Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.520
Filter
1.
Infect Genet Evol ; 122: 105617, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857640

ABSTRACT

Unlike pandemic GII.4 norovirus, GII.6 norovirus shows limited sequence variation in its major capsid protein VP1. In this study, we investigated the VP1 expression profiles, binding abilities, and cross-blocking effects of three GII.6 norovirus strains derived from three distinct variants. Norovirus VP1 was expressed using a recombinant baculovirus expression system and characterized by transmission electron microscopy, mass spectrometry, salivary histo-blood group antigen (HBGA)-virus like particles (VLPs) binding and binding blockade assays. Mass spectrometry revealed the expected molecular weight (MW) of full-length proteins and degraded or cleaved fragments of all three VP1 proteins. Peptide mapping showed loss of 2 and 3 amino acids from the N- and C-terminus, respectively. Further, the co-expression of VP1 and VP2 proteins did not lead to extra fragmentation during mass spectrometry. Salivary HBGA-VLP binding assay revealed similar binding patterns of the three GII.6 VP1 proteins. Salivary HBGA-VLP binding blockade assay induced cross-blocking effects. Our results demonstrate similar binding abilities against salivary HBGAs and specific cross-blocking effects for GII.6 norovirus strains derived from distinct variants, suggesting that fewer GII.6 strains from different evolutionary variants are needed for the development of norovirus vaccines.


Subject(s)
Capsid Proteins , Norovirus , Norovirus/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Humans , Blood Group Antigens/metabolism , Caliciviridae Infections/virology , Protein Binding
2.
Arch Virol ; 169(7): 138, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847856

ABSTRACT

Human norovirus (HuNoV) is responsible for most cases of gastroenteritis worldwide, but information about the prevalence and diversity of HuNoV infections in lower-income settings is lacking. In order to provide more information about the burden and distribution of norovirus in Nigeria, we systematically reviewed original published research articles on the prevalence of HuNoV in Nigeria by accessing databases, including PubMed, Web of Science, ScienceDirect, Google Scholar, and African Journals Online (AJOL). The protocol for the review was registered on PROSPERO (registration number CRD42022308857). Thirteen relevant articles were included in the review, and 10 of them were used for meta-analysis. The pooled prevalence of HuNoV-associated gastroenteritis among children below 5 years of age in Nigeria, determined using the random-effects model, was 10.9% (95% CI, 6.7-16.7%). Among children below the age of 5 presenting with HuNoV infections, the highest prevalence was in children ≤2 years old (n = 127, 83%). The prevalence of HuNoV infections was seen to decrease with increasing age. In addition, HuNoV was detected in asymptomatic food handlers, bats, and seafoods. A total of 85 sequences of HuNoV isolates from Nigeria have been determined, and based on those sequences, the most prevalent norovirus genogroup was GII (84%). Genotypes GII.4 and GI.3 were the most frequently identified genotypes, with GII.4 constituting 46% of all of the HuNoVs identified in Nigeria. These results suggest a risk associated with cocirculation of emerging variants with known genotypes because of their recombination potential. Larger molecular epidemiological studies are still needed to fully understand the extent and pattern of circulation of HuNoVs in Nigeria.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Child, Preschool , Humans , Infant , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Gastroenteritis/epidemiology , Gastroenteritis/virology , Genotype , Nigeria/epidemiology , Norovirus/genetics , Norovirus/classification , Norovirus/isolation & purification , Phylogeny , Prevalence , Infant, Newborn
3.
Pol J Microbiol ; 73(2): 253-262, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38905280

ABSTRACT

To establish a rapid detection method for norovirus GII.2 genotype, this study employed reverse transcription recombinase polymerase amplification (RT-RPA) combined with CRISPR/Cas12a and lateral flow strip (RT-RPA-Cas12a-LFS). Here, the genome of norovirus GII.2 genotype was compared to identify highly conserved sequences, facilitating the design of RT-RPA primers and crRNA specific to the conserved regions of norovirus GII.2. Subsequently, the reaction parameters of RT-RPA were optimized and evaluated using agar-gel electrophoresis and LFS. The results indicate that the conserved sequences of norovirus GII.2 were successfully amplified through RT-RPA at 37°C for 25 minutes. Additionally, CRISPR/Cas12a-mediated cleavage detection was achieved through LFS at 37°C within 10 minutes using the amplification products as templates. Including the isothermal amplification reaction time, the total time is 35 minutes. The established RT-RPA-Cas12a-LFS method demonstrated specific detection of norovirus GII.2, yielding negative results for other viral genomes, and exhibited an excellent detection limit of 10 copies/µl. The RT-RPA-Cas12a-LFS method was further compared with qRT-PCR by analyzing 60 food-contaminated samples. The positive conformity rate was 100%, the negative conformity rate was 95.45%, and the overall conformity rate reached 98.33%. This detection method for norovirus GII.2 genotype is cost-effective, highly sensitive, specific, and easy to operate, offering a promising technical solution for field-based detection of the norovirus GII.2 genotype.


