oxides/pharmacology
10.
Dent Mater ; 40(8): 1282-1295, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871525

ABSTRACT

OBJECTIVE: This review elucidates the mechanisms underpinning intrafibrillar mineralization, examines various amorphous calcium phosphate (ACP) stabilizers employed in dentin's intrafibrillar mineralization, and addresses the challenges encountered in clinical applications of ACP-based bioactive materials. METHODS: The literature search for this review was conducted using three electronic databases: PubMed, Web of Science, and Google Scholar, with specific keywords. Articles were selected based on inclusion and exclusion criteria, allowing for a detailed examination and summary of current research on dentin remineralization facilitated by ACP under the influence of various types of stabilizers. RESULTS: This review underscores the latest advancements in the role of ACP in promoting dentin remineralization, particularly intrafibrillar mineralization, under the regulation of various stabilizers. These stabilizers predominantly comprise non-collagenous proteins, their analogs, and polymers. Despite the diversity of stabilizers, the mechanisms they employ to enhance intrafibrillar remineralization are found to be interrelated, indicating multiple driving forces behind this process. However, challenges remain in effectively designing clinically viable products using stabilized ACP and maximizing intrafibrillar mineralization with limited materials in practical applications. SIGNIFICANCE: The role of ACP in remineralization has gained significant attention in dental research, with substantial progress made in the study of dentin biomimetic mineralization. Given ACP's instability without additives, the presence of ACP stabilizers is crucial for achieving in vitro intrafibrillar mineralization. However, there is a lack of comprehensive and exhaustive reviews on ACP bioactive materials under the regulation of stabilizers. A detailed summary of these stabilizers is also instrumental in better understanding the complex process of intrafibrillar mineralization. Compared to traditional remineralization methods, bioactive materials capable of regulating ACP stability and controlling release demonstrate immense potential in enhancing clinical treatment standards.


Subject(s)
Calcium Phosphates , Dentin , Tooth Remineralization , Tooth Remineralization/methods , Humans , Calcium Phosphates/chemistry , Dentin/drug effects , Biomimetics , Biomimetic Materials/chemistry
11.
ACS Biomater Sci Eng ; 10(7): 4452-4462, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38875708

ABSTRACT

Mg-based biodegradable metallic implants are gaining increased attraction for applications in orthopedics and dentistry. However, their current applications are hampered by their high rate of corrosion, degradation, and rapid release of ions and gas bubbles into the physiological medium. The aim of the present study is to investigate the osteogenic and angiogenic potential of coated Mg-based implants in a sheep cranial defect model. Although their osteogenic potential was studied to some extent, their potential to regenerate vascularized bone formation was not studied in detail. We have studied the potential of magnesium-calcium (MgCa)-based alloys modified with zinc (Zn)- or gallium (Ga)-doped calcium phosphate (CaP) coatings as a strategy to control their degradation rate while enhancing bone regeneration capacity. MgCa and its implants with CaP coatings (MgCa/CaP) as undoped or as doped with Zn or Ga (MgCa/CaP + Zn and MgCa/CaP + Ga, respectively) were implanted in bone defects created in the sheep cranium. MgCa implants degraded faster than the others at 4 weeks postop and the weight loss was ca. 50%, while it was ca. 15% for MgCa/CaP and <10% in the presence of Zn and Ga with CaP coating. Scanning electron microscopy (SEM) analysis of the implant surfaces also revealed that the MgCa implants had the largest degree of structural breakdown of all the groups. Radiological evaluation revealed that surface modification with CaP to the MgCa implants induced better bone regeneration within the defects as well as the enhancement of bone-implant surface integration. Bone volume (%) within the defect was ca. 25% in the case of MgCa/CaP + Ga, while it was around 15% for undoped MgCa group upon micro-CT evaluation. This >1.5-fold increase in bone regeneration for MgCa/CaP + Ga implant was also observed in the histopathological examination of the H&E- and Masson's trichrome-stained sections. Immunohistochemical analysis of the bone regeneration (antiosteopontin) and neovascularization (anti-CD31) at the defect sites revealed >2-fold increase in the expression of the markers in both Ga- and Zn-doped, CaP-coated implants. Zn-doped implants further presented low inflammatory reaction, notable bone regeneration, and neovascularization among all the implant groups. These findings indicated that Ga- and Zn-doped CaP coating is an important strategy to control the degradation rate as well as to achieve enhanced bone regeneration capacity of the implants made of Mg-based alloys.


