Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.243
Filter
1.
FASEB J ; 38(13): e23737, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38953724

ABSTRACT

Meningiomas are the most common primary intracranial tumors and account for nearly 30% of all nervous system tumors. Approximately half of meningioma patients exhibit neurofibromin 2 (NF2) gene inactivation. Here, NF2 was shown to interact with the endoplasmic reticulum (ER) calcium (Ca2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in IOMM-Lee, a high-grade malignant meningioma cell line, and the F1 subdomain of NF2 plays a critical role in this interaction. Functional assays indicated that NF2 promotes the phosphorylation of IP3R (Ser 1756) and IP3R-mediated endoplasmic reticulum (ER) Ca2+ release by binding to IP3R1, which results in Ca2+-dependent apoptosis. Knockout of NF2 decreased Ca2+ release and promoted resistance to apoptosis, which was rescued by wild-type NF2 overexpression but not by F1 subdomain deletion truncation overexpression. The effects of NF2 defects on the development of tumors were further studied in mouse models. The decreased expression level of NF2 caused by NF2 gene knockout or mutation affects the activity of the IP3R channel, which reduces Ca2+-dependent apoptosis, thereby promoting the development of tumors. We elucidated the interaction patterns of NF2 and IP3R1, revealed the molecular mechanism through which NF2 regulates IP3R1-mediated Ca2+ release, and elucidated the new pathogenic mechanism of meningioma-related NF2 variants. Our study broadens the current understanding of the biological function of NF2 and provides ideas for drug screening of NF2-associated meningioma.


Subject(s)
Apoptosis , Calcium Signaling , Calcium , Inositol 1,4,5-Trisphosphate Receptors , Meningeal Neoplasms , Meningioma , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Meningioma/metabolism , Meningioma/pathology , Meningioma/genetics , Humans , Animals , Mice , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/genetics , Calcium/metabolism , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Male , Neurofibromin 2
2.
Nat Commun ; 15(1): 5521, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951553

ABSTRACT

The microgeometry of the cellular microenvironment profoundly impacts cellular behaviors, yet the link between it and the ubiquitously expressed mechanosensitive ion channel PIEZO1 remains unclear. Herein, we describe a fluorescent micropipette aspiration assay that allows for simultaneous visualization of intracellular calcium dynamics and cytoskeletal architecture in real-time, under varied micropipette geometries. By integrating elastic shell finite element analysis with fluorescent lifetime imaging microscopy and employing PIEZO1-specific transgenic red blood cells and HEK cell lines, we demonstrate a direct correlation between the microscale geometry of aspiration and PIEZO1-mediated calcium signaling. We reveal that increased micropipette tip angles and physical constrictions lead to a significant reorganization of F-actin, accumulation at the aspirated cell neck, and subsequently amplify the tension stress at the dome of the cell to induce more PIEZO1's activity. Disruption of the F-actin network or inhibition of its mobility leads to a notable decline in PIEZO1 mediated calcium influx, underscoring its critical role in cellular mechanosensing amidst geometrical constraints.


Subject(s)
Actins , Calcium , Cytoskeleton , Ion Channels , Mechanotransduction, Cellular , Humans , Ion Channels/metabolism , Actins/metabolism , HEK293 Cells , Cytoskeleton/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Finite Element Analysis , Animals , Microscopy, Fluorescence/methods
3.
Sci Rep ; 14(1): 15422, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965264

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is an inherited disorder characterized by left ventricular hypertrophy and diastolic dysfunction, and increases the risk of arrhythmias and heart failure. Some patients with HCM develop a dilated phase of hypertrophic cardiomyopathy (D-HCM) and have poor prognosis; however, its pathogenesis is unclear and few pathological models exist. This study established disease-specific human induced pluripotent stem cells (iPSCs) from a patient with D-HCM harboring a mutation in MYBPC3 (c.1377delC), a common causative gene of HCM, and investigated the associated pathophysiological mechanisms using disease-specific iPSC-derived cardiomyocytes (iPSC-CMs). We confirmed the expression of pluripotent markers and the ability to differentiate into three germ layers in D-HCM patient-derived iPSCs (D-HCM iPSCs). D-HCM iPSC-CMs exhibited disrupted myocardial sarcomere structures and an increased number of damaged mitochondria. Ca2+ imaging showed increased abnormal Ca2+ signaling and prolonged decay time in D-HCM iPSC-CMs. Cell metabolic analysis revealed increased basal respiration, maximal respiration, and spare-respiratory capacity in D-HCM iPSC-CMs. RNA sequencing also showed an increased expression of mitochondrial electron transport system-related genes. D-HCM iPSC-CMs showed abnormal Ca2+ handling and hypermetabolic state, similar to that previously reported for HCM patient-derived iPSC-CMs. Although further studies are required, this is expected to be a useful pathological model for D-HCM.


Subject(s)
Calcium , Cardiomyopathy, Hypertrophic , Carrier Proteins , Frameshift Mutation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Induced Pluripotent Stem Cells/metabolism , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/pathology , Calcium/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Calcium Signaling , Cell Differentiation , Male
4.
Planta ; 260(2): 39, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951320

ABSTRACT

MAIN CONCLUSION: Nitrogen stress altered important lipid parameters and related genes in Chlorella pyrenoidosa via ROS and Ca2+ signaling. The mutual interference between ROS and Ca2+ signaling was also uncovered. The changed mechanisms of lipid parameters (especially lipid classes and unsaturation of fatty acids) in microalgae are not completely well known under nitrogen stress. Therefore, Chlorella pyrenoidosa was exposed to 0, 0.5, 1 and 1.5 g L-1 NaNO3 for 4 days. Then, the physiological and biochemical changes were measured. It was shown that the total lipid contents, neutral lipid ratios as well as their related genes (accD and DGAT) increased obviously while the polar lipid ratios, degrees of unsaturation as well as their related genes (PGP and desC) decreased significantly in nitrogen stress groups. The obvious correlations supported that gene expressions should be the necessary pathways to regulate the lipid changes in C. pyrenoidosa under nitrogen stress. The changes in ROS and Ca2+ signaling as well as their significant correlations with corresponding genes and lipid parameters were analyzed. The results suggested that ROS and Ca2+ may regulate these gene expressions and lipid changes in C. pyrenoidosa under nitrogen stress conditions. This was verified by the subordinate tests with an ROS inhibitor and calcium reagents. It also uncovered the clues of mutual interference between ROS and Ca2+ signaling. To summarize, this study revealed the signaling pathways of important lipid changes in microalgae under N stress.


Subject(s)
Chlorella , Nitrogen , Reactive Oxygen Species , Stress, Physiological , Chlorella/metabolism , Chlorella/genetics , Chlorella/physiology , Reactive Oxygen Species/metabolism , Nitrogen/metabolism , Lipid Metabolism/genetics , Calcium/metabolism , Lipids , Calcium Signaling , Signal Transduction , Microalgae/metabolism , Microalgae/genetics
5.
Nat Chem Biol ; 20(7): 805-806, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38907109
6.
Biomolecules ; 14(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38927036

ABSTRACT

Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in sensitivity to a plethora of irritating agents and endogenous mediators of oxidative stress. TRPA1 influences neuroinflammation and macrophage and lymphocyte functions, but its role is controversial in immune cells. We reported earlier a detectable, but orders-of-magnitude-lower level of Trpa1 mRNA in monocytes and lymphocytes than in sensory neurons by qRT-PCR analyses of cells from lymphoid organs of mice. Our present goals were to (a) further elucidate the expression of Trpa1 mRNA in immune cells by RNAscope in situ hybridization (ISH) and (b) test the role of TRPA1 in lymphocyte activation. RNAscope ISH confirmed that Trpa1 transcripts were detectable in CD14+ and CD4+ cells from the peritoneal cavity of mice. A selective TRPA1 agonist JT010 elevated Ca2+ levels in these cells only at high concentrations. However, a concentration-dependent inhibitory effect of JT010 was observed on T-cell receptor (TcR)-induced Ca2+ signals in CD4+ T lymphocytes, while JT010 neither modified B cell activation nor ionomycin-stimulated Ca2+ level. Based on our present and past findings, TRPA1 activation negatively modulates T lymphocyte activation, but it does not appear to be a key regulator of TcR-stimulated calcium signaling.