Subject(s)
Genotype , Norovirus , Norovirus/genetics , Norovirus/isolation & purification , Nucleic Acid Amplification Techniques/methods , CRISPR-Cas Systems , Humans , RNA, Viral/genetics , Caliciviridae Infections/virology , Caliciviridae Infections/diagnosis , Sensitivity and Specificity
4.
Viruses ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38932216

ABSTRACT

Diarrhea, often caused by viruses like rotavirus (RV) and norovirus (NV), is a global health concern. This study focuses on RV and NV in Jining City from 2021 to 2022. Between 2021 and 2022, a total of 1052 diarrhea samples were collected. Real-Time Quantitative Fluorescent Reverse Transcriptase-PCR was used to detect RV-A, NV GI, and NV GII. For RV-A-positive samples, VP7 and VP4 genes were sequenced for genotype analysis, followed by the construction of evolutionary trees. Likewise, for NV-GII-positive samples, VP1 and RdRp genes were sequenced for genotypic analysis, and evolutionary trees were subsequently constructed. Between 2021 and 2022, Jining City showed varying detection ratios: RV-A alone (excluding co-infection of RV-A and NV GII) at 7.03%, NV GI at 0.10%, NV GII alone (excluding co-infection of RV-A and NV GII) at 5.42%, and co-infection of RV-A and NV GII at 1.14%. The highest RV-A ratios were shown in children ≤1 year and 2-5 years. Jining, Jinxiang County, and Liangshan County had notably high RV-A ratios at 24.37% (excluding co-infection of RV-A and NV GII) and 18.33% (excluding co-infection of RV-A and NV GII), respectively. Jining, Qufu, and Weishan had no RV-A positives. Weishan showed the highest NV GII ratios at 35.48% (excluding co-infection of RV-A and NV GII). Genotype analysis showed that, in 2021, G9P[8] and G2P[4] were dominant at 94.44% and 5.56%, respectively. In 2022, G8P[8], G9P[8], and G1P[8] were prominent at 75.86%, 13.79%, and 10.35%, respectively. In 2021, GII.3[P12], GII.4[P16], and GII.4[P31] constituted 71.42%, 14.29%, and 14.29%, respectively. In 2022, GII.3[P12] and GII.4[P16] accounted for 55.00% and 45.00%, respectively. RV-A and NV showed varying patterns for different time frames, age groups, and regions within Jining. Genotypic shifts were also observed in prevalent RV-A and NV GII strains in Jining City from 2021 to 2022. Ongoing monitoring of RV-A and NV is recommended for effective prevention and control.


Subject(s)
Caliciviridae Infections , Diarrhea , Genotype , Norovirus , Phylogeny , Rotavirus Infections , Rotavirus , Norovirus/genetics , Norovirus/classification , Norovirus/isolation & purification , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Humans , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Child, Preschool , Infant , Diarrhea/virology , Diarrhea/epidemiology , Child , China/epidemiology , Female , Coinfection/virology , Coinfection/epidemiology , Gastroenteritis/virology , Gastroenteritis/epidemiology , Feces/virology , Male , Adult , Adolescent , Capsid Proteins/genetics , Infant, Newborn , Young Adult , Middle Aged
5.
Virulence ; 15(1): 2360133, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38803081

ABSTRACT

Norovirus (NV) infection causes acute gastroenteritis in children and adults. Upon infection with NV, specific CD8+ T cells, which play an important role in anti-infective immunity, are activated in the host. Owing to the NV's wide genotypic variability, it is challenging to develop vaccines with cross-protective abilities against infection. To aid effective vaccine development, we examined specific CD8+ T-cell responses towards viral-structural protein (VP) epitopes, which enable binding to host susceptibility receptors. We isolated peripheral blood mononuclear cells from 196 participants to screen and identify predominant core peptides towards NV main and small envelope proteins using ex vivo and in vitro intracellular cytokine staining assays. Human leukocyte antigen (HLA) restriction characteristics were detected using next-generation sequencing. Three conservative immunodominant VP-derived CD8+ T-cell epitopes, VP294-102 (TDAARGAIN), VP2153-161 (RGPSNKSSN), and VP1141-148 (FPHIIVDV), were identified and restrictively presented by HLA-Cw * 0102, HLA-Cw * 0702, and HLA-A *1101 alleles, separately. Our findings provide useful insights into the development of future vaccines and treatments for NV infection.


