Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.282
Filter
1.
Carbohydr Polym ; 346: 122575, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245478

ABSTRACT

Many neurodegenerative and psychiatric malignancies like Parkinson' disease (PD) originate from an imbalance of 17ß-Estradiol (E2) in the human brain. However, the peripheral side effects of the usage of E2 for PD therapy and less understanding of the molecular mechanism hinder establishing its neurotherapeutic potential. In the present work, systemic side effects were overcome by targeted delivery using Dopamine receptor D3 (DRD3) conjugated E2-loaded chitosan nanoparticles (Ab-ECSnps) that showed a promising delivery to the brain. E2 is a specific calpain inhibitor that fosters neurodegeneration by disrupting mitochondrial function, while B-cell-specific Moloney murine leukemia virus integration region 1 (BMI1), an epigenetic regulator, is crucial in preserving mitochondrial homeostasis. We showed the administration of Ab-ECSnps inhibits calpain's translocation into mitochondria while promoting the translocation of BMI1 to mitochondria, thereby conferring neurotherapeutic benefits by enhancing cell viability, increasing mitochondrial DNA copy number, and preserving mitochondrial membrane potential. Further, we showed a novel molecular mechanism of BMI1 regulation by calpain that might contribute to maintaining mitochondrial homeostasis for attenuating PD. Concomitantly, Ab-ECSnps showed neurotherapeutic potential in the in vivo PD model. We showed for the first time that our brain-specific targeted delivery might regulate calpain-mediated BMI1 expression, thereby preserving mitochondrial homeostasis to alleviate PD.


Subject(s)
Calpain , Chitosan , Mitochondria , Nanoparticles , Parkinson Disease , Mitochondria/drug effects , Mitochondria/metabolism , Calpain/metabolism , Calpain/genetics , Animals , Parkinson Disease/drug therapy , Nanoparticles/chemistry , Chitosan/chemistry , Humans , Mice , Epigenesis, Genetic/drug effects , Membrane Potential, Mitochondrial/drug effects , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Cell Survival/drug effects , Male , Mice, Inbred C57BL
2.
Cell Commun Signal ; 22(1): 435, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252008

ABSTRACT

The inducers of neutrophil extracellular trap (NET) formation are heterogeneous and consequently, there is no specific pathway or signature molecule indispensable for NET formation. But certain events such as histone modification, chromatin decondensation, nuclear envelope breakdown, and NET release are ubiquitous. During NET formation, neutrophils drastically rearrange their cytoplasmic, granular and nuclear content. Yet, the exact mechanism for decoding each step during NET formation still remains elusive. Here, we investigated the mechanism of nuclear envelope breakdown during NET formation. Immunofluorescence microscopic evaluation revealed a gradual disintegration of outer nuclear membrane protein nesprin-1 and alterations in nuclear morphology during NET formation. MALDI-TOF analysis of NETs that had been generated by various inducers detected the accumulation of nesprin-1 fragments. This suggests that nesprin-1 degradation occurs before NET release. In the presence of a calpain-1, inhibitor nesprin-1 degradation was decreased in calcium driven NET formation. Microscopic evaluation confirmed that the disintegration of the lamin B receptor (LBR) and the collapse of the actin cytoskeleton occurs in early and later phases of NET release, respectively. We conclude that the calpain-1 degrades nesprin-1, orchestrates the weakening of the nuclear membrane, contributes to LBR disintegration, and promoting DNA release and finally, NETs formation.