Subject(s)
Alloys , Calcium Phosphates , Coated Materials, Biocompatible , Gallium , Magnesium , Osteogenesis , Skull , Zinc , Animals , Zinc/chemistry , Zinc/pharmacology , Sheep , Skull/drug effects , Skull/pathology , Skull/injuries , Osteogenesis/drug effects , Magnesium/pharmacology , Gallium/chemistry , Gallium/pharmacology , Alloys/chemistry , Alloys/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Bone Regeneration/drug effects , Calcium/metabolism , Absorbable Implants
12.
Biomed Res ; 45(3): 103-113, 2024.
Article in English | MEDLINE | ID: mdl-38839353

ABSTRACT

Kidney stone disease is a serious disease due to the severe pain it causes, high morbidity, and high recurrence rate. Notably, calcium oxalate stones are the most common type of kidney stone. Calcium oxalate appears in two forms in kidney stones: the stable phase, monohydrate (COM), and the metastable phase, dihydrate (COD). Particularly, COM stones with concentric structures are hard and difficult to treat. However, the factor determining the growth of either COM or COD crystals in the urine, which is supersaturated for both phases, remains unclear. This study shows that calcium phosphate ingredients preferentially induce COM crystal nucleation and growth, by observing and analyzing kidney stones containing both COM and COD crystals. The forms of calcium phosphate are not limited to Randall's plaques (1-2 mm size aggregates, which contain calcium phosphate nanoparticles and proteins, and form in the renal papilla). For example, aggregates of strip-shaped calcium phosphate crystals and fields of dispersed calcium phosphate microcrystals (nano to micrometer order) also promote the growth of concentric COM structures. This suggests that patients who excrete urine with a higher quantity of calcium phosphate crystals may be more prone to forming hard and troublesome COM stones.


Subject(s)
Calcium Oxalate , Calcium Phosphates , Crystallization , Kidney Calculi , Calcium Phosphates/metabolism , Calcium Phosphates/chemistry , Calcium Oxalate/chemistry , Calcium Oxalate/metabolism , Calcium Oxalate/urine , Kidney Calculi/chemistry , Kidney Calculi/metabolism , Humans , Animals
13.
J Biomed Mater Res B Appl Biomater ; 112(6): e35434, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874589

ABSTRACT

Bioactive degradable scaffolds that facilitate bone healing while fighting off initial bacterial infection have the potential to change established strategies of dealing with traumatic bone injuries. To achieve this a composite material made from calcium phosphate graphene (CaPG), and MXene was synthesized. CaPG was created by functionalizing graphene oxide with phosphate groups in the presence of CaBr with a Lewis acid catalyst. Through this transformation, Ca2+ and PO4 3- inducerons are released as the material degrades thereby aiding in the process of osteogenesis. The 2D MXene sheets, which have shown to have antibacterial properties, were made by etching the Al from a layered Ti3AlC2 (MAX phase) using HF. The hot-pressed scaffolds made of these materials were designed to combat the possibility of infection during initial surgery and failure of osteogenesis to occur. These two failure modes account for a large percentage of issues that can arise during the treatment of traumatic bone injuries. These scaffolds were able to retain induceron-eluting properties in various weight percentages and bring about osteogenesis with CaPG alone and 2 wt% MXene scaffolds demonstrating increased osteogenic activity as compared to no treatment. Additionally, added MXene provided antibacterial properties that could be seen at as little as 2 wt%. This CaPG and MXene composite provides a possible avenue for developing osteogenic, antibacterial materials for treating bone injuries.


Subject(s)
Anti-Bacterial Agents , Calcium Phosphates , Graphite , Osteogenesis , Tissue Scaffolds , Titanium , Osteogenesis/drug effects , Graphite/chemistry , Graphite/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Titanium/pharmacology , Tissue Scaffolds/chemistry , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Animals , Humans , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
14.
Int J Biol Macromol ; 272(Pt 1): 132874, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838901

ABSTRACT

Despite its advantages, electrospinning has limited effectiveness in 3D scaffolding due to the high density of fibers it produces. In this research, a novel electrospinning collector was developed to overcome this constraint. An aqueous suspension containing chitosan/polyvinyl alcohol nanofibers was prepared employing a unique falling film collector. Suspension molding by freeze-drying resulted in a 3D nanofibrous scaffold (3D-NF). The mineralized scaffold was obtained by brushite deposition on 3D-NF using wet chemical mineralization by new sodium tripolyphosphate and calcium chloride dihydrate precursors. The 3D-NF was optimized and compared with the conventional electrospun 2D nanofibrous scaffold (2D-NF) and the 3D freeze-dried scaffold (3D-FD). Both minor fibrous and major freeze-dried pore shapes were present in 3D-NFs with sizes of 16.11-24.32 µm and 97.64-234.41 µm, respectively. The scaffolds' porosity increased by 53 % to 73 % compared to 2D-NFs. Besides thermal stability, mineralization improved the 3D-NF's ultimate strength and elastic modulus by 2.2 and 4.7 times, respectively. In vitro cell studies using rat bone marrow mesenchymal cells confirmed cell infiltration up to 290 µm and scaffold biocompatibility. The 3D-NFs given nanofibers and brushite inclusion exhibited considerable osteoinductivity. Therefore, falling film collectors can potentially be applied to prepare 3D-NFs from electrospinning without post-processing.