Subject(s)
CD8-Positive T-Lymphocytes , Caliciviridae Infections , Capsid Proteins , Epitopes, T-Lymphocyte , Gastroenteritis , Norovirus , Humans , CD8-Positive T-Lymphocytes/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Caliciviridae Infections/immunology , Caliciviridae Infections/virology , Norovirus/immunology , Norovirus/genetics , Adult , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Male , Gastroenteritis/virology , Gastroenteritis/immunology , Female , Middle Aged , Young Adult , Child , Adolescent , Leukocytes, Mononuclear/immunology , Immunodominant Epitopes/immunology , Child, Preschool , Aged
6.
BMC Infect Dis ; 24(1): 547, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822241

ABSTRACT

Noroviruses are the second leading cause of death in children under the age of 5 years old. They are responsible for 200 million cases of diarrhoea and 50,000 deaths in children through the word, mainly in low-income countries. The objective of this review was to assess how the prevalence and genetic diversity of noroviruses have been affected by the introduction of rotavirus vaccines in Africa. PubMed, Web of Science and Science Direct databases were searched for articles. All included studies were conducted in Africa in children aged 0 to 5 years old with gastroenteritis. STATA version 16.0 software was used to perform the meta-analysis. The method of Dersimonian and Laird, based on the random effects model, was used for the statistical analyses in order to estimate the pooled prevalence's at a 95% confidence interval (CI). Heterogeneity was assessed by Cochran's Q test using the I2 index. The funnel plot was used to assess study publication bias. A total of 521 studies were retrieved from the databases, and 19 were included in the meta-analysis. The pooled norovirus prevalence's for pre- and post-vaccination rotavirus studies were 15% (95 CI, 15-18) and 13% (95 CI, 09-17) respectively. GII was the predominant genogroup, with prevalence of 87.64% and 91.20% respectively for the pre- and post-vaccination studies. GII.4 was the most frequently detected genotype, with rates of 66.84% and 51.24% respectively for the pre- and post-vaccination studies. This meta-analysis indicates that rotavirus vaccination has not resulted in a decrease in norovirus infections in Africa.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Genetic Variation , Norovirus , Rotavirus Infections , Rotavirus Vaccines , Humans , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Infant , Africa/epidemiology , Child, Preschool , Caliciviridae Infections/epidemiology , Caliciviridae Infections/prevention & control , Caliciviridae Infections/virology , Norovirus/genetics , Norovirus/classification , Norovirus/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Gastroenteritis/virology , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Infant, Newborn , Prevalence , Rotavirus/genetics , Rotavirus/immunology , Rotavirus/classification , Vaccination/statistics & numerical data
7.
Arch Virol ; 169(6): 131, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819530

ABSTRACT

Noroviruses (NoVs) are the chief cause of acute viral gastroenteritis worldwide. By employing the major capsid protein VP1 of a GII.6 NoV strain as an immunogen, we generated two monoclonal antibodies (mAbs) with wide-spectrum binding activities against NoV genogroup II (GII) VP1 proteins. One mAb (10G7) could bind to native and denatured GII-specific VP1 proteins. The other mAb (10F2) could bind to all tested native GII VP1 proteins, but not to denatured GII.3, GII.4, GII.7, or GII.17 VP1 proteins. Using GII.6/GII.4 fusion proteins, the mAb 10F2 binding region was confirmed to be located in the C-terminal P1 domain. An enzyme-linked immunosorbent assay based on peptides covering the P domain did not detect any binding. Using a panel of VP1 proteins with swapped regions, deletions, and mutations, the mAb 10F2 binding region was determined to be located between residues 496 and 513. However, the residue(s) responsible for its varied binding affinity for different denatured GII VP1 proteins remain to be identified. In summary, two NoV GII-specific cross-reactive mAbs were generated, and their binding regions were determined. Our results might facilitate the detection and immunogenic study of NoVs.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Capsid Proteins , Epitopes , Norovirus , Norovirus/genetics , Norovirus/immunology , Antibodies, Monoclonal/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Epitopes/immunology , Epitopes/genetics , Antibodies, Viral/immunology , Animals , Antigens, Viral/immunology , Antigens, Viral/genetics , Mice , Humans , Caliciviridae Infections/virology , Caliciviridae Infections/immunology , Mice, Inbred BALB C , Epitope Mapping , Cross Reactions
8.
J Clin Virol ; 173: 105697, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820917

