Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28.883
Filter
1.
PLoS One ; 19(7): e0305396, 2024.
Article in English | MEDLINE | ID: mdl-38980840

ABSTRACT

The ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family metalloprotease MIG-17 plays a crucial role in the migration of gonadal distal tip cells (DTCs) in Caenorhabditis elegans. MIG-17 is secreted from the body wall muscle cells and localizes to the basement membranes (BMs) of various tissues including the gonadal BM where it regulates DTC migration through its catalytic activity. Missense mutations in the BM protein genes, let-2/collagen IV a2 and fbl-1/fibulin-1, have been identified as suppressors of the gonadal defects observed in mig-17 mutants. Genetic analyses indicate that LET-2 and FBL-1 act downstream of MIG-17 to regulate DTC migration. In addition to the control of DTC migration, MIG-17 also plays a role in healthspan, but not in lifespan. Here, we examined whether let-2 and fbl-1 alleles can suppress the age-related phenotypes of mig-17 mutants. let-2(k196) fully and fbl-1(k201) partly, but not let-2(k193) and fbl-1(k206), suppressed the senescence defects of mig-17. Interestingly, fbl-1(k206), but not fbl-1(k201) or let-2 alleles, exhibited an extended lifespan compared to the wild type when combined with mig-17. These results reveal allele specific interactions between let-2 or fbl-1 and mig-17 in age-related phenotypes, indicating that basement membrane physiology plays an important role in organismal aging.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Collagen Type IV , Mutation , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Collagen Type IV/metabolism , Collagen Type IV/genetics , Longevity/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Basement Membrane/metabolism , Phenotype , Cell Movement/genetics , Gonads/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Disintegrins
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000312

ABSTRACT

Hepatocellular carcinoma (HCC) is a common tumor. Our group has previously reported that sorcin (SRI) plays an important role in the progression and prognosis of HCC. This study aims to explore the mechanism of SRI inhibiting the mitochondrial apoptosis. Bioinformatics analysis, co-IP and immunofluorescence were used to analyze the relationship between SRI and STAT3. MMP and Hoechst staining were performed to detect the effect of SRI on cell apoptosis. The expression of apoptosis-related proteins and NF-κB signaling pathway were examined by Western blot and immunohistochemistry when SRI overexpression or underexpression in vivo and in vitro were found. Moreover, inhibitors were used to further explore the molecular mechanism. Overexpression of SRI inhibited cell apoptosis, which was attenuated by SRI knockdown in vitro and in vivo. Moreover, we identified that STAT3 is an SRI-interacting protein. Mechanistically, SRI interacts with STAT3 and then activates the NF-κB signaling pathway in vitro and in vivo. SRI interacting with STAT3 inhibits apoptosis by the NF-κB pathway and further contributes to the proliferation in HCC, which offers a novel clue and a new potential therapeutic target for HCC.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Liver Neoplasms , Mitochondria , NF-kappa B , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , Humans , Apoptosis/drug effects , NF-kappa B/metabolism , Signal Transduction/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Animals , Mice , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cell Proliferation/drug effects , Cell Line, Tumor , Mice, Nude , Male , Gene Expression Regulation, Neoplastic/drug effects
3.
Nat Commun ; 15(1): 5564, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956119

ABSTRACT

Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify since novel therapeutic targets are often hard-to-drug proteins. We introduce FRASE-based hit-finding robot (FRASE-bot), to expedite drug discovery for unconventional therapeutic targets. FRASE-bot mines available 3D structures of ligand-protein complexes to create a database of FRAgments in Structural Environments (FRASE). The FRASE database can be screened to identify structural environments similar to those in the target protein and seed the target structure with relevant ligand fragments. A neural network model is used to retain fragments with the highest likelihood of being native binders. The seeded fragments then inform ultra-large-scale virtual screening of commercially available compounds. We apply FRASE-bot to identify ligands for Calcium and Integrin Binding protein 1 (CIB1), a promising drug target implicated in triple negative breast cancer. FRASE-based virtual screening identifies a small-molecule CIB1 ligand (with binding confirmed in a TR-FRET assay) showing specific cell-killing activity in CIB1-dependent cancer cells, but not in CIB1-depletion-insensitive cells.


