Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.577
Filter
1.
Proc Biol Sci ; 291(2026): 20240150, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955229

ABSTRACT

Vocal turn-taking has been described in a diversity of species. Yet, a model that is able to capture the various processes underlying this social behaviour across species has not been developed. To this end, here we recorded a large and diverse dataset of marmoset monkey vocal behaviour in social contexts comprising one, two and three callers and developed a model to determine the keystone factors that affect the dynamics of these natural communicative interactions. Notably, marmoset turn-taking did not abide by coupled-oscillator dynamics, but rather call timing was overwhelmingly stochastic in these exchanges. Our features-based model revealed four key factors that encapsulate the majority of patterns evident in the behaviour, ranging from internal processes, such as particular states of the individual driving increased calling, to social context-driven suppression of calling. These findings indicate that marmoset vocal turn-taking is affected by a broader suite of mechanisms than previously considered and that our model provides a predictive framework with which to further explicate this natural behaviour at both the behavioural and neurobiological levels, and for direct comparisons with the analogous behaviour in other species.


Subject(s)
Callithrix , Social Behavior , Vocalization, Animal , Animals , Callithrix/physiology , Male , Female , Models, Biological
2.
J Comp Neurol ; 532(7): e25649, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967410

ABSTRACT

The physiological aging process is well known for functional decline in visual abilities. Among the components of the visual system, the dorsal lateral geniculate nucleus (DLG) and superior colliculus (SC) provide a good model for aging investigations, as these structures constitute the main visual pathways for retinal inputs reaching the visual cortex. However, there are limited data available on quantitative morphological and neurochemical aspects in DLG and SC across lifespan. Here, we used optical density to determine immunoexpression of glial fibrillary acidic protein (GFAP) and design-based stereological probes to estimate the neuronal number, total volume, and layer volume of the DLG and SC in marmosets (Callithrix jacchus), ranging from 36 to 143 months of age. Our results revealed an age-related increase in total volume and layer volume of the DLG, with an overall stability in SC volume. Furthermore, a stable neuronal number was demonstrated in DLG and superficial layers of SC (SCv). A decrease in GFAP immunoexpression was observed in both visual centers. The results indicate region-specific variability in volumetric parameter, possibly attributed to structural plastic events in response to inflammation and compensatory mechanisms at the cellular and subcellular level. Additionally, the DLG and SCv seem to be less vulnerable to aging effects in terms of neuronal number. The neuropeptidergic data suggest that reduced GFAP expression may reflect morphological atrophy in the astroglial cells. This study contributes to updating the current understanding of aging effects in the visual system and stablishes a crucial foundation for future research on visual perception throughout the aging process.


Subject(s)
Aging , Callithrix , Geniculate Bodies , Glial Fibrillary Acidic Protein , Neurons , Animals , Aging/physiology , Aging/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/biosynthesis , Neurons/metabolism , Male , Geniculate Bodies/metabolism , Female , Superior Colliculi/metabolism , Visual Pathways/metabolism
4.
J Med Primatol ; 53(3): e12712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825748

ABSTRACT

BACKGROUND: Platynosomiasis in non-human primates kept under human care causes chronic disease of the bile ducts and liver, which initially presents with nonspecific signs and can culminate in the death of the animal. Diagnosing this disease is a challenge, and an ultrasound examination can be an excellent tool when it is suspected. METHODS: This study describes the ultrasound findings from 57 marmosets with suspected infection by Platynosomum sp., the correlated hepatobiliary changes, and the anatomopathological findings that confirmed the occurrence of platynosomiasis. RESULTS: In six marmosets (one C. aurita, two C. jacchus, and three Callithrix sp.), Platynosomum infection was confirmed macroscopically (presence of adult trematodes in the gallbladder) and microscopically (adults, larvae, and eggs in histological examinations and eggs in bile and feces). These findings were compatible with the hepatobiliary changes and with images suggestive of parasitic structures in ante-mortem assessments. CONCLUSION: Ultrasound examination demonstrated its usefulness within the clinical routine for investigating this parasitosis.


Subject(s)
Monkey Diseases , Trematode Infections , Ultrasonography , Animals , Ultrasonography/veterinary , Ultrasonography/methods , Monkey Diseases/diagnostic imaging , Monkey Diseases/parasitology , Monkey Diseases/pathology , Monkey Diseases/diagnosis , Trematode Infections/veterinary , Trematode Infections/diagnostic imaging , Trematode Infections/diagnosis , Trematode Infections/parasitology , Trematode Infections/pathology , Male , Female , Callithrix , Liver/pathology , Liver/diagnostic imaging , Liver/parasitology
5.
J Ovarian Res ; 17(1): 120, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824584

ABSTRACT

BACKGROUND: The common marmoset, Callithrix jacchus, is an invaluable model in biomedical research. Its use includes genetic engineering applications, which require manipulations of oocytes and production of embryos in vitro. To maximize the recovery of oocytes suitable for embryo production and to fulfil the requirements of the 3R principles to the highest degree possible, optimization of ovarian stimulation protocols is crucial. Here, we compared the efficacy of two hormonal ovarian stimulation approaches: 1) stimulation of follicular growth with hFSH followed by triggering of oocyte maturation with hCG (FSH + hCG) and 2) stimulation with hFSH only (FSH-priming). METHODS: In total, 14 female marmosets were used as oocyte donors in this study. Each animal underwent up to four surgical interventions, with the first three performed as ovum pick-up (OPU) procedures and the last one being an ovariohysterectomy (OvH). In total, 20 experiments were carried out with FSH + hCG stimulation and 18 with FSH-priming. Efficacy of each stimulation protocol was assessed through in vitro maturation (IVM), in vitro fertilization (IVF) and embryo production rates. RESULTS: Each study group consisted of two subgroups: the in vivo matured oocytes and the oocytes that underwent IVM. Surprisingly, in the absence of hCG triggering some of the oocytes recovered were at the MII stage, moreover, their number was not significantly lower compared to FSH + hCG stimulation (2.8 vs. 3.9, respectively (ns)). While the IVM and IVF rates did not differ between the two stimulation groups, the IVF rates of in vivo matured oocytes were significantly lower compared to in vitro matured ones in both FSH-priming and FSH + hCG groups. In total, 1.7 eight-cell embryos/experiment (OPU) and 2.1 eight-cell embryos/experiment (OvH) were obtained after FSH + hCG stimulation vs. 1.8 eight-cell embryos/experiment (OPU) and 5.0 eight-cell embryos/experiment (OvH) following FSH-priming. These numbers include embryos obtained from both in vivo and in vitro matured oocytes. CONCLUSION: A significantly lower developmental competence of the in vivo matured oocytes renders triggering of the in vivo maturation with hCG as a part of the currently used FSH-stimulation protocol unnecessary. In actual numbers, between 1 and 7 blastocysts were obtained following each FSH-priming. In the absence of further studies, FSH-priming appears superior to FSH + hCG stimulation in the common marmoset under current experimental settings.


Subject(s)
Callithrix , Chorionic Gonadotropin , Fertilization in Vitro , Follicle Stimulating Hormone , In Vitro Oocyte Maturation Techniques , Oocytes , Ovulation Induction , Animals , Female , Ovulation Induction/methods , In Vitro Oocyte Maturation Techniques/methods , Oocytes/drug effects , Chorionic Gonadotropin/pharmacology , Follicle Stimulating Hormone/pharmacology , Fertilization in Vitro/methods
6.
J Med Primatol ; 53(3): e12714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822430

ABSTRACT

Callithrix aurita is an endangered small primate endemic to the Atlantic Forest. The present work reports the labor of a free-living C. aurita, through observation of its length and offspring viability. A conservative treatment was used to maintain fetal viability, in view of the species conservation importance.


Subject(s)
Callithrix , Animals , Brazil , Female , Pregnancy , Endangered Species , Conservation of Natural Resources
7.
Immun Inflamm Dis ; 12(6): e1318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923761

ABSTRACT

BACKGROUND: Major histocompatibility complex (MHC) class II molecules expressed on B cells, monocytes and dendritic cells present processed peptides to CD4+ T cells as one of the mechanisms to combat infection and inflammation. AIM: To study MHC II expression in a variety of nonhuman primate species, including New World (NWM) squirrel monkeys (Saimiri boliviensis boliviensis), owl monkeys (Aotus nancymae), common marmosets (Callithrix spp.), and Old World (OWM) rhesus (Macaca mulatta), baboons (Papio anubis). METHODS: Two clones of cross-reactive mouse anti-human HLADR monoclonal antibodies (mAb) binding were analyzed by flow cytometry to evaluate MHC II expression on NHP immune cells, including T lymphocytes in whole blood (WB) and peripheral blood mononuclear cells (PBMC). RESULTS: MHC class II antibody reactivity is seen with CD20+ B cells, CD14+ monocytes and CD3+ T lymphocytes. Specific reactivity with both clones was demonstrated in T lymphocytes: this reactivity was not inhibited by purified CD16 antibody but was completely inhibited when pre-blocked with purified unconjugated MHC II antibody. Freshly prepared PBMC also showed reactivity with T lymphocytes without any stimulation. Interestingly, peripheral blood from rhesus macaques and olive baboons (OWM) showed no such T lymphocyte associated MHCII antibody reactivity. DISCUSSION & CONCLUSION: Our results from antibody (MHC II) reactivity clearly show the potential existence of constitutively expressed (with no stimulation) MHC II molecules on T lymphocytes in new world monkeys. These results suggest that additional study is warranted to evaluate the functional and evolutionary significance of these finding and to better understand MHC II expression on T lymphocytes in new world monkeys.


Subject(s)
HLA-DR Antigens , Histocompatibility Antigens Class II , T-Lymphocytes , Animals , Histocompatibility Antigens Class II/immunology , HLA-DR Antigens/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Humans , Macaca mulatta , Antibodies, Monoclonal/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Saimiri/immunology , Callithrix/immunology , Flow Cytometry , Papio anubis/immunology , Platyrrhini/immunology
8.
Commun Biol ; 7(1): 642, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802535

ABSTRACT

Alterations in the experience-dependent and autonomous elaboration of neural circuits are assumed to underlie autism spectrum disorder (ASD), though it is unclear what synaptic traits are responsible. Here, utilizing a valproic acid-induced ASD marmoset model, which shares common molecular features with idiopathic ASD, we investigate changes in the structural dynamics of tuft dendrites of upper-layer pyramidal neurons and adjacent axons in the dorsomedial prefrontal cortex through two-photon microscopy. In model marmosets, dendritic spine turnover is upregulated, and spines are generated in clusters and survived more often than in control marmosets. Presynaptic boutons in local axons, but not in commissural long-range axons, demonstrate hyperdynamic turnover in model marmosets, suggesting alterations in projection-specific plasticity. Intriguingly, nasal oxytocin administration attenuates clustered spine emergence in model marmosets. Enhanced clustered spine generation, possibly unique to certain presynaptic partners, may be associated with ASD and be a potential therapeutic target.


Subject(s)
Callithrix , Disease Models, Animal , Neuronal Plasticity , Oxytocin , Animals , Oxytocin/metabolism , Male , Synapses/metabolism , Dendritic Spines/metabolism , Dendritic Spines/pathology , Dendritic Spines/drug effects , Autism Spectrum Disorder/metabolism , Autistic Disorder/metabolism , Autistic Disorder/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Valproic Acid/pharmacology , Presynaptic Terminals/metabolism , Female , Axons/metabolism
9.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38821872

ABSTRACT

Animals use a combination of eye movements to track moving objects. These different eye movements need to be coordinated for successful tracking, requiring interactions between the systems involved. Here, we study the interaction between the saccadic and smooth pursuit eye movement systems in marmosets. Using a single-target pursuit task, we show that saccades cause an enhancement in pursuit following a saccade. Using a two-target pursuit task, we show that this enhancement in pursuit is selective toward the motion of the target selected by the saccade, irrespective of any biases in pursuit prior to the saccade. These experiments highlight the similarities in the functioning of saccadic and smooth pursuit eye movement systems across primates.


Subject(s)
Callithrix , Pursuit, Smooth , Saccades , Animals , Callithrix/physiology , Pursuit, Smooth/physiology , Saccades/physiology , Male , Female , Photic Stimulation/methods , Motion Perception/physiology
10.
BMC Vet Res ; 20(1): 223, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38783305

ABSTRACT

BACKGROUND: Common marmosets (Callithrix jacchus) are widely used as primate experimental models in biomedical research. Duodenal dilation with chronic vomiting in captive common marmosets is a recently described life-threatening syndrome that is problematic for health control. However, the pathogenesis and cause of death are not fully understood. CASE PRESENTATION: We report two novel necropsy cases in which captive common marmosets were histopathologically diagnosed with gastric emphysema (GE) and pneumatosis intestinalis (PI). Marmoset duodenal dilation syndrome was confirmed in each case by clinical observation of chronic vomiting and by gross necropsy findings showing a dilated, gas-filled and fluid-filled descending duodenum that adhered to the ascending colon. A diagnosis of GE and PI was made on the basis of the bubble-like morphology of the gastric and intestinal mucosa, with histological examination revealing numerous vacuoles diffused throughout the lamina propria mucosae and submucosa. Immunostaining for prospero homeobox 1 and CD31 distinguished gas cysts from blood and lymph vessels. The presence of hepatic portal venous gas in case 1 and possible secondary bacteremia-related septic shock in case 2 were suggested to be acute life-threatening abdominal processes resulting from gastric emphysema and pneumatosis intestinalis. CONCLUSIONS: In both cases, the gross and histopathological findings of gas cysts in the GI tract walls matched the features of human GE and PI. These findings contribute to clarifying the cause of death in captive marmosets that have died of gastrointestinal diseases.


Subject(s)
Callithrix , Emphysema , Pneumatosis Cystoides Intestinalis , Animals , Pneumatosis Cystoides Intestinalis/veterinary , Pneumatosis Cystoides Intestinalis/pathology , Pneumatosis Cystoides Intestinalis/complications , Emphysema/veterinary , Emphysema/pathology , Male , Monkey Diseases/pathology , Stomach Diseases/veterinary , Stomach Diseases/pathology , Female , Duodenal Diseases/veterinary , Duodenal Diseases/pathology , Duodenal Diseases/complications
11.
Nat Commun ; 15(1): 4053, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744848

ABSTRACT

The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.


Subject(s)
Callithrix , Hippocampus , Spatial Navigation , Animals , Callithrix/physiology , Spatial Navigation/physiology , Hippocampus/physiology , Male , Locomotion/physiology , Vision, Ocular/physiology , Pyramidal Cells/physiology , Head Movements/physiology , Interneurons/physiology , Female , Behavior, Animal/physiology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology
12.
PLoS Comput Biol ; 20(5): e1012104, 2024 May.
Article in English | MEDLINE | ID: mdl-38748738

ABSTRACT

Synchronization is widespread in animals, and studies have often emphasized how this seemingly complex phenomenon can emerge from very simple rules. However, the amount of flexibility and control that animals might have over synchronization properties, such as the strength of coupling, remains underexplored. Here, we studied how pairs of marmoset monkeys coordinated vigilance while feeding. By modeling them as coupled oscillators, we noted that (1) individual marmosets do not show perfect periodicity in vigilance behaviors, (2) nevertheless, marmoset pairs started to take turns being vigilant over time, a case of anti-phase synchrony, (3) marmosets could couple flexibly; the coupling strength varied with every new joint feeding bout, and (4) marmosets could control the coupling strength; dyads showed increased coupling if they began in a more desynchronized state. Such flexibility and control over synchronization require more than simple interaction rules. Minimally, animals must estimate the current degree of asynchrony and adjust their behavior accordingly. Moreover, the fact that each marmoset is inherently non-periodic adds to the cognitive demand. Overall, our study provides a mathematical framework to investigate the cognitive demands involved in coordinating behaviors in animals, regardless of whether individual behaviors are rhythmic or not.


Subject(s)
Callithrix , Animals , Callithrix/physiology , Arousal/physiology , Behavior, Animal/physiology , Male , Feeding Behavior/physiology , Computational Biology , Female , Models, Biological , Periodicity
13.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771244

ABSTRACT

The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.


Subject(s)
Callithrix , Cognition , Connectome , Macaca , Animals , Mice , Cognition/physiology , Nerve Net/physiology , Neural Pathways/physiology , Cerebral Cortex/physiology
14.
Nat Commun ; 15(1): 3941, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729937

ABSTRACT

A relevant question concerning inter-areal communication in the cortex is whether these interactions are synergistic. Synergy refers to the complementary effect of multiple brain signals conveying more information than the sum of each isolated signal. Redundancy, on the other hand, refers to the common information shared between brain signals. Here, we dissociated cortical interactions encoding complementary information (synergy) from those sharing common information (redundancy) during prediction error (PE) processing. We analyzed auditory and frontal electrocorticography (ECoG) signals in five common awake marmosets performing two distinct auditory oddball tasks and investigated to what extent event-related potentials (ERP) and broadband (BB) dynamics encoded synergistic and redundant information about PE processing. The information conveyed by ERPs and BB signals was synergistic even at lower stages of the hierarchy in the auditory cortex and between auditory and frontal regions. Using a brain-constrained neural network, we simulated the synergy and redundancy observed in the experimental results and demonstrated that the emergence of synergy between auditory and frontal regions requires the presence of strong, long-distance, feedback, and feedforward connections. These results indicate that distributed representations of PE signals across the cortical hierarchy can be highly synergistic.


Subject(s)
Acoustic Stimulation , Auditory Cortex , Callithrix , Electrocorticography , Animals , Auditory Cortex/physiology , Callithrix/physiology , Male , Female , Evoked Potentials/physiology , Frontal Lobe/physiology , Evoked Potentials, Auditory/physiology , Auditory Perception/physiology , Brain Mapping/methods
15.
Prostate ; 84(11): 1086-1088, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38678435

ABSTRACT

BACKGROUND: Prostate-specific membrane antigen (PSMA) is a biomarker and therapeutic target of high relevance in prostate cancer. Although upregulated PSMA expression is a well-documented feature of prostatic neoplasia in both humans and canids, to date humans are the only species known to express PSMA basally in the prostate. Thus, traditional laboratory animal species have limited utility for studying PSMA biology in the prostate or for predicting efficacy or toxicity of PSMA-targeted agents. METHODS: PSMA expression in human, macaque, and marmoset prostates was determined by immunohistochemistry, employing an antibody with validated cross-species reactivity in a PSMA-positive control tissue; kidney. RESULTS: We newly discover that the common marmoset endogenously expresses PSMA in non-diseased prostate, similar to humans, and thus may be a valuable preclinical model for researchers studying PSMA.


Subject(s)
Antigens, Surface , Callithrix , Glutamate Carboxypeptidase II , Prostate , Male , Animals , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Humans , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Immunohistochemistry
16.
J Neuroendocrinol ; 36(6): e13397, 2024 06.
Article in English | MEDLINE | ID: mdl-38659185

ABSTRACT

The neurohormone oxytocin (OT) has become a major target for the development of novel therapeutic strategies to treat psychiatric disorders such as autism spectrum disorder because of its integral role in governing many facets of mammalian social behavior. Whereas extensive work in rodents has produced much of our knowledge of OT, we lack basic information about its neurobiology in primates making it difficult to interpret the limited effects that OT manipulations have had in human patients. In fact, previous studies have revealed only limited OT fibers in primate brains. Here, we investigated the OT connectome in marmoset using immunohistochemistry, and mapped OT fibers throughout the brains of adult male and female marmoset monkeys. We found extensive OT projections reaching limbic and cortical areas that are involved in the regulation of social behaviors, such as the amygdala, the medial prefrontal cortex, and the basal ganglia. The pattern of OT fibers observed in marmosets is notably similar to the OT connectomes described in rodents. Our findings here contrast with previous results by demonstrating a broad distribution of OT throughout the marmoset brain. Given the prevalence of this neurohormone in the primate brain, methods developed in rodents to manipulate endogenous OT are likely to be applicable in marmosets.


Subject(s)
Brain , Callithrix , Neurons , Oxytocin , Animals , Oxytocin/metabolism , Male , Female , Brain/metabolism , Neurons/metabolism , Neural Pathways/metabolism , Connectome
17.
Lab Anim (NY) ; 53(4): 86, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570665
18.
Curr Opin Neurobiol ; 86: 102872, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564829

ABSTRACT

The precision of primate visually guided reaching likely evolved to meet the many challenges faced by living in arboreal environments, yet much of what we know about the underlying primate brain organization derives from a set of highly constrained experimental paradigms. Here we review the role of vision to guide natural reach-to-grasp movements in marmoset monkey prey capture to illustrate the breadth and diversity of these behaviors in ethological contexts, the fast predictive nature of these movements [1,2], and the advantages of this particular primate model to investigate the underlying neural mechanisms in more naturalistic contexts [3]. In addition to their amenability to freely-moving neural recording methods for investigating the neural basis of dynamic ethological behaviors [4,5], marmosets have a smooth neocortical surface that facilitates imaging and array recordings [6,7] in all areas in the primate fronto-parietal network [8,9]. Together, this model organism offers novel opportunities to study the real-world interplay between primate vision and reach-to-grasp dynamics using ethologically motivated neuroscientific experimental designs.


Subject(s)
Callithrix , Psychomotor Performance , Animals , Psychomotor Performance/physiology , Callithrix/physiology , Visual Perception/physiology , Primates/physiology , Hand Strength/physiology
19.
Am J Primatol ; 86(7): e23630, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655843

ABSTRACT

The marmoset is a fundamental nonhuman primate model for the study of aging, neurobiology, and many other topics. Genetic management of captive marmoset colonies is complicated by frequent chimerism in the blood and other tissues, a lack of tools to enable cost-effective, genome-wide interrogation of variation, and historic mergers and migrations of animals between colonies. We implemented genotype-by-sequencing (GBS) of hair follicle derived DNA (a minimally chimeric DNA source) of 82 marmosets housed at the Southwest National Primate Research Center (SNPRC). Our primary goals were the genetic characterization of our marmoset population for pedigree verification and colony management and to inform the scientific community of the functional genetic makeup of this valuable resource. We used the GBS data to reconstruct the genetic legacy of recent mergers between colonies, to identify genetically related animals whose relationships were previously unknown due to incomplete pedigree information, and to show that animals in the SNPRC colony appear to exhibit low levels of inbreeding. Of the >99,000 single-nucleotide variants (SNVs) that we characterized, >9800 are located within gene regions known to harbor pathogenic variants of clinical significance in humans. Overall, we show the combination of low-resolution (sparse) genotyping using hair follicle DNA is a powerful strategy for the genetic management of captive marmoset colonies and for identifying potential SNVs for the development of biomedical research models.


Subject(s)
Callithrix , Genotype , Pedigree , Animals , Callithrix/genetics , Male , Female , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Inbreeding , Hair Follicle , Genotyping Techniques/methods , Genotyping Techniques/veterinary
20.
mSystems ; 9(5): e0140523, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38557130

ABSTRACT

The gut microbiome affects the health status of the host through complex interactions with the host's intestinal wall. These host-microbiome interactions may spatially vary along the physical and chemical environment of the intestine, but these changes remain unknown. This study investigated these intricate relationships through a gene co-expression network analysis based on dual transcriptome profiling of different intestinal sites-cecum, transverse colon, and rectum-of the primate common marmoset. We proposed a gene module extraction algorithm based on the graph theory to find tightly interacting gene modules of the host and the microbiome from a vast co-expression network. The 27 gene modules identified by this method, which include both host and microbiome genes, not only produced results consistent with previous studies regarding the host-microbiome relationships, but also provided new insights into microbiome genes acting as potential mediators in host-microbiome interplays. Specifically, we discovered associations between the host gene FBP1, a cancer marker, and polysaccharide degradation-related genes (pfkA and fucI) coded by Bacteroides vulgatus, as well as relationships between host B cell-specific genes (CD19, CD22, CD79B, and PTPN6) and a tryptophan synthesis gene (trpB) coded by Parabacteroides distasonis. Furthermore, our proposed module extraction algorithm surpassed existing approaches by successfully defining more functionally related gene modules, providing insights for understanding the complex relationship between the host and the microbiome.IMPORTANCEWe unveiled the intricate dynamics of the host-microbiome interactions along the colon by identifying closely interacting gene modules from a vast gene co-expression network, constructed based on simultaneous profiling of both host and microbiome transcriptomes. Our proposed gene module extraction algorithm, designed to interpret inter-species interactions, enabled the identification of functionally related gene modules encompassing both host and microbiome genes, which was challenging with conventional modularity maximization algorithms. Through these identified gene modules, we discerned previously unrecognized bacterial genes that potentially mediate in known relationships between host genes and specific bacterial species. Our findings underscore the spatial variations in host-microbiome interactions along the colon, rather than displaying a uniform pattern throughout the colon.


Subject(s)
Gastrointestinal Microbiome , Gene Regulatory Networks , Animals , Gastrointestinal Microbiome/genetics , Callithrix/microbiology , Host Microbial Interactions/genetics , Gene Expression Profiling/methods , Transcriptome , Intestines/microbiology , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...