ABSTRACT

BACKGROUND: Molecular syndromic panels can improve rapidity of results and ease clinical laboratory workflow, although caution has been raised for potential false-positive results. Upon implementation of a new panel for infectious diarrhea (BioFire® FilmArray® Gastrointestinal [GI] Panel, bioMérieux) in our clinical laboratory, a higher than expected number of stool samples with norovirus were detected. OBJECTIVES: The goal of this study was to investigate positive percent agreement and the false-positive rate of norovirus detected by the multiplex BioFire GI panel compared to a singleplex commercial assay. STUDY DESIGN: From October 2023 to January 2024, all prospective stool samples with a positive norovirus result by BioFire had melting curves reviewed manually using the BioFire FilmArray Torch System. Stool samples further underwent testing by a supplementary real-time RT-PCR assay (Xpert® Norovirus, Cepheid) for comparative analysis. RESULTS: Of the 50 stool samples with norovirus detected by BioFire, 18 (36 %) tested negative by Xpert (deemed "false-positives"). Furthermore, melting curve analysis revealed nearly all of these samples had atypical melting curve morphologies for the "Noro-1" target on BioFire (16/18, 89 %), which was statistically significant (Odds Ratio 173.2, 95 % CI [22.2, 5326.9], p < 0.0001). Stool samples with multiple pathogens detected by BioFire including norovirus were not more likely to produce false-positive norovirus results (Odds Ratio 1, 95 % CI [0.3, 3.3], p = 1). CONCLUSIONS: Although not described in the manufacturer's Instructions for Use, we propose routine manual review of melting curves for the BioFire GI panel prior to reporting, to mitigate potential false-positive norovirus results.


Subject(s)
Caliciviridae Infections , Feces , Gastroenteritis , Norovirus , Norovirus/isolation & purification , Norovirus/genetics , Humans , Caliciviridae Infections/diagnosis , Caliciviridae Infections/virology , False Positive Reactions , Feces/virology , Prospective Studies , Gastroenteritis/virology , Gastroenteritis/diagnosis , Molecular Diagnostic Techniques/methods , Transition Temperature , Adult , Male , Female , Diarrhea/virology , Diarrhea/diagnosis , Middle Aged , Child, Preschool , Child , Aged , Adolescent , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Infant
9.
Virus Res ; 346: 199408, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797342

ABSTRACT

Noroviruses are a group of non-enveloped single-stranded positive-sense RNA virus belonging to Caliciviridae family. They can be transmitted by the fecal-oral route from contaminated food and water and cause mainly acute gastroenteritis. Outbreaks of norovirus infections could be difficult to detect and investigate. In this study, we developed a simple threshold detection approach based on variations of the P2 domain of the capsid protein. We obtained sequences from the norovirus hypervariable P2 region using Sanger sequencing, including 582 pairs of epidemiologically-related strains from 35 norovirus outbreaks and 6402 pairs of epidemiologically-unrelated strains during the four epidemic seasons. Genetic distances were calculated and a threshold was performed by adopting ROC (Receiver Operating Characteristic) curve which identified transmission clusters in all tested outbreaks with 80 % sensitivity. In average, nucleotide diversity between outbreaks was 67.5 times greater than the diversity within outbreaks. Simple and accurate thresholds for detecting norovirus transmissions of three genotypes obtained here streamlines molecular investigation of norovirus outbreaks, thus enabling rapid and efficient responses for the control of norovirus.


Subject(s)
Caliciviridae Infections , Capsid Proteins , Disease Outbreaks , Genotype , Norovirus , Polymorphism, Single Nucleotide , Norovirus/genetics , Norovirus/classification , Norovirus/isolation & purification , Caliciviridae Infections/transmission , Caliciviridae Infections/virology , Caliciviridae Infections/epidemiology , Humans , Capsid Proteins/genetics , Gastroenteritis/virology , Gastroenteritis/epidemiology , Sequence Analysis, DNA , Phylogeny , RNA, Viral/genetics , Genetic Variation
10.
Anal Biochem ; 692: 115576, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38796118

ABSTRACT

Regular monitoring of Norovirus presence in environmental and food samples is crucial due to its high transmission rates and outbreak potential. For detecting Norovirus GI, reverse transcription qPCR method is commonly used, but its sensitivity can be affected by assay performance. This study shows significantly reduced assay performance in digital PCR or qPCR when using primers targeting Norovirus GI genome 5291-5319 (NC_001959), located on the hairpin of the predicted RNA structure. It is highly recommended to avoid this region in commercial kit development or diagnosis to minimizing potential risk of false negatives.


Subject(s)
Norovirus , Reverse Transcriptase Polymerase Chain Reaction , Norovirus/genetics , Norovirus/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , RNA, Viral/genetics , RNA, Viral/analysis , Humans , Caliciviridae Infections/diagnosis , Caliciviridae Infections/virology
11.
Infect Genet Evol ; 122: 105607, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38806078

ABSTRACT

Caliciviruses (Caliciviridae) and astroviruses (Astroviridae) are among the leading cause of non-bacterial foodborne disease and gastroenteritis in human. These non-enveloped RNA viruses infect a wide range of vertebrate species including rodents. Rodents are among the most important hosts of infectious diseases globally and are responsible for over 80 zoonotic pathogens that affect humans. Therefore, screening pathogens in rodents will be is necessary to prevent cross-species transmission to prevent zoonotic outbreaks. In the present study, we screened caliciviruses and astroviruses in order to describe their diversity and whether they harbor strains that can infect humans. RNA was then extracted from intestine samples of 245 rodents and retrotranscribed in cDNA to screen caliciviruses and astroviruses by PCRs. All the samples tested negative for caliciviruses and while astroviruses were detected in 18 (7.3%) samples of Rattus rattus species. Phylogenetic analyses based on the RdRp gene showed that all the sequences belonged to Mamastrovirus genus in which they were genetically related to R. rattus related AstVs previously detected in Gabon or in Rattus spp. AstV from Kenya and Asia. These findings suggested that transportation such as land and railway, as well national and international trade, are likely to facilitate spread of AstVs by the dissemination of rodents.