Subject(s)
Antineoplastic Agents , Calcium-Binding Proteins , Drug Discovery , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ligands , Drug Discovery/methods , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/chemistry , Cell Line, Tumor , Computer Simulation , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Protein Binding , Neural Networks, Computer
4.
Birth Defects Res ; 116(7): e2380, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980211

ABSTRACT

BACKGROUND: Fontaine progeroid syndrome (FPS, OMIM 612289) is a recently identified genetic disorder stemming from pathogenic variants in the SLC25A24 gene, encoding a mitochondrial carrier protein. It encompasses Gorlin-Chaudry-Moss syndrome and Fontaine-Farriaux syndrome, primarily manifesting as craniosynostosis with brachycephaly, distinctive dysmorphic facial features, hypertrichosis, severe prenatal and postnatal growth restriction, limb shortening, and early aging with characteristic skin changes, phalangeal anomalies, and genital malformations. CASES: All known occurrences of FPS have been postnatally observed until now. Here, we present the first two prenatal cases identified during the second trimester of pregnancy. While affirming the presence of most postnatal abnormalities in prenatal cases, we note the absence of a progeroid appearance in young fetuses. Notably, our reports introduce new phenotypic features like encephalocele and nephromegaly, which were previously unseen postnatally. Moreover, paternal SLC25A24 mosaicism was detected in one case. CONCLUSIONS: We present the initial two fetal instances of FPS, complemented by thorough phenotypic and genetic assessments. Our findings expand the phenotypical spectrum of FPS, unveiling new fetal phenotypic characteristics. Furthermore, one case underscores a potential novel inheritance pattern in this disorder. Lastly, our observations emphasize the efficacy of exome/genome sequencing in both prenatal and postmortem diagnosis of rare polymalformative syndromes with a normal karyotype and array-based comparative genomic hybridization (CGH).


Subject(s)
Genotype , Mosaicism , Phenotype , Prenatal Diagnosis , Humans , Mosaicism/embryology , Female , Pregnancy , Prenatal Diagnosis/methods , Male , Fetus , Adult , Mitochondrial Proteins/genetics , Mutation/genetics , Progeria/genetics , Calcium-Binding Proteins , Antiporters
5.
Respir Res ; 25(1): 267, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970088

ABSTRACT

BACKGROUND: Lung cancer is the second most common cancer with the highest mortality in the world. Calumenin as a molecular chaperone that not only binds various proteins within the endoplasmic reticulum but also plays crucial roles in diverse processes associated with tumor development. However, the regulatory mechanism of calumenin in lung adenocarcinoma remains elusive. Here, we studied the impact of calumenin on lung adenocarcinoma and explored possible mechanisms. METHODS: 5-ethynyl-2'-deoxyuridine assay, colony formation, transwell and wound healing assays were performed to explore the effects of calumenin on the proliferation and migration of lung adenocarcinoma cells. To gain insights into the underlying mechanisms through which calumenin knockdown inhibits the migration and proliferation of lung adenocarcinoma, we performed Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis and Ingenuity Pathway Analysis based on transcriptomics by comparing calumenin knockdown with normal A549 cells. RESULTS: The mRNA and protein levels of calumenin in lung adenocarcinoma are highly expressed and they are related to an unfavorable prognosis in this disease. Calumenin enhances the proliferation and migration of A549 and H1299 cells. Gene Set Enrichment Analysis revealed that knockdown of calumenin in A549 cells significantly inhibited MYC and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog signaling pathways while activating interferon signals, inflammatory signals, and p53 pathways. Ingenuity pathway analysis provided additional insights, indicating that the interferon and inflammatory pathways were prominently activated upon calumenin knockdown in A549 cells. CONCLUSIONS: The anti-cancer mechanism of calumenin knockdown might be related to the inhibition of MYC and KRAS signals but the activation of interferon signals, inflammatory signals and p53 pathways.


Subject(s)
Adenocarcinoma of Lung , Cell Movement , Cell Proliferation , Lung Neoplasms , Neoplasm Invasiveness , Humans , Cell Proliferation/physiology , Cell Movement/physiology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Disease Progression , A549 Cells , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic
6.
Methods Mol Biol ; 2842: 167-178, 2024.
Article in English | MEDLINE | ID: mdl-39012595

ABSTRACT

In this chapter, we present an experimental protocol to conduct DNA methylation editing experiments, that is, to induce loss or gain of DNA methylation, targeting Dlk1-Dio3 imprinted domain, a well-studied imprinted locus, in ES cells. In this protocol, plasmid vectors expressing the DNA methylation editing tools, combining the CRISPR/dCas9 system and the SunTag system coupled to a DNA methyltransferase or a TET enzyme, are introduced into cells for transient expression. By employing this strategy, researchers can effectively investigate a distinct DNA methylation signature that has an impact on the imprinting status, including gene expression and histone modifications, across the entire domain. We also describe strategies for allele-specific quantitative analyses of DNA methylation, gene expression, and histone modifications and binding protein levels for assessing the imprinting state of the locus.