Subject(s)
Lymphocyte Activation , TRPA1 Cation Channel , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Animals , Mice , Lymphocyte Activation/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Ligands , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , Acetanilides/pharmacology , Mice, Inbred C57BL , Calcium/metabolism , Receptors, Antigen, T-Cell/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Male , Calcium Signaling/drug effects
7.
Proc Natl Acad Sci U S A ; 121(25): e2405468121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861601

ABSTRACT

Pannexin1 hemichannels (Panx1 HCs) are found in the membrane of most mammalian cells and communicate the intracellular and extracellular spaces, enabling the passive transfer of ions and small molecules. They are involved in physiological and pathophysiological conditions. During apoptosis, the C-terminal tail of Panx1 is proteolytically cleaved, but the permeability features of hemichannels and their role in cell death remain elusive. To address these topics, HeLa cells transfected with full-length human Panx1 (fl-hPanx1) or C-terminal truncated hPanx1 (Δ371hPanx1) were exposed to alkaline extracellular saline solution, increasing the activity of Panx1 HCs. The Δ371hPanx1 HC was permeable to DAPI and Etd+, but not to propidium iodide, whereas fl-hPanx1 HC was only permeable to DAPI. Furthermore, the cytoplasmic Ca2+ signal increased only in Δ371hPanx1 cells, which was supported by bioinformatics approaches. The influx of Ca2+ through Δ371hPanx1 HCs was necessary to promote cell death up to about 95% of cells, whereas the exposure to alkaline saline solution without Ca2+ failed to induce cell death, and the Ca2+ ionophore A23187 promoted more than 80% cell death even in fl-hPanx1 transfectants. Moreover, cell death was prevented with carbenoxolone or 10Panx1 in Δ371hPanx1 cells, whereas it was undetectable in HeLa Panx1-/- cells. Pretreatment with Ferrostatin-1 and necrostatin-1 did not prevent cell death, suggesting that ferroptosis or necroptosis was not involved. In comparison, zVAD-FMK, a pancaspase inhibitor, reduced death by ~60%, suggesting the involvement of apoptosis. Therefore, alkaline pH increases the activity of Δ371hPanx1HCs, leading to a critical intracellular free-Ca2+ overload that promotes cell death.


Subject(s)
Calcium , Connexins , Nerve Tissue Proteins , Humans , Connexins/metabolism , Connexins/genetics , HeLa Cells , Calcium/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Apoptosis , Cell Death , Calcium Signaling
8.
Bull Math Biol ; 86(7): 86, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869652

ABSTRACT

Ca 2 + is a ubiquitous signaling mechanism across different cell types. In T-cells, it is associated with cytokine production and immune function. Benson et al. have shown the coexistence of competing Ca 2 + oscillations during antigen stimulation of T-cell receptors, depending on the presence of extracellular Ca 2 + influx through the Ca 2 + release-activated Ca 2 + channel (Benson in J Biol Chem 29:105310, 2023). In this paper, we construct a mathematical model consisting of five ordinary differential equations and analyze the relationship between the competing oscillatory mechanisms.. We perform bifurcation analysis on two versions of our model, corresponding to the two oscillatory types, to find the defining characteristics of these two families.


Subject(s)
Calcium Signaling , Mathematical Concepts , Models, Immunological , Receptors, Antigen, T-Cell , T-Lymphocytes , T-Lymphocytes/immunology , Humans , Calcium Signaling/physiology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Computer Simulation , Models, Biological , Calcium/metabolism , Animals
9.
J Am Heart Assoc ; 13(12): e032357, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38842296

ABSTRACT

BACKGROUND: We recently demonstrated that acute administration of ibrutinib, a Bruton's tyrosine kinase inhibitor used in chemotherapy for blood malignancies, increases ventricular arrhythmia (VA) vulnerability. A pathway of ibrutinib-induced vulnerability to VA that can be modulated for cardioprotection remains unclear. METHODS AND RESULTS: The effects of ibrutinib on cardiac electrical activity and Ca2+ dynamics were investigated in Langendorff-perfused hearts using optical mapping. We also conducted Western blotting analysis to evaluate the impact of ibrutinib on various regulatory and Ca2+-handling proteins in rat cardiac tissues. Treatment with ibrutinib (10 mg/kg per day) for 4 weeks was associated with an increased VA inducibility (72.2%±6.3% versus 38.9±7.0% in controls, P<0.002) and shorter action potential durations during pacing at various frequencies (P<0.05). Ibrutinib also decreased heart rate thresholds for beat-to-beat duration alternans of the cardiac action potential (P<0.05). Significant changes in myocardial Ca2+ transients included lower amplitude alternans ratios (P<0.05), longer times-to-peak (P<0.05), and greater spontaneous intracellular Ca2+ elevations (P<0.01). We also found lower abundance and phosphorylation of myocardial AMPK (5'-adenosine monophosphate-activated protein kinase), indicating reduced AMPK activity in hearts after ibrutinib treatment. An acute treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside ameliorated abnormalities in action potential and Ca2+ dynamics, and significantly reduced VA inducibility (37.1%±13.4% versus 72.2%±6.3% in the absence of 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside, P<0.05) in hearts from ibrutinib-treated rats. CONCLUSIONS: VA vulnerability inflicted by ibrutinib may be mediated in part by an impairment of myocardial AMPK activity. Pharmacological activation of AMPK may be a protective strategy against ibrutinib-induced cardiotoxicity.


Subject(s)
AMP-Activated Protein Kinases , Action Potentials , Adenine , Arrhythmias, Cardiac , Piperidines , Pyrazoles , Pyrimidines , Animals , Adenine/analogs & derivatives , Adenine/pharmacology , Piperidines/pharmacology , Action Potentials/drug effects , Pyrimidines/pharmacology , AMP-Activated Protein Kinases/metabolism , Pyrazoles/pharmacology , Male , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Protein Kinase Inhibitors/pharmacology , Heart Rate/drug effects , Isolated Heart Preparation , Calcium/metabolism , Rats , Disease Models, Animal , Rats, Sprague-Dawley , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Calcium Signaling/drug effects , Time Factors
10.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856043

ABSTRACT

The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.


Subject(s)
Cell Adhesion Molecules, Neuronal , Dendrites , Entorhinal Cortex , Extracellular Matrix Proteins , Mice, Knockout , Nerve Tissue Proteins , Reelin Protein , Serine Endopeptidases , Animals , Entorhinal Cortex/metabolism , Dendrites/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Mice , Interneurons/metabolism , Neurons/metabolism , Calcium Signaling
11.
J Am Heart Assoc ; 13(13): e034816, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904247

ABSTRACT

BACKGROUND: ELMSAN1 (ELM2-SANT domain-containing scaffolding protein 1) is a newly identified scaffolding protein of the MiDAC (mitotic deacetylase complex), playing a pivotal role in early embryonic development. Studies on Elmsan1 knockout mice showed that its absence results in embryo lethality and heart malformation. However, the precise function of ELMSAN1 in heart development and formation remains elusive. To study its potential role in cardiac lineage, we employed human-induced pluripotent stem cells (hiPSCs) to model early cardiogenesis and investigated the function of ELMSAN1. METHODS AND RESULTS: We generated ELMSAN1-deficient hiPSCs through knockdown and knockout techniques. During cardiac differentiation, ELMSAN1 depletion inhibited pluripotency deactivation, decreased the expression of cardiac-specific markers, and reduced differentiation efficiency. The impaired expression of genes associated with contractile sarcomere structure, calcium handling, and ion channels was also noted in ELMSAN1-deficient cardiomyocytes derived from hiPSCs. Additionally, through a series of structural and functional assessments, we found that ELMSAN1-null hiPSC cardiomyocytes are immature, exhibiting incomplete sarcomere Z-line structure, decreased calcium handling, and impaired electrophysiological properties. Of note, we found that the cardiac-specific role of ELMSAN1 is likely associated with histone H3K27 acetylation level. The transcriptome analysis provided additional insights, indicating maturation reduction with the energy metabolism switch and restored cell proliferation in ELMSAN1 knockout cardiomyocytes. CONCLUSIONS: In this study, we address the significance of the direct involvement of ELMSAN1 in the differentiation and maturation of hiPSC cardiomyocytes. We first report the impact of ELMSAN1 on multiple aspects of hiPSC cardiomyocyte generation, including cardiac differentiation, sarcomere formation, calcium handling, electrophysiological maturation, and proliferation.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/metabolism , Humans , Sarcomeres/metabolism , Acetylation , Calcium Signaling , Cells, Cultured , Histones/metabolism
12.
Europace ; 26(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38864516

ABSTRACT

AIMS: Electroanatomical adaptations during the neonatal to adult phase have not been comprehensively studied in preclinical animal models. To explore the impact of age as a biological variable on cardiac electrophysiology, we employed neonatal and adult guinea pigs, which are a recognized animal model for developmental research. METHODS AND RESULTS: Electrocardiogram recordings were collected in vivo from anaesthetized animals. A Langendorff-perfusion system was employed for the optical assessment of action potentials and calcium transients. Optical data sets were analysed using Kairosight 3.0 software. The allometric relationship between heart weight and body weight diminishes with age, it is strongest at the neonatal stage (R2 = 0.84) and abolished in older adults (R2 = 1E-06). Neonatal hearts exhibit circular activation, while adults show prototypical elliptical shapes. Neonatal conduction velocity (40.6 ± 4.0 cm/s) is slower than adults (younger: 61.6 ± 9.3 cm/s; older: 53.6 ± 9.2 cm/s). Neonatal hearts have a longer action potential duration (APD) and exhibit regional heterogeneity (left apex; APD30: 68.6 ± 5.6 ms, left basal; APD30: 62.8 ± 3.6), which was absent in adults. With dynamic pacing, neonatal hearts exhibit a flatter APD restitution slope (APD70: 0.29 ± 0.04) compared with older adults (0.49 ± 0.04). Similar restitution characteristics are observed with extrasystolic pacing, with a flatter slope in neonates (APD70: 0.54 ± 0.1) compared with adults (younger: 0.85 ± 0.4; older: 0.95 ± 0.7). Neonatal hearts display unidirectional excitation-contraction coupling, while adults exhibit bidirectionality. CONCLUSION: Postnatal development is characterized by transient changes in electroanatomical properties. Age-specific patterns can influence cardiac physiology, pathology, and therapies for cardiovascular diseases. Understanding heart development is crucial to evaluating therapeutic eligibility, safety, and efficacy.