Subject(s)
Astroviridae Infections , Astroviridae , Caliciviridae Infections , Caliciviridae , Phylogeny , Animals , Astroviridae/genetics , Astroviridae/classification , Astroviridae/isolation & purification , Caliciviridae Infections/virology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/transmission , Astroviridae Infections/virology , Astroviridae Infections/veterinary , Astroviridae Infections/epidemiology , Astroviridae Infections/transmission , Caliciviridae/genetics , Caliciviridae/isolation & purification , Caliciviridae/classification , Rodentia/virology , Commerce , Rats , Humans
12.
Viruses ; 16(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38793656

ABSTRACT

Human norovirus (HuNoV) is a leading global cause of viral gastroenteritis, contributing to numerous outbreaks and illnesses annually. However, conventional cell culture systems cannot support the cultivation of infectious HuNoV, making its detection and study in food and water matrices particularly challenging. Recent advancements in HuNoV research, including the emergence of models such as human intestinal enteroids (HIEs) and zebrafish larvae/embryo, have significantly enhanced our understanding of HuNoV pathogenesis. This review provides an overview of current methods employed for HuNoV detection in food and water, along with their associated limitations. Furthermore, it explores the potential applications of the HIE and zebrafish larvae/embryo models in detecting infectious HuNoV within food and water matrices. Finally, this review also highlights the need for further optimization and exploration of these models and detection methods to improve our understanding of HuNoV and its presence in different matrices, ultimately contributing to improved intervention strategies and public health outcomes.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Zebrafish , Animals , Humans , Caliciviridae Infections/virology , Caliciviridae Infections/diagnosis , Food Microbiology/methods , Gastroenteritis/virology , Norovirus/isolation & purification , Norovirus/genetics , Water Microbiology , Zebrafish/virology , Disease Models, Animal
13.
PLoS One ; 19(5): e0303887, 2024.
Article in English | MEDLINE | ID: mdl-38771749

ABSTRACT

BACKGROUND: Norovirus (NoV) is the leading cause of diarrheal disease worldwide and the impact is high in developing countries, including Ethiopia. Moreover, there is a significant and fluctuating global genetic diversity that varies across diverse environments over time. Nevertheless, there is a scarcity of data on the genetic diversity of NoV in Ethiopia. OBJECTIVE: This study was aimed to assess the genetic diversity and distribution of NoVs circulating in the Amhara National Regional State, Ethiopia, by considering all age groups. METHODS: A total of 519 fecal samples were collected from diarrheal patients from May 01/2021 to November 30/ 2021. The fecal samples were screened for the presence of NoVs using real-time RT-PCR by targeting a portion of the major capsid protein coding region. The positive samples were further amplified using conventional RT-PCR, and sequenced. RESULTS: The positivity rate of NoV was (8.9%; 46/519). The detection rate of NoV genogroup II (GII) and genogroup I (GI) was 38 (82.6%) and 8 (17.4%), respectively. Overall, five distinct GII (GII.3, GII.6, GII.10, GII.17, and GII.21) and two GI (GI.3 and GI.5) genotypes were detected. Within the GII types, GII.3 was the predominant (34.2%) followed by GII.21 (15.8%), GII.17 (10.5%), GII.6 and GII.10 each (2.6%). Norovirus GII.21 is reported for the first time in Ethiopia. The genetic diversity and distribution of NoVs were significantly different across the four sampling sits and age groups. The phylogenetic analysis revealed close relatedness of the current strains with published strains from Ethiopia and elsewhere. CONCLUSION: The distribution and genetic diversity of NoV was considerably high, with predominance of non-GII.4 genotypes. The GII.21 genotype is a new add on the growing evidences on the genetic diversity of NoVs in Ethiopia. Future nationwide surveillance studies are necessary to gain comprehensive data in Ethiopia.