Subject(s)
Bone and Bones , Chitosan , Mesenchymal Stem Cells , Nanofibers , Polyvinyl Alcohol , Tissue Engineering , Tissue Scaffolds , Polyvinyl Alcohol/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Chitosan/chemistry , Nanofibers/chemistry , Animals , Rats , Mesenchymal Stem Cells/cytology , Porosity , Calcium Phosphates/chemistry , Biocompatible Materials/chemistry
15.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928293

ABSTRACT

Zr-50Ti alloys are promising biomaterials due to their excellent mechanical properties and low magnetic susceptibility. However, Zr-50Ti alloys do not inherently bond well with bone. This study aims to enhance the bioactivity and bonding strength of Zr-50Ti alloys for orthopedic implant materials. Initially, the surface of Zr-50Ti alloys was treated with a sulfuric acid solution to create a microporous structure, increasing surface roughness and area. Subsequently, low crystalline calcium phosphate (L-CaP) precipitation was controlled by adding Mg2+ and/or CO32- ions in modified simulated body fluid (m-SBF). The treated Zr-50Ti alloys were then subjected to cold isostatic pressing to force m-SBF into the micropores, followed by incubation to allow L-CaP formation. The apatite-forming process was tested in simulated body fluid (SBF). The results demonstrated that the incorporation of Mg2+ and/or CO32- ions enabled the L-CaP to cover the entire surface of Zr-50Ti alloys within only one day. After short-term soaking in SBF, the L-CaP layer, modulated by Mg2+ and/or CO32- ions, formed a uniform hydroxyapatite (HA) coating on the surface of the Zr-50Ti alloys, showing potential for optimized bone integration. After soaking in SBF for 14 days, the bonding strength between the apatite layer and alloy has the potential to meet the orthopedic application requirement of 22 MPa. This study demonstrates an effective method to enhance the bioactivity and bonding strength of Zr-50Ti alloys for orthopedic applications.


Subject(s)
Alloys , Body Fluids , Calcium Phosphates , Surface Properties , Zirconium , Alloys/chemistry , Zirconium/chemistry , Body Fluids/chemistry , Calcium Phosphates/chemistry , Titanium/chemistry , Biocompatible Materials/chemistry , Materials Testing , Magnesium/chemistry , Durapatite/chemistry
16.
Int J Pharm ; 660: 124331, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38866083

ABSTRACT

The present work reports the adsorption, release, antibacterial properties, and in vitro cytotoxicity of sodium fusidate (SF) associated with a carbonated calcium phosphate bone cement. The adsorption study of SF on cement powder compared to stoichiometric hydroxyapatite and nanocrystalline carbonated apatite was investigated to understand the interaction between this antibiotic and the calcium phosphate phases involved in the cement formulation and setting reaction. The adsorption data revealed a fast kinetic process. However, the evolution of the amount of adsorbed SF was well described by a Freundlich-type isotherm characterized by a low adsorption capacity of the materials toward the SF molecule. The in vitro release results indicated a prolonged and controlled SF release for up to 34 days. The SF amounts eluted daily were at a therapeutic level (0.5-2 mg/L) and close to the antibiotic minimum inhibitory concentration (0.1-0.9 mg/L). Furthermore, the release data fitting and modeling suggested that the drug release occurred mainly by a diffusion mechanism. The antibacterial activity showed the effectiveness of SF released from the formulated cements against Staphylococcus aureus. Furthermore, the biological in vitro study demonstrated that the tested cements didn't show any cytotoxicity towards human peripheral blood mononuclear cells and did not significantly induce inflammation markers like IL-8.


Subject(s)
Anti-Bacterial Agents , Bone Cements , Calcium Phosphates , Drug Liberation , Fusidic Acid , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/toxicity , Humans , Staphylococcus aureus/drug effects , Calcium Phosphates/chemistry , Bone Cements/chemistry , Bone Cements/pharmacology , Adsorption , Fusidic Acid/pharmacology , Fusidic Acid/chemistry , Fusidic Acid/administration & dosage , Cell Survival/drug effects , Microbial Sensitivity Tests , Leukocytes, Mononuclear/drug effects , Kinetics
17.
Food Res Int ; 190: 114587, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945567