Subject(s)
Action Potentials , Adaptation, Physiological , Animals, Newborn , Animals , Guinea Pigs , Age Factors , Heart Rate/physiology , Electrocardiography , Aging/physiology , Isolated Heart Preparation , Calcium Signaling , Male , Heart/physiology , Voltage-Sensitive Dye Imaging , Time Factors , Body Weight , Heart Conduction System/physiology , Female
13.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928196

ABSTRACT

LPA3 receptors were expressed in TREx HEK 293 cells, and their signaling and phosphorylation were studied. The agonist, lysophosphatidic acid (LPA), increased intracellular calcium and ERK phosphorylation through pertussis toxin-insensitive processes. Phorbol myristate acetate, but not LPA, desensitizes LPA3-mediated calcium signaling, the agonists, and the phorbol ester-induced LPA3 internalization. Pitstop 2 (clathrin heavy chain inhibitor) markedly reduced LPA-induced receptor internalization; in contrast, phorbol ester-induced internalization was only delayed. LPA induced rapid ß-arrestin-LPA3 receptor association. The agonist and the phorbol ester-induced marked LPA3 receptor phosphorylation, and phosphorylation sites were detected using mass spectrometry. Phosphorylated residues were detected in the intracellular loop 3 (S221, T224, S225, and S229) and in the carboxyl terminus (S321, S325, S331, T333, S335, Y337, and S343). Interestingly, phosphorylation sites are within sequences predicted to constitute ß-arrestin binding sites. These data provide insight into LPA3 receptor signaling and regulation.


Subject(s)
Lysophospholipids , Receptors, Lysophosphatidic Acid , Signal Transduction , Humans , beta-Arrestins/metabolism , Binding Sites , Calcium Signaling , HEK293 Cells , Lysophospholipids/metabolism , Phosphorylation , Receptors, Lysophosphatidic Acid/metabolism
14.
Drug Discov Today ; 29(7): 104051, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838960

ABSTRACT

Vascular tone is a major element in the control of hemodynamics. Transient receptor potential (TRP) channels conducting monovalent and/or divalent cations (e.g. Na+ and Ca2+) are expressed in the vasculature. Accumulating evidence suggests that TRP channels participate in regulating vascular tone by regulating intracellular Ca2+ signaling in both vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Aberrant expression/function of TRP channels in the vasculature is associated with vascular dysfunction in systemic/pulmonary hypertension and metabolic syndromes. This review intends to summarize our current knowledge of TRP-mediated regulation of vascular tone in both physiological and pathophysiological conditions and to discuss potential therapeutic approaches to tackle abnormal vascular tone due to TRP dysfunction.


Subject(s)
Muscle, Smooth, Vascular , Transient Receptor Potential Channels , Humans , Transient Receptor Potential Channels/metabolism , Animals , Muscle, Smooth, Vascular/metabolism , Endothelial Cells/metabolism , Calcium Signaling/physiology , Myocytes, Smooth Muscle/metabolism
15.
Nat Commun ; 15(1): 5119, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879572

ABSTRACT

One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.


Subject(s)
Adenosine Triphosphate , Endocytosis , Endoplasmic Reticulum , ErbB Receptors , Mitochondria , Signal Transduction , Mitochondria/metabolism , ErbB Receptors/metabolism , Endoplasmic Reticulum/metabolism , Humans , Adenosine Triphosphate/metabolism , Animals , Cell Membrane/metabolism , Calcium Signaling/physiology , Calcium/metabolism
16.
Life Sci ; 350: 122784, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38848939

ABSTRACT

Calcium is a secondary messenger that interacts with several cellular proteins, regulates various physiological processes, and plays a role in diseases such as viral infections. Next-generation probiotics and live biotherapeutic products are linked to the regulation of intracellular calcium levels. Some viruses can manipulate calcium channels, pumps, and membrane receptors to alter calcium influx and promote virion production and release. In this study, we examined the use of bacteria for the prevention and treatment of viral diseases, such as coronavirus of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination programs have helped reduce disease severity; however, there is still a lack of well-recognized drug regimens for the clinical management of COVID-19. SARS-CoV-2 interacts with the host cell calcium (Ca2+), manipulates proteins, and disrupts Ca2+ homeostasis. This article explores how viruses exploit, create, or exacerbate calcium imbalances, and the potential role of probiotics in mitigating viral infections by modulating calcium signaling. Pharmacological strategies have been developed to prevent viral replication and block the calcium channels that serve as viral receptors. Alternatively, probiotics may interact with cellular calcium influx, such as Lactobacillus spp. The interaction between Akkermansia muciniphila and cellular calcium homeostasis is evident. A scientific basis for using probiotics to manipulate calcium channel activity needs to be established for the treatment and prevention of viral diseases while maintaining calcium homeostasis. In this review article, we discuss how intracellular calcium signaling can affect viral replication and explore the potential therapeutic benefits of probiotics.