Subject(s)
CRISPR-Cas Systems , DNA Methylation , Gene Editing , Genomic Imprinting , Gene Editing/methods , Animals , Mice , Genetic Loci , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Iodide Peroxidase/genetics , Alleles , Humans
7.
Sci Adv ; 10(27): eadl1197, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959305

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.


Subject(s)
Carcinoma, Pancreatic Ductal , Fibrosis , Pancreatic Neoplasms , Proteomics , Animals , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Proteomics/methods , Mice , Humans , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Disease Models, Animal , Cell Line, Tumor , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Cell Adhesion Molecules
8.
J Mol Model ; 30(8): 248, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965105

ABSTRACT

CONTEXT: Calcium-dependent signaling in plants is responsible for several major cellular events, including the activation of the salinity-responsive pathways. Calcium binds to calcineurin B-like protein (CBL), and the resulting CBL-Ca2+ complex binds to CBL-interacting protein kinase (CIPK). The CBL-CIPK complex enhances the CIPK interaction with an upstream kinase. The upstream kinase phosphorylates CIPK that, in turn, phosphorylates membrane transporters. Phosphorylation influences transporter activity to kick-start many downstream functions, such as balancing the cytosolic Na+-to-K+ ratio. The CBL-CIPK interaction is pivotal for Ca2+-dependent salinity stress signaling. METHODS: Computational methods are used to model the entire Arabidopsis thaliana CIPK24 protein structure in its autoinhibited and open-activated states. Arabidopsis thaliana CIPK24-CBL4 complex is predicted based on the protein-protein docking methods. The available structural and functional data support the CIPK24 and the CIPK24-CBL4 complex models. Models are energy-minimized and subjected to molecular dynamics (MD) simulations. MD simulations for 500 ns and 300 ns enabled us to predict the importance of conserved residues of the proteins. Finally, the work is extended to predict the CIPK24-CBL4 complex with the upstream kinase GRIK2. MD simulation for 300 ns on the ternary complex structure enabled us to identify the critical CIPK24-GRIK2 interactions. Together, these data could be used to engineer the CBL-CIPK interaction network for developing salt tolerance in crops.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Calcium-Binding Proteins , Molecular Dynamics Simulation , Protein Serine-Threonine Kinases , Salt Stress , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Arabidopsis/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/chemistry , Protein Binding , Phosphorylation , Molecular Docking Simulation
9.
BMC Pediatr ; 24(1): 426, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961351

ABSTRACT

BACKGROUND: Adipose tissue is significantly involved in inflammatory bowel disease (IBD). Vitamin D can affect both adipogenesis and inflammation. The aim of this study was to compare the production of selected adipokines, potentially involved in the pathogenesis of IBD - adiponectin, resistin, retinol binding protein 4 (RBP-4), adipocyte fatty acid binding protein and nesfatin-1 in children with IBD according to the presence of 25-hydroxyvitamin D (25(OH)D) deficiency. METHODS: The study was conducted as a case-control study in pediatric patients with IBD and healthy children of the same sex and age. In addition to adipokines and 25(OH)D, anthropometric parameters, markers of inflammation and disease activity were assessed in all participants. RESULTS: Children with IBD had significantly higher resistin levels regardless of 25(OH)D levels. IBD patients with 25(OH)D deficiency only had significantly lower RBP-4 compared to healthy controls and also compared to IBD patients without 25(OH)D deficiency. No other significant differences in adipokines were found in children with IBD with or without 25(OH)D deficiency. 25(OH)D levels in IBD patients corelated with RBP-4 only, and did not correlate with other adipokines. CONCLUSIONS: Whether the lower RBP-4 levels in the 25(OH)D-deficient group of IBD patients directly reflect vitamin D deficiency remains uncertain. The production of other adipokines does not appear to be directly related to vitamin D deficiency.


Subject(s)
Adipokines , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D Deficiency/complications , Vitamin D Deficiency/blood , Male , Female , Child , Case-Control Studies , Adipokines/blood , Adolescent , Vitamin D/blood , Vitamin D/analogs & derivatives , Retinol-Binding Proteins, Plasma/metabolism , Retinol-Binding Proteins, Plasma/analysis , Resistin/blood , Nucleobindins/blood , Adiponectin/blood , Adiponectin/deficiency , Calcium-Binding Proteins/blood , Fatty Acid-Binding Proteins/blood , DNA-Binding Proteins/blood , Biomarkers/blood , Inflammatory Bowel Diseases/blood , Inflammatory Bowel Diseases/complications
10.
Nat Commun ; 15(1): 5567, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956087

ABSTRACT

Diabetes involves the death or dysfunction of pancreatic ß-cells. Analysis of bulk sequencing from human samples and studies using in vitro and in vivo models suggest that endoplasmic reticulum and inflammatory signaling play an important role in diabetes progression. To better characterize cell type-specific stress response, we perform multiplexed single-cell RNA sequencing to define the transcriptional signature of primary human islet cells exposed to endoplasmic reticulum and inflammatory stress. Through comprehensive pair-wise analysis of stress responses across pancreatic endocrine and exocrine cell types, we define changes in gene expression for each cell type under different diabetes-associated stressors. We find that ß-, α-, and ductal cells have the greatest transcriptional response. We utilize stem cell-derived islets to study islet health through the candidate gene CIB1, which was upregulated under stress in primary human islets. Our findings provide insights into cell type-specific responses to diabetes-associated stress and establish a resource to identify targets for diabetes therapeutics.


Subject(s)
Endoplasmic Reticulum Stress , Insulin-Secreting Cells , Islets of Langerhans , Humans , Endoplasmic Reticulum Stress/genetics , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Single-Cell Analysis , Glucagon-Secreting Cells/metabolism , Sequence Analysis, RNA , Transcriptome , Stress, Physiological
11.
Sci Rep ; 14(1): 15091, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956220

ABSTRACT

Fibulin-2 is a multidomain, disulfide-rich, homodimeric protein which belongs to a broader extracellular matrix family. It plays an important role in the development of elastic fiber structures. Malfunction of fibulin due to mutation or poor expression can result in a variety of diseases including synpolydactyly, limb abnormalities, eye disorders leading to blindness, cardiovascular diseases and cancer. Traditionally, fibulins have either been produced in mammalian cell systems or were isolated from the extracellular matrix, a procedure that results in poor availability for structural and functional studies. Here, we produced seven fibulin-2 constructs covering 62% of the mature protein (749 out of 1195 residues) using a prokaryotic expression system. Biophysical studies confirm that the purified constructs are folded and that the presence of disulfide bonds within the constructs makes them extremely thermostable. In addition, we solved the first crystal structure for any fibulin isoform, a structure corresponding to the previously suggested three motifs related to anaphylatoxin. The structure reveals that the three anaphylatoxins moieties form a single-domain structure.


Subject(s)
Calcium-Binding Proteins , Humans , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/genetics , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Protein Stability , Protein Domains
12.
Nat Commun ; 15(1): 5985, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013850

ABSTRACT

The mechanism by which aging induces aortic aneurysm and dissection (AAD) remains unclear. A total of 430 participants were recruited for the screening of differentially expressed plasma microRNAs (miRNAs). We found that miR-1204 is significantly increased in both the plasma and aorta of elder patients with AAD and is positively correlated with age. Cell senescence induces the expression of miR-1204 through p53 interaction with plasmacytoma variant translocation 1, and miR-1204 induces vascular smooth muscle cell (VSMC) senescence to form a positive feedback loop. Furthermore, miR-1204 aggravates angiotensin II-induced AAD formation, and inhibition of miR-1204 attenuates ß-aminopropionitrile monofumarate-induced AAD development in mice. Mechanistically, miR-1204 directly targets myosin light chain kinase (MYLK), leading to the acquisition of a senescence-associated secretory phenotype (SASP) by VSMCs and loss of their contractile phenotype. MYLK overexpression reverses miR-1204-induced VSMC senescence, SASP and contractile phenotypic changes, and the decrease of transforming growth factor-ß signaling pathway. Our findings suggest that aging aggravates AAD via the miR-1204-MYLK signaling axis.


Subject(s)
Aging , Aortic Aneurysm , Aortic Dissection , Cellular Senescence , MicroRNAs , Muscle, Smooth, Vascular , Myosin-Light-Chain Kinase , Signal Transduction , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Myosin-Light-Chain Kinase/metabolism , Myosin-Light-Chain Kinase/genetics , Aging/genetics , Aging/metabolism , Male , Humans , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Aortic Dissection/metabolism , Aortic Dissection/genetics , Aortic Dissection/pathology , Aortic Aneurysm/metabolism , Aortic Aneurysm/genetics , Aortic Aneurysm/pathology , Myocytes, Smooth Muscle/metabolism , Mice, Inbred C57BL , Female , Transforming Growth Factor beta/metabolism , Disease Models, Animal , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Angiotensin II/metabolism , Calcium-Binding Proteins
13.
Mol Biol Rep ; 51(1): 821, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023636

ABSTRACT

BACKGROUND: Our previous study has demonstrated that Nischarin (NISCH) exerts its antitumor effects in breast cancer (BC) by suppressing cell migration and invasion. This study aims to explore the underlying mechanism through which NISCH functions in BC. METHODS AND RESULTS: The relevance between EGF Like Repeats and Discoidin Domains 3 (EDIL3) mRNA expression and the overall survival of tumor patients was depicted by the Kaplan-Meier curve. The findings revealed that overexpressed NISCH attenuated cell motility and colony-forming capacities of Hs578T cells, yet silenced NISCH in MDA-MB-231 cells led to contrasting results. Western blot (WB) analysis indicated that overexpression of NISCH significantly down-regulated the Vimentin and Slug expression, and inactivated the FAK/ERK signaling pathway. RNA sequencing (RNA-seq) was performed in NISCH-overexpressed Hs578T cells and the control cells to analyze differentially expressed genes (DeGs), and the results showed a significant down-regulation of EDIL3 mRNA level upon overexpression of NISCH. Subsequent functional analyses demonstrated that overexpression of EDIL3 attenuated the inhibitory effect of NISCH on cell migration, invasion, colony formation, and tube formation. CONCLUSION: In summary, our finding preliminarily revealed that NISCH inhibits the epithelial-mesenchymal transition (EMT) process and angiogenesis in BC cells by down-regulating EDIL3 to inactivate the FAK/ERK signaling pathway, thereby suppressing the progression of BC. Our results hold promise for contributing to the deep understanding of BC pathogenesis and identifying new therapeutic strategies for clinical application.


Subject(s)
Breast Neoplasms , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System , Neovascularization, Pathologic , Humans , Epithelial-Mesenchymal Transition/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Cell Movement/genetics , MAP Kinase Signaling System/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Cell Proliferation/genetics , Vimentin/metabolism , Vimentin/genetics , Signal Transduction , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Angiogenesis , Calcium-Binding Proteins , Cell Adhesion Molecules
14.
Nat Commun ; 15(1): 5188, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898014

ABSTRACT

Autophagy is relevant for diverse processes in eukaryotic cells, making its regulation of fundamental importance. The formation and maturation of autophagosomes require a complex choreography of numerous factors. The endosomal sorting complex required for transport (ESCRT) is implicated in the final step of autophagosomal maturation by sealing of the phagophore membrane. ESCRT-III components were shown to mediate membrane scission by forming filaments that interact with cellular membranes. However, the molecular mechanisms underlying the recruitment of ESCRTs to non-endosomal membranes remain largely unknown. Here we focus on the ESCRT-associated protein ALG2-interacting protein X (ALIX) and identify Ca2+-dependent lipid binding protein 1 (CaLB1) as its interactor. Our findings demonstrate that CaLB1 interacts with AUTOPHAGY8 (ATG8) and PI(3)P, a phospholipid found in autophagosomal membranes. Moreover, CaLB1 and ALIX localize with ATG8 on autophagosomes upon salt treatment and assemble together into condensates. The depletion of CaLB1 impacts the maturation of salt-induced autophagosomes and leads to reduced delivery of autophagosomes to the vacuole. Here, we propose a crucial role of CaLB1 in augmenting phase separation of ALIX, facilitating the recruitment of ESCRT-III to the site of phagophore closure thereby ensuring efficient maturation of autophagosomes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Autophagosomes , Autophagy , Calcium-Binding Proteins , Endosomal Sorting Complexes Required for Transport , Arabidopsis/metabolism , Arabidopsis/genetics , Autophagosomes/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Phosphatidylinositol Phosphates/metabolism , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , Vacuoles/metabolism , Phase Separation
15.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892455

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken for the most relevant non-desmosomal disease genes. We retrospectively studied 320 unrelated Italian ACM patients, including 243 cases with predominant right-ventricular (ARVC) and 77 cases with predominant left-ventricular (ALVC) involvement, who did not carry pathogenic/likely pathogenic (P/LP) variants in desmosome-coding genes. The aim was to assess rare genetic variants in transmembrane protein 43 (TMEM43), desmin (DES), phospholamban (PLN), filamin c (FLNC), cadherin 2 (CDH2), and tight junction protein 1 (TJP1), based on current adjudication guidelines and reappraisal on reported literature data. Thirty-five rare genetic variants, including 23 (64%) P/LP, were identified in 39 patients (16/243 ARVC; 23/77 ALVC): 22 FLNC, 9 DES, 2 TMEM43, and 2 CDH2. No P/LP variants were found in PLN and TJP1 genes. Gene-based burden analysis, including P/LP variants reported in literature, showed significant enrichment for TMEM43 (3.79-fold), DES (10.31-fold), PLN (117.8-fold) and FLNC (107-fold). A non-desmosomal rare genetic variant is found in a minority of ARVC patients but in about one third of ALVC patients; as such, clinical decision-making should be driven by genes with robust evidence. More than two thirds of non-desmosomal P/LP variants occur in FLNC.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Humans , Arrhythmogenic Right Ventricular Dysplasia/genetics , Female , Male , Adult , Middle Aged , Membrane Proteins/genetics , Cadherins/genetics , Desmosomes/genetics , Desmosomes/metabolism , Genetic Predisposition to Disease , Genetic Variation , Filamins/genetics , Retrospective Studies , Italy , Calcium-Binding Proteins/genetics , Antigens, CD/genetics
16.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38876797

ABSTRACT

Calcium is critical for regulating the waveform of motile cilia and flagella. Calaxin is currently the only known molecule involved in the calcium-dependent regulation in ascidians. We have recently shown that Calaxin stabilizes outer arm dynein (OAD), and the knockout of Calaxin results in primary ciliary dyskinesia phenotypes in vertebrates. However, from the knockout experiments, it was not clear which functions depend on calcium and how Calaxin regulates the waveform. To address this question, here, we generated transgenic zebrafish expressing a mutant E130A-Calaxin deficient in calcium binding. E130A-Calaxin restored the OAD reduction of calaxin -/- sperm and the abnormal movement of calaxin -/- left-right organizer cilia, showing that Calaxin's stabilization of OADs is calcium-independent. In contrast, our quantitative analysis of E130A-Calaxin sperms showed that the calcium-induced asymmetric beating was not restored, linking Calaxin's calcium-binding ability with an asymmetric flagellar beating for the first time. Our data show that Calaxin is a calcium-dependent regulator of the ciliary beating and a calcium-independent OAD stabilizer.


Subject(s)
Calcium-Binding Proteins , Spermatozoa , Zebrafish Proteins , Zebrafish , Animals , Male , Animals, Genetically Modified , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cilia/metabolism , Dyneins/metabolism , Dyneins/genetics , Flagella/metabolism , Flagella/physiology , Sperm Motility/genetics , Sperm Motility/physiology , Spermatozoa/metabolism , Spermatozoa/physiology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Cytoskeletal Proteins/metabolism
17.
Neuromolecular Med ; 26(1): 27, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935278