Subject(s)
Caliciviridae Infections , Diarrhea , Genetic Variation , Norovirus , Phylogeny , Humans , Norovirus/genetics , Norovirus/isolation & purification , Norovirus/classification , Ethiopia/epidemiology , Diarrhea/virology , Diarrhea/epidemiology , Adult , Adolescent , Child, Preschool , Female , Male , Child , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Infant , Young Adult , Middle Aged , Feces/virology , Genotype , Aged , Infant, Newborn , Gastroenteritis/virology , Gastroenteritis/epidemiology
14.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791380

ABSTRACT

Rabbit haemorrhagic disease viruses (RHDV) belong to the family Caliciviridae, genus Lagovirus europaeus, genogroup GI, comprising four genotypes GI.1-GI.4, of which the genotypes GI.1 and GI.2 are pathogenic RHD viruses, while the genotypes GI.3 and GI.4 are non-pathogenic RCV (Rabbit calicivirus) viruses. Among the pathogenic genotypes GI.1 and GI.2 of RHD viruses, an antigenic variant of RHDV, named RHDVa-now GI.1a-RHDVa, was distinguished in 1996; and in 2010, a variant of RHDV-named RHDVb, later RHDV2 and now GI.2-RHDV2/b-was described; and recombinants of these viruses were registered. Pathogenic viruses of the genotype GI.1 were the cause of a disease described in 1984 in China in domestic (Oryctolagus (O.) cuniculus domesticus) and wild (O. cuniculus) rabbits, characterised by a very rapid course and a mortality rate of 90-100%, which spread in countries all over the world and which has been defined since 1989 as rabbit haemorrhagic disease. It is now accepted that GI.1-RHDV, including GI.1a-RHDVa, cause the predetermined primary haemorrhagic disease in domestic and wild rabbits, while GI.2-RHDV2/b cause it not only in rabbits, including domestic rabbits' young up to 4 weeks and rabbits immunised with rabbit haemorrhagic disease vaccine, but also in five various species of wild rabbits and seven different species of hares, as well as wild ruminants: mountain muskoxen and European badger. Among these viruses, haemagglutination-positive, doubtful and harmful viruses have been recorded and described and have been shown to form phylogenogroups, immunotypes, haematotypes and pathotypes, which, together with traits that alter and expand their infectious spectrum (rabbit, hare, wild ruminant, badger and various rabbit and hare species), are the determinants of their pathogenicity (infectivity) and immunogenicity and thus shape their virulence. These relationships are the aim of our consideration in this article.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Animals , Hemorrhagic Disease Virus, Rabbit/genetics , Hemorrhagic Disease Virus, Rabbit/pathogenicity , Hemorrhagic Disease Virus, Rabbit/immunology , Caliciviridae Infections/virology , Caliciviridae Infections/veterinary , Caliciviridae Infections/immunology , Rabbits , Genotype , Virulence , Phylogeny
15.
PLoS Pathog ; 20(5): e1011961, 2024 May.
Article in English | MEDLINE | ID: mdl-38701091

ABSTRACT

Noroviruses (NoVs) are a leading cause of viral gastroenteritis. Despite global clinical relevance, our understanding of how host factors, such as antiviral cytokines interferons (IFNs), modulate NoV population dynamics is limited. Murine NoV (MNoV) is a tractable in vivo model for the study of host regulation of NoV. A persistent strain of MNoV, CR6, establishes a reservoir in intestinal tuft cells for chronic viral shedding in stool. However, the influence of host innate immunity and permissive cell numbers on viral population dynamics is an open question. We generated a pool of 20 different barcoded viruses (CR6BC) by inserting 6-nucleotide barcodes at the 3' position of the NS4 gene and used this pool as our viral inoculum for in vivo infections of different mouse lines. We found that over the course of persistent CR6 infection, shed virus was predominantly colon-derived, and viral barcode richness decreased over time irrespective of host immune status, suggesting that persistent infection involves a series of reinfection events. In mice lacking the IFN-λ receptor, intestinal barcode richness was enhanced, correlating with increased viral intestinal replication. IL-4 treatment, which increases tuft cell numbers, also increased barcode richness, indicating the abundance of permissive tuft cells to be a bottleneck during CR6 infection. In mice lacking type I IFN signaling (Ifnar1-/-) or all IFN signaling (Stat1-/-), barcode diversity at extraintestinal sites was dramatically increased, implicating different IFNs as critical bottlenecks at specific tissue sites. Of interest, extraintestinal barcodes were overlapping but distinct from intestinal barcodes, indicating that disseminated virus represents a distinct viral population than that replicating in the intestine. Barcoded viruses are a valuable tool to explore the influence of host factors on viral diversity in the context of establishment and maintenance of infection as well as dissemination and have provided important insights into how NoV infection proceeds in immunocompetent and immunocompromised hosts.


Subject(s)
Caliciviridae Infections , Interferons , Norovirus , Animals , Norovirus/physiology , Caliciviridae Infections/virology , Caliciviridae Infections/immunology , Mice , Interferons/metabolism , Persistent Infection/virology , Persistent Infection/immunology , Mice, Inbred C57BL , Intestinal Mucosa/virology , Intestinal Mucosa/immunology , Gastroenteritis/virology , Virus Replication , Mice, Knockout , Immunity, Innate , Virus Shedding
16.
Food Environ Virol ; 16(2): 241-252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570420

ABSTRACT

As a natural nonflavonoid polyphenol compound, resveratrol is the main functional component of Reynoutria japonica and has anti-inflammatory, antioxidant, antiviral, and other physiological activities. In this study, the effect of resveratrol on the viability of RAW264.7 cells was examined, and murine norovirus (MNV-1) was used as a surrogate for human norovirus to evaluate the inhibitory effect of resveratrol. The concentrations of resveratrol resulting in 50% cytotoxicity (CC50) for RAW264.7 cells were 21.32 and 24.97 µg/mL after 24 and 48 h of incubation, respectively, and resveratrol at a concentration lower than the half-effective inhibitory concentration (EC50) could not damage cell DNA. The EC50 of resveratrol on MNV-1 in infected RAW264.7 cells was determined to equal 5.496 µg/mL. After RAW264.7 cells, virus, and a fresh mixture of virus and RAW264.7 cells were treated with resveratrol solution for 1 h (denoted cell pre-treatment, virus pre-treatment, and mixture coprocessing), the RAW264.7 cells obtained after cell pre-treatment exhibited lower virus infection, and MNV-1 obtained after virus pre-treatment and mixture coprocessing showed a decreased infectious capacity. The inhibition ratio of resveratrol on MNV-1 did not significantly differ between the treatments at 4 and 25 °C or among the various pH values except for the lower acidic condition (pH 2). TEM revealed significant changes in the morphology of MNV-1 after treatment with resveratrol, and molecular docking indicated that resveratrol strongly binds to the viral capsid protein of MNV-1. In addition, resveratrol regulated the expression of cytokine that protects against MNV-1 infection. Therefore, at a lower concentration, resveratrol, a natural component from Reynoutria japonica, exerts an inhibitory effect on MNV-1 growth and could be used as a safe additive in food products to improve the nutritional status and control norovirus.


Subject(s)
Antiviral Agents , Norovirus , Resveratrol , Resveratrol/pharmacology , Resveratrol/chemistry , Norovirus/drug effects , Norovirus/growth & development , Norovirus/physiology , Mice , Animals , RAW 264.7 Cells , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Stilbenes/pharmacology , Stilbenes/chemistry , Caliciviridae Infections/virology , Caliciviridae Infections/veterinary , Caliciviridae Infections/drug therapy , Macrophages/virology , Macrophages/drug effects , Cell Survival/drug effects
17.
J Virol ; 98(5): e0035024, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38591900

ABSTRACT

Feline calicivirus (FCV) is one of the few members of the Caliciviridae family that grows well in cell lines and, therefore, serves as a surrogate to study the biology of other viruses in the family. Conley et al. (14) demonstrated that upon the receptor engagement to the capsid, FCV VP2 forms a portal-like assembly, which might provide a channel for RNA release. However, the process of calicivirus RNA release is not yet fully understood. Our findings suggest that the separation of the FCV capsid from its genome RNA (gRNA) occurs rapidly in the early endosomes of infected cells. Using a liposome model decorated with the FCV cell receptor fJAM-A, we demonstrate that FCV releases its gRNA into the liposomes by penetrating membranes under low pH conditions. Furthermore, we found that VP2, which is rich in hydrophobic residues at its N-terminus, functions as the pore-forming protein. When we substituted the VP2 N-terminal hydrophobic residues, the gRNA release efficacy of the FCV mutants decreased. In conclusion, our results suggest that in the acidic environment of early endosomes, FCV VP2 functions as the pore-forming protein to mediate gRNA release into the cytoplasm of infected cells. This provides insight into the mechanism of calicivirus genome release.IMPORTANCEResearch on the biology and pathogenicity of certain caliciviruses, such as Norovirus and Sapovirus, is hindered by the lack of easy-to-use cell culture system. Feline calicivirus (FCV), which grows effectively in cell lines, is used as a substitute. At present, there is limited understanding of the genome release mechanism in caliciviruses. Our findings suggest that FCV uses VP2 to pierce the endosome membrane for genome release and provide new insights into the calicivirus gRNA release mechanism.


Subject(s)
Calicivirus, Feline , Capsid Proteins , Endosomes , RNA, Viral , Animals , Cats , Caliciviridae Infections/virology , Caliciviridae Infections/metabolism , Calicivirus, Feline/genetics , Calicivirus, Feline/metabolism , Calicivirus, Feline/physiology , Capsid/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , Cell Line , Endosomes/virology , Endosomes/metabolism , Genome, Viral , Liposomes/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , Virus Release
18.
J Virol ; 98(5): e0004724, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38651898