Subject(s)
COVID-19 , Calcium , Probiotics , SARS-CoV-2 , Probiotics/therapeutic use , Probiotics/pharmacology , Humans , COVID-19/metabolism , COVID-19/virology , Calcium/metabolism , Calcium Signaling/drug effects , COVID-19 Drug Treatment
17.
Cells ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891114

ABSTRACT

Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC subtypes similarly. Here, we performed live cell imaging of synaptic boutons from primary hippocampal neurons with a Ca2+ indicator. We used the expression of inactive and active Cre recombinase to compare control to conditional knockout neurons lacking either all or selected neurexin variants. We found that reduced total presynaptic Ca2+ transients caused by the deletion of all neurexins were primarily due to the reduced contribution of P/Q-type VGCCs. The deletion of neurexin1α alone also reduced the total presynaptic Ca2+ influx but increased Ca2+ influx via N-type VGCCs. Moreover, we tested whether the decrease in Ca2+ influx induced by activation of cannabinoid receptor 1 (CB1-receptor) is modulated by neurexins. Unlike earlier observations emphasizing a role for ß-neurexins, we found that the decrease in presynaptic Ca2+ transients induced by CB1-receptor activation depended more strongly on the presence of α-neurexins in hippocampal neurons. Together, our results suggest that neurexins have unique roles in the modulation of presynaptic Ca2+ influx through VGCC subtypes and that different neurexin variants may affect specific VGCCs.


Subject(s)
Calcium , Hippocampus , Presynaptic Terminals , Animals , Calcium/metabolism , Presynaptic Terminals/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Mice , Mice, Knockout , Calcium Channels/metabolism , Calcium Channels/genetics , Neurons/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Calcium Signaling , Gene Knockout Techniques , Neurexins
18.
FASEB J ; 38(11): e23731, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38855909

ABSTRACT

Ca2+ permeation through TRPV4 in fibroblasts is associated with pathological matrix degradation. In human gingival fibroblasts, IL-1ß binding to its signaling receptor (IL-1R1) induces activation of extracellular regulated kinase (ERK) and MMP1 expression, processes that require Ca2+ flux across the plasma membrane. It is not known how IL-1R1, which does not conduct Ca2+, generates Ca2+ signals in response to IL-1. We examined whether TRPV4 mediates the Ca2+ fluxes required for ERK signaling in IL-1 stimulated gingival fibroblasts. TRPV4 was immunostained in fibroblasts of human gingival connective tissue and in focal adhesions of cultured mouse gingival fibroblasts. Human gingival fibroblasts treated with IL-1ß showed no change of TRPV4 expression but there was increased MMP1 expression. In mouse, gingival fibroblasts expressing TRPV4, IL-1 strongly increased [Ca2+]i. Pre-incubation of cells with IL-1 Receptor Antagonist blocked Ca2+ entry induced by IL-1 or the TRPV4 agonist GSK101. Knockout of TRPV4 or expression of a non-Ca2+-conducting TRPV4 pore-mutant or pre-incubation with the TRPV4 inhibitor RN1734, blocked IL-1-induced Ca2+ transients and expression of the mouse interstitial collagenase, MMP13. Treatment of mouse gingival fibroblasts with GSK101 phenocopied Ca2+ and ERK responses induced by IL-1; these responses were absent in TRPV4-null cells or cells expressing a non-conducting TRPV4 pore-mutant. Immunostained IL-1R1 localized with TRPV4 in adhesions within cell extensions. While TRPV4 immunoprecipitates analyzed by mass spectrometry showed no association with IL-1R1, TRPV4 associated with Src-related proteins and Src co-immunoprecipitated with TRPV4. Src inhibition reduced IL-1-induced Ca2+ responses. The functional linkage of TRPV4 with IL-1R1 expands its repertoire of innate immune signaling processes by mediating IL-1-driven Ca2+ responses that drive matrix remodeling in fibroblasts. Thus, inhibiting TRPV4 activity may provide a new pharmacological approach for blunting matrix degradation in inflammatory diseases.


Subject(s)
Calcium Signaling , Fibroblasts , Gingiva , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Animals , Humans , Mice , Fibroblasts/metabolism , Gingiva/metabolism , Gingiva/cytology , Calcium/metabolism , MAP Kinase Signaling System , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-1/metabolism , Interleukin-1/pharmacology , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology
19.
J Transl Med ; 22(1): 552, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853272

ABSTRACT

Acute myocardial infarction (AMI) is a serious condition that occurs when part of the heart is subjected to ischemia episodes, following partial or complete occlusion of the epicardial coronary arteries. The resulting damage to heart muscle cells have a significant impact on patient's health and quality of life. About that, recent research focused on the role of the sarcoplasmic reticulum (SR) and mitochondria in the physiopathology of AMI. Moreover, SR and mitochondria get in touch each other through multiple membrane contact sites giving rise to the subcellular region called mitochondria-associated membranes (MAMs). MAMs are essential for, but not limited to, bioenergetics and cell fate. Disruption of the architecture of these regions occurs during AMI although it is still unclear the cause-consequence connection and a complete overview of the pathological changes; for sure this concurs to further damage to heart muscle. The calcium ion (Ca2+) plays a pivotal role in the pathophysiology of AMI and its dynamic signaling between the SR and mitochondria holds significant importance. In this review, we tried to summarize and update the knowledge about the roles of these organelles in AMI from a Ca2+ signaling point of view. Accordingly, we also reported some possible cardioprotective targets which are directly or indirectly related at limiting the dysfunctions caused by the deregulation of the Ca2+ signaling.


Subject(s)
Calcium Signaling , Mitochondria , Myocardial Infarction , Sarcoplasmic Reticulum , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Sarcoplasmic Reticulum/metabolism , Animals , Mitochondria/metabolism , Calcium/metabolism
20.
J Vis Exp ; (207)2024 May 24.
Article in English | MEDLINE | ID: mdl-38856211

ABSTRACT

Changes in calcium concentration in cells are rapidly monitored in a high-throughput fashion with the use of intracellular, fluorescent, calcium-binding dyes and imaging instruments that can measure fluorescent emissions from up to 1,536 wells simultaneously. However, these instruments are much more expensive and can be challenging to maintain relative to widely available plate readers that scan wells individually. Described here is an optimized plate reader assay for use with an endothelial cell line (EA.hy926) to measure the protease-activated receptor (PAR)-driven activation of Gαq signaling and subsequent calcium mobilization using the calcium-binding dye Fluo-4. This assay has been used to characterize a range of PAR ligands, including the allosteric PAR1-targeting anti-inflammatory "parmodulin" ligands identified in the Dockendorff lab. This protocol obviates the need for an automated liquid handler and permits the medium-throughput screening of PAR ligands in 96-well plates and should be applicable to the study of other receptors that initiate calcium mobilization.


Subject(s)
Calcium , Humans , Calcium/metabolism , Calcium/analysis , Xanthenes/chemistry , Aniline Compounds/chemistry , Cell Line , Fluorescent Dyes/chemistry , Ligands , Receptor, PAR-1/metabolism , Endothelial Cells/metabolism , Calcium Signaling/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...