ABSTRACT

Glioma is the most common primary intracranial tumor with high mortality and poor prognosis. The purpose of this study was to investigate how single-nucleotide polymorphisms (SNPs) of the NID2 gene affect glioma risk and prognosis. Four candidate SNPs of NID2 in 529 glioma patients and 478 healthy controls were successfully genotyped by Agena MassARRAY mass spectrometer. Logistic regression was utilized to assess the associations between NID2 SNPs and glioma risk under different genetic models. Furthermore, the relationship between risk-related SNPs in NID2 and the prognosis of glioma patients was explored through Kaplan-Meier (KM) survival curve and Cox proportional hazard regression analysis. The results showed that rs11846847 (OR 1.24, p = 0.017) and rs1874569 (OR 1.22, p = 0.026) were significantly associated with an increased risk of glioma, and rs11846847 also had a risk-increasing effect on glioma in participants ≤ 40 years old. The interaction model of rs11846847 and rs1874569 could be more suitable for forecasting glioma risk. We also discovered a significant association between rs1874569 and poor prognosis in glioma patients (HR 1.32, p = 0.039) and especially CC genotype was relevant to shorter overall survival (OS) and progression-free survival (PFS) in patients with high-grade glioma. Additionally, the study demonstrated that gross total resection or chemotherapy improve glioma prognosis in the Chinese Han population. This study is the first to provide evidence for the association of NID2 SNPs with glioma risk and prognosis, suggesting that NID2 variants might be potential factors for glioma.


Subject(s)
Asian People , Brain Neoplasms , Calcium-Binding Proteins , Genetic Predisposition to Disease , Glioma , Polymorphism, Single Nucleotide , Humans , Glioma/genetics , Glioma/mortality , Female , Male , Brain Neoplasms/genetics , Prognosis , Adult , Middle Aged , Asian People/genetics , Calcium-Binding Proteins/genetics , China/epidemiology , Case-Control Studies , Kaplan-Meier Estimate , Genotype , Proportional Hazards Models , Risk Factors , East Asian People , Cell Adhesion Molecules
18.
Adv Respir Med ; 92(3): 218-229, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38921061

ABSTRACT

Ragweed pollen allergy is the most common seasonal allergy in western Romania. Prolonged exposure to ragweed pollen may induce sensitization to pan-allergens such as calcium-binding proteins (polcalcins) and progression to more severe symptoms. We aimed to detect IgE sensitization to recombinant Amb a 9 and Amb a 10 in a Romanian population, to assess their potential clinical relevance and cross-reactivity, as well as to investigate the relation with clinical symptoms. rAmb a 9 and rAmb a 10 produced in Escherichia coli were used to detect specific IgE in sera from 87 clinically characterized ragweed-allergic patients in ELISA, for basophil activation experiments and rabbit immunization. Rabbit rAmb a 9- and rAmb a 10-specific sera were used to detect possible cross-reactivity with rArt v 5 and reactivity towards ragweed and mugwort pollen extracts. The results showed an IgE reactivity of 25% to rAmb a 9 and 35% to rAmb a 10. rAmb a 10 induced basophil degranulation in three out of four patients tested. Moreover, polcalcin-negative patients reported significantly more skin symptoms, whereas polcalcin-positive patients tended to report more respiratory symptoms. Furthermore, both rabbit antisera showed low reactivity towards extracts and showed high reactivity to rArt v 5, suggesting strong cross-reactivity. Our study indicated that recombinant ragweed polcalcins might be considered for molecular diagnosis.


Subject(s)
Calcium-Binding Proteins , Cross Reactions , Immunoglobulin E , Rhinitis, Allergic, Seasonal , Humans , Immunoglobulin E/blood , Immunoglobulin E/immunology , Cross Reactions/immunology , Rhinitis, Allergic, Seasonal/immunology , Rhinitis, Allergic, Seasonal/blood , Romania , Calcium-Binding Proteins/immunology , Antigens, Plant/immunology , Allergens/immunology , Female , Male , Ambrosia/immunology , Rabbits , Adult , Plant Extracts
19.
Retrovirology ; 21(1): 11, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38945996