ABSTRACT

RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. Although viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when the entry was bypassed, suggesting that the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in murine BV2 cells and infected mice, with reduced viral titers. These results suggest a fitness tradeoff, where increased fitness in a non-native host cell reduces fitness in a natural host environment. Overall, this work suggests that MNV tropism is determined by the presence of not only the viral receptor but also post-entry factors. IMPORTANCE: Viruses infect specific species and cell types, which is dictated by the expression of host factors required for viral entry as well as downstream replication steps. Murine norovirus (MNV) infects mouse cells, but not human cells. However, human cells expressing the murine CD300lf receptor support MNV replication, suggesting that receptor expression is a major determinant of MNV tropism. To determine whether other factors influence MNV tropism, we selected for variants with enhanced replication in human cells. We identified mutations that enhance MNV replication in human cells and demonstrated that these mutations enhance infection at a post-entry replication step. Therefore, MNV infection of human cells is restricted at both entry and post-entry stages. These results shed new light on factors that influence viral tropism and host range.


Subject(s)
Norovirus , Viral Tropism , Virus Internalization , Animals , Humans , Mice , Caliciviridae Infections/virology , Genome, Viral , HeLa Cells , Host Specificity , Mutation , Norovirus/genetics , Norovirus/physiology , Receptors, Virus/metabolism , Receptors, Virus/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Attachment , Virus Replication
19.
J Clin Virol ; 172: 105679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677156

ABSTRACT

OBJECTIVE: Norovirus (NoV) is an important human pathogen that can cause severe gastroenteritis in vulnerable populations. This study aimed to analyze the epidemiological and genetic characteristics of 2021-2023 NoV in Hangzhou, China. METHODS: This study enrolled patients aged 0-18 years who underwent NoV RNA detection in the hospital between January 2021 and October 2023 and analyzed the epidemiological characteristics of NoV. Polymerase chain reaction (PCR) was used to detect NoV RNA. Subtype classification and whole-genome sequencing were performed. RESULTS: There was a high prevalence of NoV infection in 2023, with NoV-positive samples accounting for 63.10 % of the total number of positive samples collected during the three-year period. The prevalence was abnormally high in summer, and the number of positive samples accounted for 48.20 % of the total positive samples for the whole year, which was much greater than the level in the same period in previous years (2023, 48.20% vs 2021, 13.66% vs 2022, 15.21 %). The GⅡ.4 subtype played a leading role, followed by increased mixed infection with GⅠ.5 and GⅡ.4. Whole-genome sequencing results suggested that GII.P16-GⅡ.4 had R297H and D372N key locus mutations. The evolutionary rate was 4.29 × 10-3 for the RdRp gene and 4.84 × 10-3 for the VP1 gene. The RdRp gene and VP1 gene of NoV GII.P16-GⅡ.4 have undergone rapid population evolution during the COVID-19 epidemic. CONCLUSION: In the summer of 2023, an abnormally high incidence of NoV appeared in Hangzhou, China. The major epidemic strain GII.P16-GⅡ.4 showed a certain range of gene mutations and a fast evolutionary rate.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Phylogeny , RNA, Viral , Whole Genome Sequencing , Humans , China/epidemiology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Norovirus/genetics , Norovirus/classification , Norovirus/isolation & purification , Infant , Child, Preschool , Child , Adolescent , Gastroenteritis/epidemiology , Gastroenteritis/virology , Infant, Newborn , Male , Female , RNA, Viral/genetics , Prevalence , Genotype , Genome, Viral , Seasons , Feces/virology
20.
Article in English | MEDLINE | ID: mdl-38656038

ABSTRACT

Noroviruses are highly infectious, genetically diverse viruses. Global outbreaks occur frequently, making molecular surveillance important for infection monitoring. This cross-sectional descriptive study aimed to monitor cases of norovirus gastroenteritis in the Brazilian Amazon. Fecal samples were tested by immunoenzymatic assay, RT-PCR and genetic sequencing for the ORF1/ORF2 and protease regions. Bayesian inference with a molecular clock was employed to construct the phylogeny. The norovirus prevalence was 25.8%, with a higher positivity rate among children aged 0-24 months. Genogroup GII accounted for 98.1% of the sequenced samples, while GI accounted for 1.9% of them. The GII.P16/GII.4 genotype was the most prevalent, with an evolution rate of 2.87x10-3 and TMRCA estimated in 2012. This study demonstrates that norovirus is a primary causative agent of gastroenteritis and provides data on viral genetic diversity that may facilitate infection surveillance and vaccine development.


Subject(s)
Caliciviridae Infections , Feces , Gastroenteritis , Genotype , Norovirus , Phylogeny , Norovirus/genetics , Norovirus/classification , Brazil/epidemiology , Humans , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Infant , Gastroenteritis/virology , Gastroenteritis/epidemiology , Child, Preschool , Cross-Sectional Studies , Feces/virology , Infant, Newborn , Child , Female , Male , Adolescent , Adult , RNA, Viral/genetics , Prevalence , Young Adult , Reverse Transcriptase Polymerase Chain Reaction , Middle Aged , Aged , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL
...