ABSTRACT

The effect of 90, 180 and 270 mEq/kg of the calcium sequestering salts (CSS) disodium phosphate (DSP), trisodium citrate (TSC) and sodium hexametaphosphate (SHMP) on the solubilisation of proteins and minerals and the rheological and textural properties of processed cheese (PC) prepared from Gouda cheese ripened for 30-150 d at 8°C was studied. The solubilisation of individual caseins and Ca and the maximum loss tangent during temperature sweeps of PC made from Gouda cheese increased, while hardness of PC decreased with ripening duration of the Gouda cheese. Levels of soluble Ca in PC increased with increasing concentration of TSC and SHMP, but decreased with increasing concentration of DSP. The solubilisation of casein and Ca due to ripening of Gouda cheese used for manufacturing PC could explain the changes in texture and loss tangent of PC. The results suggest that DSP, TSC or SHMP in PC formulation can form insoluble Ca-phosphate, soluble Ca-citrate or insoluble casein-Ca-HMP complexes, respectively, that influence casein solubilisation differently and together with levels of residual intact casein determine the functional attributes of PC.


Subject(s)
Caseins , Cheese , Food Handling , Rheology , Solubility , Cheese/analysis , Food Handling/methods , Caseins/chemistry , Citrates/chemistry , Calcium/analysis , Calcium/chemistry , Phosphates/analysis , Phosphates/chemistry , Hardness , Time Factors , Calcium Phosphates/chemistry , Calcium Phosphates/analysis
18.
AAPS PharmSciTech ; 25(6): 147, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937406

ABSTRACT

Only few excipients are known to be suitable as pelletization aids. In this study, the potential use of croscarmellose sodium (CCS) as pelletization aid was investigated. Furthermore, the impact of cations on extrusion-spheronization (ES) of CCS was studied and different grades of CCS were tested. The influence of different cations on the swelling of CCS was investigated by laser diffraction. Mixtures of CCS with lactose monohydrate as filler with or without the inclusion of different cations were produced. The mixtures were investigated by mixer torque rheometry and consequently extruded and spheronized. Resulting pellets were analyzed by dynamic image analysis. In addition, mixtures of different CCS grades with dibasic calcium phosphate anhydrous (DP) and a mixture with praziquantel (PZQ) as filler were investigated. Calcium and magnesium cations caused a decrease of the swelling of CCS and influenced the use of CCS as pelletization aid since they needed to be included for successful ES. Aluminum, however, led to an aggregation of the CCS particles and to failure of extrusion. The inclusion of cations decreased the uptake of water by the mixtures which also reduced the liquid-to-solid-ratio (L/S) for successful ES. This was shown to be dependent on the amount of divalent cations in the mixture. With DP or PZQ as filler, no addition of cations was necessary for a successful production of pellets, however the optimal L/S for ES was dependent on the CCS grade used. In conclusion, CCS can be used as a pelletization aid.


Subject(s)
Excipients , Particle Size , Excipients/chemistry , Drug Compounding/methods , Calcium Phosphates/chemistry , Lactose/chemistry , Chemistry, Pharmaceutical/methods , Cations/chemistry , Praziquantel/chemistry , Magnesium/chemistry
19.
J Nanobiotechnology ; 22(1): 368, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918787

ABSTRACT

Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair.


Subject(s)
Bone Cements , Calcitonin Gene-Related Peptide , Calcium Phosphates , Osteogenesis , Swine, Miniature , Animals , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Bone Cements/pharmacology , Bone Cements/chemistry , Mice , Swine , Calcitonin Gene-Related Peptide/metabolism , Osteogenesis/drug effects , Bone Regeneration/drug effects , Spine/surgery , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Cell Line , Magnesium/pharmacology , Magnesium/chemistry
20.
Chemosphere ; 361: 142544, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844100

ABSTRACT

Nuclear energy is playing an increasingly important role on the earth, but the nuclear plants leaves a legacy of radioactive waste pollution, especially uranium-containing pollution. Straw biochar with wide sources, large output, low cost, and easy availability, has emerged as a promising material for uranium extraction from radioactive wastewater, but the natural biomass with suboptimal structure and low content of functional groups limits the efficiency. In this work, microbial etch was first came up to regulate the biochar's structure and function. The surface of the biochar becomes rougher and more microporous, and the mineral contents (Ca, P) indirectly increased by microbial etch. The biochar was modified by calcium phosphate and exhibited a remarkable uranium extraction capacity of 590.8 mg g-1 (fitted value). This work provides a cost-effective and sustainable method for preparing functionalized biochar via microbial etch, which has potential for application to uranium extraction from radioactive wastewater.


Subject(s)
Charcoal , Uranium , Wastewater , Charcoal/chemistry , Uranium/chemistry , Wastewater/chemistry , Radioactive Waste/analysis , Water Pollutants, Radioactive , Calcium Phosphates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL