Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.551
Filter
1.
Nat Commun ; 15(1): 5521, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951553

ABSTRACT

The microgeometry of the cellular microenvironment profoundly impacts cellular behaviors, yet the link between it and the ubiquitously expressed mechanosensitive ion channel PIEZO1 remains unclear. Herein, we describe a fluorescent micropipette aspiration assay that allows for simultaneous visualization of intracellular calcium dynamics and cytoskeletal architecture in real-time, under varied micropipette geometries. By integrating elastic shell finite element analysis with fluorescent lifetime imaging microscopy and employing PIEZO1-specific transgenic red blood cells and HEK cell lines, we demonstrate a direct correlation between the microscale geometry of aspiration and PIEZO1-mediated calcium signaling. We reveal that increased micropipette tip angles and physical constrictions lead to a significant reorganization of F-actin, accumulation at the aspirated cell neck, and subsequently amplify the tension stress at the dome of the cell to induce more PIEZO1's activity. Disruption of the F-actin network or inhibition of its mobility leads to a notable decline in PIEZO1 mediated calcium influx, underscoring its critical role in cellular mechanosensing amidst geometrical constraints.


Subject(s)
Actins , Calcium , Cytoskeleton , Ion Channels , Mechanotransduction, Cellular , Humans , Ion Channels/metabolism , Actins/metabolism , HEK293 Cells , Cytoskeleton/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Finite Element Analysis , Animals , Microscopy, Fluorescence/methods
2.
Bull Math Biol ; 86(7): 86, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869652

ABSTRACT

Ca 2 + is a ubiquitous signaling mechanism across different cell types. In T-cells, it is associated with cytokine production and immune function. Benson et al. have shown the coexistence of competing Ca 2 + oscillations during antigen stimulation of T-cell receptors, depending on the presence of extracellular Ca 2 + influx through the Ca 2 + release-activated Ca 2 + channel (Benson in J Biol Chem 29:105310, 2023). In this paper, we construct a mathematical model consisting of five ordinary differential equations and analyze the relationship between the competing oscillatory mechanisms.. We perform bifurcation analysis on two versions of our model, corresponding to the two oscillatory types, to find the defining characteristics of these two families.


Subject(s)
Calcium Signaling , Mathematical Concepts , Models, Immunological , Receptors, Antigen, T-Cell , T-Lymphocytes , T-Lymphocytes/immunology , Humans , Calcium Signaling/physiology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Computer Simulation , Models, Biological , Calcium/metabolism , Animals
3.
Drug Discov Today ; 29(7): 104051, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838960

ABSTRACT

Vascular tone is a major element in the control of hemodynamics. Transient receptor potential (TRP) channels conducting monovalent and/or divalent cations (e.g. Na+ and Ca2+) are expressed in the vasculature. Accumulating evidence suggests that TRP channels participate in regulating vascular tone by regulating intracellular Ca2+ signaling in both vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Aberrant expression/function of TRP channels in the vasculature is associated with vascular dysfunction in systemic/pulmonary hypertension and metabolic syndromes. This review intends to summarize our current knowledge of TRP-mediated regulation of vascular tone in both physiological and pathophysiological conditions and to discuss potential therapeutic approaches to tackle abnormal vascular tone due to TRP dysfunction.


Subject(s)
Muscle, Smooth, Vascular , Transient Receptor Potential Channels , Humans , Transient Receptor Potential Channels/metabolism , Animals , Muscle, Smooth, Vascular/metabolism , Endothelial Cells/metabolism , Calcium Signaling/physiology , Myocytes, Smooth Muscle/metabolism
4.
Nat Commun ; 15(1): 5119, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879572

ABSTRACT

One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.


Subject(s)
Adenosine Triphosphate , Endocytosis , Endoplasmic Reticulum , ErbB Receptors , Mitochondria , Signal Transduction , Mitochondria/metabolism , ErbB Receptors/metabolism , Endoplasmic Reticulum/metabolism , Humans , Adenosine Triphosphate/metabolism , Animals , Cell Membrane/metabolism , Calcium Signaling/physiology , Calcium/metabolism
5.
J Vis Exp ; (207)2024 May 24.
Article in English | MEDLINE | ID: mdl-38856211

ABSTRACT

Changes in calcium concentration in cells are rapidly monitored in a high-throughput fashion with the use of intracellular, fluorescent, calcium-binding dyes and imaging instruments that can measure fluorescent emissions from up to 1,536 wells simultaneously. However, these instruments are much more expensive and can be challenging to maintain relative to widely available plate readers that scan wells individually. Described here is an optimized plate reader assay for use with an endothelial cell line (EA.hy926) to measure the protease-activated receptor (PAR)-driven activation of Gαq signaling and subsequent calcium mobilization using the calcium-binding dye Fluo-4. This assay has been used to characterize a range of PAR ligands, including the allosteric PAR1-targeting anti-inflammatory "parmodulin" ligands identified in the Dockendorff lab. This protocol obviates the need for an automated liquid handler and permits the medium-throughput screening of PAR ligands in 96-well plates and should be applicable to the study of other receptors that initiate calcium mobilization.


Subject(s)
Calcium , Humans , Calcium/metabolism , Calcium/analysis , Xanthenes/chemistry , Aniline Compounds/chemistry , Cell Line , Fluorescent Dyes/chemistry , Ligands , Receptor, PAR-1/metabolism , Endothelial Cells/metabolism , Calcium Signaling/physiology
6.
Life Sci ; 351: 122846, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880165

ABSTRACT

Understanding the mechanisms controlling platelet function is crucial for exploring potential therapeutic targets related to atherothrombotic pathologies and primary hemostasis disorders. Our research, which focuses on the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis, has significant implications for the development of new therapeutic strategies. Traditionally, Ca2+-dependent cellular signaling has been recognized as a determinant process throughout the platelet activation, controlled primarily by store-operated Ca2+ entry and the PLC-PKC signaling pathway. However, despite the accumulated knowledge of these regulatory mechanisms, the effectiveness of therapy based on various commonly used antiplatelet drugs (such as acetylsalicylic acid and clopidogrel, among others) has faced challenges due to bleeding risks and reduced efficacy associated with the phenomenon of high platelet reactivity. Recent evidence suggests that platelet mitochondria could play a fundamental role in these aspects through Ca2+-dependent mechanisms linked to apoptosis and forming a procoagulant phenotype. In this context, the present review describes the latest advances regarding the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis.


Subject(s)
Aging , Blood Platelets , Calcium , Mitochondria , Platelet Activation , Humans , Mitochondria/metabolism , Platelet Activation/physiology , Calcium/metabolism , Blood Platelets/metabolism , Aging/metabolism , Animals , Thrombosis/metabolism , Calcium Signaling/physiology
7.
J Bioenerg Biomembr ; 56(4): 389-404, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38771496

ABSTRACT

Calcium serves as a widespread second messenger in almost every human and animal cell. The regulation of various cellular processes, such as transcriptional control and the kinetics of membrane channels, is significantly influenced by intracellular calcium ions (Ca 2 + ), and linkages between Ca 2 + and other second messengers should activate signaling networks. The passage of ions across the cell membrane regulates Ca 2 + levels in pancreatic ß -cells and requires the coordinated interaction of various ion transport mechanisms and organelles. The signaling of Ca 2 + in ß -cells and its interactions with the intracellular dynamics of cyclic adenosine monophosphate (cAMP) is poorly understood. Therefore, the current investigation proposes a mathematical model to illustrate the spatiotemporal dynamical interaction between Ca 2 + and cAMP. In order to construct a one-dimensional mathematical model, the fundamental initial and boundary conditions derived from the physiological characteristics of the ß -cell are incorporated. The numerical results were obtained by MATLAB simulations using the finite element method and the Crank-Nicolson method. The current study aims to offer an update on regulation between Ca 2 + and cAMP signaling circuits, with a focus on interactions that occur in localized areas of the ß -cell. The model gives the individual effect of each parameter on the regulation of Ca 2 + and cAMP profiles in a ß -cell. Evidently, impairments in the regulation of messenger pathways contribute to the pathological conditions, as demonstrated by the results obtained.


Subject(s)
Calcium , Cyclic AMP , Insulin-Secreting Cells , Second Messenger Systems , Cyclic AMP/metabolism , Insulin-Secreting Cells/metabolism , Humans , Calcium/metabolism , Second Messenger Systems/physiology , Models, Biological , Animals , Calcium Signaling/physiology
8.
Pflugers Arch ; 476(7): 1077-1086, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38769127

ABSTRACT

Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes cause an abnormality in cardiac Ca2+ regulation that can lead to cardiomyopathies. In this study, we explored how the reactive α-dicarbonyl methylglyoxal (MGO) affects Ca2+ regulation in mouse ventricular myocytes. Analysis of intracellular Ca2+ dynamics revealed that MGO (200 µM) increases action potential (AP)-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load, with a limited effect on L-type Ca2+ channel-mediated Ca2+ transients and SERCA-mediated Ca2+ uptake. At the same time, MGO significantly slowed down cytosolic Ca2+ extrusion by Na+/Ca2+ exchanger (NCX). MGO also increased the frequency of Ca2+ waves during rest and these Ca2+ release events were abolished by an external solution with zero [Na+] and [Ca2+]. Adrenergic receptor activation with isoproterenol (10 nM) increased Ca2+ transients and SR Ca2+ load, but it also triggered spontaneous Ca2+ waves in 27% of studied cells. Pretreatment of myocytes with MGO increased the fraction of cells with Ca2+ waves during adrenergic receptor stimulation by 163%. Measurements of intracellular [Na+] revealed that MGO increases cytosolic [Na+] by 57% from the maximal effect produced by the Na+-K+ ATPase inhibitor ouabain (20 µM). This increase in cytosolic [Na+] was a result of activation of a tetrodotoxin-sensitive Na+ influx, but not an inhibition of Na+-K+ ATPase. An increase in cytosolic [Na+] after treating cells with ouabain produced similar effects on Ca2+ regulation as MGO. These results suggest that protein carbonylation can affect cardiac Ca2+ regulation by increasing cytosolic [Na+] via a tetrodotoxin-sensitive pathway. This, in turn, reduces Ca2+ extrusion by NCX, causing SR Ca2+ overload and spontaneous Ca2+ waves.


Subject(s)
Calcium , Myocytes, Cardiac , Protein Carbonylation , Sarcoplasmic Reticulum , Sodium , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/drug effects , Mice , Calcium/metabolism , Sodium/metabolism , Protein Carbonylation/drug effects , Sodium-Calcium Exchanger/metabolism , Heart Ventricles/metabolism , Heart Ventricles/cytology , Pyruvaldehyde/pharmacology , Pyruvaldehyde/metabolism , Calcium Signaling/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Action Potentials/drug effects , Mice, Inbred C57BL , Cells, Cultured , Male
9.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38744490

ABSTRACT

Oligodendrocytes, the myelin-producing glial cells of the central nervous system (CNS), crucially contribute to myelination and circuit function. An increasing amount of evidence suggests that intracellular calcium (Ca2+) dynamics in oligodendrocytes mediates activity-dependent and activity-independent myelination. Unraveling how myelinating oligodendrocytes orchestrate and integrate Ca2+ signals, particularly in relation to axonal firing, is crucial for gaining insights into their role in the CNS development and function, both in health and disease. In this framework, we used the recombinant adeno-associated virus/Olig001 capsid variant to express the genetically encoded Ca2+ indicator jGCaMP8s, under the control of the myelin basic protein promoter. In our study, this tool exhibits excellent tropism and selectivity for myelinating and mature oligodendrocytes, and it allows monitoring Ca2+ activity in myelin-forming cells, both in isolated primary cultures and organotypic spinal cord explants. By live imaging of myelin Ca2+ events in oligodendrocytes within organ cultures, we observed a rapid decline in the amplitude and duration of Ca2+ events across different in vitro developmental stages. Active myelin sheath remodeling and growth are modulated at the level of myelin-axon interface through Ca2+ signaling, and, during early myelination in organ cultures, this phase is finely tuned by the firing of axon action potentials. In the later stages of myelination, Ca2+ events in mature oligodendrocytes no longer display such a modulation, underscoring the involvement of complex Ca2+ signaling in CNS myelination.


Subject(s)
Calcium , Dependovirus , Myelin Sheath , Oligodendroglia , Organ Culture Techniques , Spinal Cord , Animals , Oligodendroglia/metabolism , Spinal Cord/metabolism , Spinal Cord/cytology , Calcium/metabolism , Dependovirus/genetics , Myelin Sheath/metabolism , Calcium Signaling/physiology , Mice, Inbred C57BL , Mice , Cells, Cultured , Female , Rats
10.
Biochem Pharmacol ; 225: 116279, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740221

ABSTRACT

Berberine, a natural isoquinoline alkaloid, exhibits a variety of pharmacological effects, but the pharmacological targets and mechanisms remain elusive. Here, we report a novel finding that berberine inhibits acetylcholine (ACh)-induced intracellular Ca2+ oscillations, mediated through an inhibition of the muscarinic subtype 3 (M3) receptor. Patch-clamp recordings and confocal Ca2+ imaging were applied to acute dissociated pancreatic acinar cells prepared from CD1 mice to examine the effects of berberine on ACh-induced Ca2+ oscillations. Whole-cell patch-clamp recordings showed that berberine (from 0.1 to 10 µM) reduced ACh-induced Ca2+ oscillations in a concentration-dependent manner, and this inhibition also depended on ACh concentrations. The inhibitory effect of berberine neither occurred in intracellular targets nor extracellular cholecystokinin (CCK) receptors, chloride (Cl-) channels, and store-operated Ca2+ channels. Together, the results demonstrate that berberine directly inhibits the muscarinic M3 receptors, further confirmed by evidence of the interaction between berberine and M3 receptors in pancreatic acinar cells.


Subject(s)
Acinar Cells , Berberine , Calcium Signaling , Receptor, Muscarinic M3 , Animals , Berberine/pharmacology , Receptor, Muscarinic M3/metabolism , Receptor, Muscarinic M3/antagonists & inhibitors , Mice , Acinar Cells/drug effects , Acinar Cells/metabolism , Calcium Signaling/drug effects , Calcium Signaling/physiology , Pancreas/drug effects , Pancreas/metabolism , Male , Acetylcholine/metabolism , Calcium/metabolism , Dose-Response Relationship, Drug
11.
Biochem Pharmacol ; 225: 116329, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821375

ABSTRACT

Calcium signaling abnormality in cardiomyocytes, as a key mechanism, is closely associated with developing heart failure. Fibroblast growth factor 13 (FGF13) demonstrates important regulatory roles in the heart, but its association with cardiac calcium signaling in heart failure remains unknown. This study aimed to investigate the role and mechanism of FGF13 on calcium mishandling in heart failure. Mice underwent transaortic constriction to establish a heart failure model, which showed decreased ejection fraction, fractional shortening, and contractility. FGF13 deficiency alleviated cardiac dysfunction. Heart failure reduces calcium transients in cardiomyocytes, which were alleviated by FGF13 deficiency. Meanwhile, FGF13 deficiency restored decreased Cav1.2 and Serca2α expression and activity in heart failure. Furthermore, FGF13 interacted with microtubules in the heart, and FGF13 deficiency inhibited the increase of microtubule stability during heart failure. Finally, in isoproterenol-stimulated FGF13 knockdown neonatal rat ventricular myocytes (NRVMs), wildtype FGF13 overexpression, but not FGF13 mutant, which lost the binding site of microtubules, promoted calcium transient abnormality aggravation and Cav1.2 downregulation compared with FGF13 knockdown group. Generally, FGF13 deficiency improves abnormal calcium signaling by inhibiting the increased microtubule stability in heart failure, indicating the important role of FGF13 in cardiac calcium homeostasis and providing new avenues for heart failure prevention and treatment.


Subject(s)
Calcium Signaling , Fibroblast Growth Factors , Heart Failure , Microtubules , Myocytes, Cardiac , Animals , Microtubules/metabolism , Microtubules/drug effects , Heart Failure/metabolism , Heart Failure/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Calcium Signaling/physiology , Mice , Rats , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Male , Mice, Knockout , Mice, Inbred C57BL , Rats, Sprague-Dawley , Cells, Cultured
12.
Mol Biol Cell ; 35(7): ar92, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38758660

ABSTRACT

Chromaffin cells of the adrenal medulla transduce sympathetic nerve activity into stress hormone secretion. The two neurotransmitters principally responsible for coupling cell stimulation to secretion are acetylcholine and pituitary adenylate activating polypeptide (PACAP). In contrast to acetylcholine, PACAP evokes a persistent secretory response from chromaffin cells. However, the mechanisms by which PACAP acts are poorly understood. Here, it is shown that PACAP induces sustained increases in cytosolic Ca2+ which are disrupted when Ca2+ influx through L-type channels is blocked or internal Ca2+ stores are depleted. PACAP liberates stored Ca2+ via inositol trisphosphate receptors (IP3Rs) on the endoplasmic reticulum (ER), thereby functionally coupling Ca2+ mobilization to Ca2+ influx and supporting Ca2+-induced Ca2+-release. These Ca2+ influx and mobilization pathways are unified by an absolute dependence on phospholipase C epsilon (PLCε) activity. Thus, the persistent secretory response that is a defining feature of PACAP activity, in situ, is regulated by a signaling network that promotes sustained elevations in intracellular Ca2+ through multiple pathways.


Subject(s)
Calcium Signaling , Calcium , Chromaffin Cells , Endoplasmic Reticulum , Inositol 1,4,5-Trisphosphate Receptors , Pituitary Adenylate Cyclase-Activating Polypeptide , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Animals , Calcium/metabolism , Calcium Signaling/physiology , Endoplasmic Reticulum/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Chromaffin Cells/metabolism , Cattle , Calcium Channels, L-Type/metabolism
13.
Biosystems ; 240: 105227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718915

ABSTRACT

Hepatocyte lipid and glucose metabolism is regulated not only by major hormones like insulin and glucagon but also by many other factors, including calcium ions. Recently, mitochondria-associated membrane (MAM) dysfunction combined with incorrect IP3-receptor regulation has been shown to result in abnormal calcium signaling in hepatocytes. This dysfunction could further lead to hepatic metabolism pathology. However, the exact contribution of MAM dysfunction, incorrect IP3-receptor regulation and insulin resistance to the calcium-insulin-glucagon interplay is not understood yet. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network with a detailed focus on the model construction details besides the biological aspect. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network. We focus on the model construction details, model validation, and predictions. We describe the dynamic regulation of signaling processes by sigmoid Hill function. In particular, we study the effect of both the Hill function slope and the distance between Hill function extremes on metabolic processes in hepatocytes as a model of nonspecific insulin dysfunction. We also address the significant time difference between characteristic time of glucose hepatic processing and a typical calcium oscillation period in hepatocytes. Our modeling results show that calcium signaling dysfunction results in an abnormal increase in postprandial glucose levels, an abnormal glucose decrease in fasting, and a decreased amount of stored glycogen. An insulin dysfunction of glucose phosphorylation, glucose dephosphorylation, and glycogen breakdown also cause a noticeable effect. We also get some insight into the so-called hepatic insulin resistance paradox, confirming the hypothesis regarding indirect insulin action on hepatocytes via dysfunctional adipocyte lipolysis.


Subject(s)
Calcium Signaling , Calcium , Glucose , Hepatocytes , Lipid Metabolism , Models, Biological , Hepatocytes/metabolism , Glucose/metabolism , Calcium/metabolism , Lipid Metabolism/physiology , Calcium Signaling/physiology , Humans , Insulin/metabolism , Animals , Insulin Resistance/physiology , Metabolic Networks and Pathways
14.
PLoS Comput Biol ; 20(5): e1012130, 2024 May.
Article in English | MEDLINE | ID: mdl-38739680

ABSTRACT

Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.


Subject(s)
Islets of Langerhans , Islets of Langerhans/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Animals , Computational Biology/methods , Mice , Insulin/metabolism , Humans , Insulin-Secreting Cells/physiology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Insulin Secretion/physiology , Models, Biological , Calcium/metabolism , Calcium Signaling/physiology
15.
Biochem Pharmacol ; 225: 116278, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740223

ABSTRACT

Calcium (Ca2+) acts as a second messenger and constitutes a complex and large information exchange system between the endoplasmic reticulum (ER) and mitochondria; this process is involved in various life activities, such as energy metabolism, cell proliferation and apoptosis. Increasing evidence has suggested that alterations in Ca2+ crosstalk between the ER and mitochondria, including alterations in ER and mitochondrial Ca2+ channels and related Ca2+ regulatory proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), inositol 1,4,5-trisphosphate receptor (IP3R), and calnexin (CNX), are closely associated with the development of kidney disease. Therapies targeting intracellular Ca2+ signaling have emerged as an emerging field in the treatment of renal diseases. In this review, we focused on recent advances in Ca2+ signaling, ER and mitochondrial Ca2+ monitoring methods and Ca2+ homeostasis in the development of renal diseases and sought to identify new targets and insights for the treatment of renal diseases by targeting Ca2+ channels or related Ca2+ regulatory proteins.