Subject(s)
Calpain , Extracellular Traps , Lamin B Receptor , Neutrophils , Nuclear Envelope , Nuclear Envelope/metabolism , Calpain/metabolism , Humans , Extracellular Traps/metabolism , Neutrophils/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Calcium/metabolism , Cytoskeletal Proteins
3.
ACS Nano ; 18(37): 25565-25576, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39236689

ABSTRACT

Traumatic brain injury (TBI) is a major public health concern that can result in long-term neurological impairments. Calpain is a calcium-dependent cysteine protease that is activated within minutes after TBI, and sustained calpain activation is known to contribute to neurodegeneration and blood-brain barrier dysregulation. Based on its role in disease progression, calpain inhibition has been identified as a promising therapeutic target. Efforts to develop therapeutics for calpain inhibition would benefit from the ability to measure calpain activity with spatial precision within the injured tissue. In this work, we designed an activity-based nanotheranostic (ABNT) that can both sense and inhibit calpain activity in TBI. To sense calpain activity, we incorporated a peptide substrate of calpain flanked by a fluorophore/quencher pair. To inhibit calpain activity, we incorporated calpastatin peptide, an endogenous inhibitor of calpain. Both sensor and inhibitor peptides were scaffolded onto a polymeric nanoscaffold to create our ABNT. We show that in the presence of recombinant calpain, our ABNT construct is able to sense and inhibit calpain activity. In a mouse model of TBI, systemically administered ABNT can access perilesional brain tissue through passive accumulation and inhibit calpain activity in the cortex and hippocampus. In an analysis of cellular calpain activity, we observe the ABNT-mediated inhibition of calpain activity in neurons, endothelial cells, and microglia of the cortex. In a comparison of neuronal calpain activity by brain structure, we observe greater ABNT-mediated inhibition of calpain activity in cortical neurons compared to that in hippocampal neurons. Furthermore, we found that apoptosis was dependent on both calpain inhibition and brain structure. We present a theranostic platform that can be used to understand the regional and cell-specific therapeutic inhibition of calpain activity to help inform drug design for TBI.


Subject(s)
Brain Injuries, Traumatic , Calpain , Calpain/antagonists & inhibitors , Calpain/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Animals , Mice , Male , Mice, Inbred C57BL , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Humans
4.
Anim Sci J ; 95(1): e13986, 2024.
Article in English | MEDLINE | ID: mdl-39166550

ABSTRACT

Betong chicken (KU line) is a slow-growing Thai native chicken used for meat production. The objectives of this study were to identify polymorphisms of the calpain1 (CAPN1) and calpain3 (CAPN3) genes and to investigate their effects on growth, carcass, and meat quality traits in Betong chickens (KU line). A sample of 252 Betong chickens (KU line) was screened for CAPN1 and CAPN3 polymorphisms. The polymorphisms of CAPN1 were detected using gel electrophoresis and DNA sequencing, whereas the polymorphisms of CAPN3 were identified using restriction fragment length polymorphism. Polymorphisms were detected in both CAPN1 (AA, AB, and BB genotypes) and CAPN3 (CC, CT, and TT genotypes). The frequency of the B allele was higher than for the A allele (0.78 and 0.22, respectively) in CAPN1, while the C allelic frequency was higher than for the T allele (0.54 and 0.46, respectively) in CAPN3. The CAPN1 genotype and the combination of the CAPN1 and CAPN3 genotypes could be used as genetic markers for meat lightness. The CAPN3 could be useful for increasing body weight, live weight, and breast meat weight in Betong chickens (KU line).


Subject(s)
Calpain , Chickens , Food Quality , Genotype , Meat , Polymorphism, Genetic , Animals , Calpain/genetics , Calpain/metabolism , Chickens/genetics , Chickens/growth & development , Meat/analysis , Genetic Markers , Alleles , Body Weight/genetics , Gene Frequency , Quantitative Trait, Heritable , Genetic Association Studies/veterinary
5.
Nat Commun ; 15(1): 7023, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174529