ABSTRACT

BACKGROUND: Since the introduction of combination antiretroviral therapy (cART) the brain has become an important human immunodeficiency virus (HIV) reservoir due to the relatively low penetration of many drugs utilized in cART into the central nervous system (CNS). Given the inherent limitations of directly assessing acute HIV infection in the brains of people living with HIV (PLWH), animal models, such as humanized mouse models, offer the most effective means of studying the effects of different viral strains and their impact on HIV infection in the CNS. To evaluate CNS pathology during HIV-1 infection in the humanized bone marrow/liver/thymus (BLT) mouse model, a histological analysis was conducted on five CNS regions, including the frontal cortex, hippocampus, striatum, cerebellum, and spinal cord, to delineate the neuronal (MAP2ab, NeuN) and neuroinflammatory (GFAP, Iba-1) changes induced by two viral strains after 2 weeks and 8 weeks post-infection. RESULTS: Findings reveal HIV-infected human cells in the brain of HIV-infected BLT mice, demonstrating HIV neuroinvasion. Further, both viral strains, HIV-1JR-CSF and HIV-1CH040, induced neuronal injury and astrogliosis across all CNS regions following HIV infection at both time points, as demonstrated by decreases in MAP2ab and increases in GFAP fluorescence signal, respectively. Importantly, infection with HIV-1JR-CSF had more prominent effects on neuronal health in specific CNS regions compared to HIV-1CH040 infection, with decreasing number of NeuN+ neurons, specifically in the frontal cortex. On the other hand, infection with HIV-1CH040 demonstrated more prominent effects on neuroinflammation, assessed by an increase in GFAP signal and/or an increase in number of Iba-1+ microglia, across CNS regions. CONCLUSION: These findings demonstrate that CNS pathology is widespread during acute HIV infection. However, neuronal loss and the magnitude of neuroinflammation in the CNS is strain dependent indicating that strains of HIV cause differential CNS pathologies.


Subject(s)
Disease Models, Animal , HIV Infections , HIV-1 , Neuroinflammatory Diseases , Neurons , Animals , Mice , HIV Infections/virology , HIV Infections/pathology , HIV Infections/complications , Humans , Neurons/virology , Neurons/pathology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/virology , Brain/pathology , Brain/virology , Glial Fibrillary Acidic Protein/metabolism , Calcium-Binding Proteins/metabolism , Microfilament Proteins/metabolism
20.
Phytomedicine ; 131: 155758, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843643

ABSTRACT

BACKGROUND: The adaptor protein apoptosis-associated speck-like protein (ASC) containing a caspase recruitment domain (CARD) can be activated through pyrin domain (PYD) interactions between sensors and ASC, and through CARD interactions between caspase-1 and ASC. Although the majority of ternary inflammasome complexes depend on ASC, drugs targeting ASC protein remain scarce. After screening natural compounds from Isatidis Radixin, we found that tryptanthrin (TPR) could inhibit NLRP3-induced IL-1ß and caspase-1 production, but the underlying anti-inflammatory mechanisms remain to be elucidated. PURPOSE: The purpose of this study was to determine the impact of TPR on the NLRP3, NLRC4, and AIM2 inflammasomes and the underlying mechanisms. Additionally, the efficacy of TPR was analysed in the further course of methionine- and choline-deficient (MCD)-induced NASH and lipopolysaccharide (LPS)-induced sepsis models of mice. METHODS: In vitro studies used bone marrow-derived macrophages to assess the anti-inflammatory activity of TPR, and the techniques included western blot, testing of intracellular K+ and Ca2+, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), co-immunoprecipitation, ASC oligomerization assay, surface plasmon resonance (SPR), and molecular docking. We used LPS-induced sepsis models and MCD-induced NASH models in vivo to evaluate the effectiveness of TPR in inhibiting inflammatory diseases. RESULTS: Our observations suggested that TPR could inhibit NLRP3, NLRC4, and AIM2 inflammasome activation. As shown in a mouse model of inflammatory diseases caused by MCD-induced NASH and LPS-induced sepsis, TPR significantly alleviated the progression of diseases. TPR interrupted the interactions between ASC and NLRP3/NLRC4/AIM2 in the co-immunoprecipitation experiment, and stable binding of TPR to ASC was also evident in SPR experiments. The underlying mechanisms of anti-inflammatory activities of TPR might be associated with targeting ASC, in particular, PYD domain of ASC. CONCLUSION: In general, the requirement for ASC in multiple inflammasome complexes makes TPR, as a novel broad-spectrum inflammasome inhibitor, potentially useful for treating a wide range of multifactorial inflammasome-related diseases.


Subject(s)
CARD Signaling Adaptor Proteins , Calcium-Binding Proteins , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Non-alcoholic Fatty Liver Disease , Quinazolines , Animals , Inflammasomes/metabolism , Inflammasomes/drug effects , CARD Signaling Adaptor Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Calcium-Binding Proteins/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Quinazolines/pharmacology , Mice , Apoptosis Regulatory Proteins/metabolism , Interleukin-1beta/metabolism , DNA-Binding Proteins/metabolism , Caspase 1/metabolism , Sepsis/drug therapy , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides , Macrophages/drug effects , Macrophages/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...