Subject(s)
Calcium Signaling , Endoplasmic Reticulum , Kidney Diseases , Mitochondria , Humans , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Calcium Signaling/drug effects , Calcium Signaling/physiology , Animals , Drug Development/methods , Calcium/metabolism
16.
Neuron ; 112(12): 1959-1977.e10, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38614103

ABSTRACT

Microglial calcium signaling is rare in a baseline state but strongly engaged during early epilepsy development. The mechanism(s) governing microglial calcium signaling are not known. By developing an in vivo uridine diphosphate (UDP) fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP can signal through the microglial-enriched P2Y6 receptor to increase calcium activity during epileptogenesis. P2Y6 calcium activity is associated with lysosome biogenesis and enhanced production of NF-κB-related cytokines. In the hippocampus, knockout of the P2Y6 receptor prevents microglia from fully engulfing neurons. Attenuating microglial calcium signaling through calcium extruder ("CalEx") expression recapitulates multiple features of P2Y6 knockout, including reduced lysosome biogenesis and phagocytic interactions. Ultimately, P2Y6 knockout mice retain more CA3 neurons and better cognitive task performance during epileptogenesis. Our results demonstrate that P2Y6 signaling impacts multiple aspects of myeloid cell immune function during epileptogenesis.


Subject(s)
Calcium Signaling , Epilepsy , Mice, Knockout , Microglia , Phagocytosis , Receptors, Purinergic P2 , Animals , Microglia/metabolism , Microglia/immunology , Mice , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2/genetics , Calcium Signaling/physiology , Epilepsy/metabolism , Epilepsy/immunology , Epilepsy/genetics , Uridine Diphosphate/metabolism , Lysosomes/metabolism , Neurons/metabolism , Mice, Inbred C57BL , Male , Hippocampus/metabolism , Neuroimmunomodulation/physiology
17.
Br J Pharmacol ; 181(16): 2810-2832, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38651236

ABSTRACT

BACKGROUND AND PURPOSE: The single layer of cells lining all blood vessels, the endothelium, is a sophisticated signal co-ordination centre that controls a wide range of vascular functions including the regulation of blood pressure and blood flow. To co-ordinate activities, communication among cells is required for tissue level responses to emerge. While a significant form of communication occurs by the propagation of signals between cells, the mechanism of propagation in the intact endothelium is unresolved. EXPERIMENTAL APPROACH: Precision signal generation and targeted cellular manipulation was used in conjunction with high spatiotemporal mesoscale Ca2+ imaging in the endothelium of intact blood vessels. KEY RESULTS: Multiple mechanisms maintain communication so that Ca2+ wave propagation occurs irrespective of the status of connectivity among cells. Between adjoining cells, regenerative IP3-induced IP3 production transmits Ca2+ signals and explains the propagated vasodilation that underlies the increased blood flow accompanying tissue activity. The inositide is itself sufficient to evoke regenerative phospholipase C-dependent Ca2+ waves across coupled cells. None of gap junctions, Ca2+ diffusion or the release of extracellular messengers is required to support this type of intercellular Ca2+ signalling. In contrast, when discontinuities exist between cells, ATP released as a diffusible extracellular messenger transmits Ca2+ signals across the discontinuity and drives propagated vasodilation. CONCLUSION AND IMPLICATIONS: These results show that signalling switches underlie endothelial cell-to-cell signal transmission and reveal how communication is maintained in the face of endothelial damage. The findings provide a new framework for understanding wave propagation and cell signalling in the endothelium.


Subject(s)
Calcium Signaling , Cell Communication , Endothelium, Vascular , Cell Communication/physiology , Animals , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Calcium Signaling/physiology , Calcium/metabolism , Humans , Inositol 1,4,5-Trisphosphate/metabolism
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631408

ABSTRACT

Mitochondrial dysregulation is pivotal in Alzheimer's disease (AD) pathogenesis. Calcium governs vital mitochondrial processes impacting energy conversion, oxidative stress, and cell death signaling. Disruptions in mitochondrial calcium (mCa2+) handling induce calcium overload and trigger the opening of mitochondrial permeability transition pore, ensuing energy deprivation and resulting in AD-related neuronal cell death. However, the role of mCa2+ in non-neuronal cells (microglia, astrocytes, oligodendrocytes, endothelial cells, and pericytes) remains elusive. This review provides a comprehensive exploration of mitochondrial heterogeneity and calcium signaling, offering insights into specific differences among various brain cell types in AD.


Subject(s)
Alzheimer Disease , Calcium Signaling , Calcium , Mitochondria , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Mitochondria/metabolism , Mitochondria/pathology , Calcium Signaling/physiology , Animals , Calcium/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Pericytes/metabolism , Pericytes/pathology , Microglia/metabolism , Microglia/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Oxidative Stress , Oligodendroglia/metabolism , Oligodendroglia/pathology , Mitochondrial Permeability Transition Pore/metabolism , Neurons/metabolism , Neurons/pathology
19.
J Agric Food Chem ; 72(18): 10506-10520, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38651833

ABSTRACT

Sugarcane response to Sporisorium scitamineum is determined by multiple major genes and numerous microeffector genes. Here, time-ordered gene coexpression networks were applied to explore the interaction between sugarcane and S. scitamineum. Totally, 2459 differentially expressed genes were identified and divided into 10 levels, and several stress-related subnetworks were established. Interestingly, the Ca2+ signaling pathway was activated to establish the response to sugarcane smut disease. Accordingly, two CAX genes (ScCAX2 and ScCAX3) were cloned and characterized from sugarcane. They were significantly upregulated under ABA stress but inhibited by MeJA treatment. Furthermore, overexpression of ScCAX2 and ScCAX3 enhanced the susceptibility of transgenic plants to the pathogen infection, suggesting its negative role in disease resistance. A regulatory model for ScCAX genes in disease response was thus depicted. This work helps to clarify the transcriptional regulation of sugarcane response to S. scitamineum stress and the function of the CAX gene in disease response.


Subject(s)
Calcium Signaling , Gene Expression Regulation, Plant , Plant Proteins , Saccharum , Ustilaginales , Calcium Signaling/physiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Saccharum/genetics , Saccharum/metabolism , Ustilaginales/physiology
20.
Life Sci ; 347: 122651, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642844

ABSTRACT

Calcium ion (Ca2+) dysregulation is one of the main causes of neuronal cell death and brain damage after cerebral ischemia. During ischemic stroke, the ability of neurons to maintain Ca2+ homeostasis is compromised. Ca2+ regulates various functions of the nervous system, including neuronal activity and adenosine triphosphate (ATP) production. Disruptions in Ca2+ homeostasis can trigger a cascade of events, including activation of the unfolded protein response (UPR) pathway, which is associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction. This response occurs when the cell is unable to manage protein folding within the ER due to various stressors, such as a high influx of Ca2+. Consequently, the UPR is initiated to restore ER function and alleviate stress, but prolonged activation can lead to mitochondrial dysfunction and, ultimately, cell death. Hence, precise regulation of Ca2+ within the cell is mandatory. The ER and mitochondria are two such organelles that maintain intracellular Ca2+ homeostasis through various calcium-operating channels, including ryanodine receptors (RyRs), inositol trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum calcium ATPases (SERCAs), the mitochondrial Na+/Ca2+ exchanger (NCLX), the mitochondrial calcium uniporter (MCU) and voltage-dependent anion channels (VDACs). These channels utilize Ca2+ sequestering and release mechanisms to maintain intracellular Ca2+ homeostasis and ensure proper cellular function and survival. The present review critically evaluates the significance of Ca2+ and its physiological role in cerebral ischemia. We have compiled recent findings on calcium's role and emerging treatment strategies, particularly targeting mitochondria and the endoplasmic reticulum, to address Ca2+ overload in cerebral ischemia.


Subject(s)
Calcium , Cell Death , Ischemic Stroke , Neurons , Humans , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Animals , Calcium/metabolism , Neurons/metabolism , Neurons/pathology , Mitochondria/metabolism , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Unfolded Protein Response , Calcium Signaling/physiology , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...