ABSTRACT

Neutrophil infiltration and subsequent extracellular trap formation (NETosis) is a contributing factor in sterile inflammation. Furthermore, neutrophil extracellular traps (NETs) are prothrombotic, as they provide a scaffold for platelets and red blood cells to attach to. In circulation, neutrophils are constantly exposed to hemodynamic forces such as shear stress, which in turn regulates many of their biological functions such as crawling and NETosis. However, the mechanisms that mediate mechanotransduction in neutrophils are not fully understood. In this study, we demonstrate that shear stress induces NETosis, dependent on the shear stress level, and increases the sensitivity of neutrophils to NETosis-inducing agents such as adenosine triphosphate and lipopolysaccharides. Furthermore, shear stress increases intracellular calcium levels in neutrophils and this process is mediated by the mechanosensitive ion channel Piezo1. Activation of Piezo1 in response to shear stress mediates calpain activity and cytoskeleton remodeling, which consequently induces NETosis. Thus, activation of Piezo1 in response to shear stress leads to a stepwise sequence of cellular events that mediates NETosis and thereby places neutrophils at the centre of localized inflammation and prothrombotic effects.


Subject(s)
Calcium , Extracellular Traps , Ion Channels , Mechanotransduction, Cellular , Neutrophils , Stress, Mechanical , Neutrophils/metabolism , Ion Channels/metabolism , Ion Channels/genetics , Humans , Extracellular Traps/metabolism , Calcium/metabolism , Adenosine Triphosphate/metabolism , Calpain/metabolism , Lipopolysaccharides/pharmacology , Cytoskeleton/metabolism , Neutrophil Infiltration , Inflammation/metabolism
6.
Am J Physiol Gastrointest Liver Physiol ; 327(5): G629-G639, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39189791

ABSTRACT

The interplay between genetic and environmental factors during pregnancy can predispose to inflammatory diseases postnatally, including eosinophilic esophagitis (EoE), a chronic allergic disease triggered by food. Herein, we examined the effects of amniotic fluid (AF) on esophageal epithelial differentiation and responsiveness to proallergic stimuli. Multiplex analysis of AF revealed the expression of 66 cytokines, whereas five cytokines including IL-4 and thymic stromal lymphopoietin (TSLP) were not detected. Several proinflammatory cytokines including TNFα and IL-12 were highly expressed in the AF from women who underwent preterm birth, whereas EGF was the highest in term birth samples. Exposure of esophageal epithelial cells to AF resulted in transient phosphorylation of ERK1/2 and the transcription of early response genes, highlighting the direct impact of AF on esophageal epithelial cells. In a three-dimensional spheroid model, AF modified the esophageal epithelial differentiation program and enhanced the transcription of IL-13-target genes, including CCL26 and CAPN14, which encodes for a major genetic susceptibility locus for eosinophilic esophagitis. Notably, CAPN14 exhibited upregulation in spheroids exposed to preterm but not term AF following differentiation. Collectively, our findings call attention to the role of AF as a potential mediator of the intrauterine environment that influences subsequent esophageal disorders.NEW & NOTEWORTHY The interaction between amniotic fluid and the esophageal epithelium during pregnancy modifies esophageal epithelial differentiation and subsequent responsiveness to inflammatory stimuli, including interleukin 13 (IL-13). This interaction may predispose individuals to inflammatory conditions of the esophagus, such as eosinophilic esophagitis (EoE), in later stages of life.


Subject(s)
Amniotic Fluid , Cell Differentiation , Cytokines , Eosinophilic Esophagitis , Epithelial Cells , Humans , Amniotic Fluid/metabolism , Female , Pregnancy , Eosinophilic Esophagitis/metabolism , Eosinophilic Esophagitis/genetics , Eosinophilic Esophagitis/pathology , Cytokines/metabolism , Cytokines/genetics , Epithelial Cells/metabolism , Esophageal Mucosa/metabolism , Esophageal Mucosa/pathology , Chemokine CCL26/metabolism , Chemokine CCL26/genetics , Esophagus/metabolism , Esophagus/pathology , Interleukin-13/metabolism , Interleukin-13/genetics , Premature Birth/metabolism , Inflammation/metabolism , Calpain
7.
Biomed Pharmacother ; 179: 117272, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153432

ABSTRACT

Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.


Subject(s)
Calpain , Cardiovascular Diseases , Cerebrovascular Disorders , Humans , Calpain/metabolism , Cardiovascular Diseases/metabolism , Animals , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/drug therapy
8.
Genes (Basel) ; 15(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39062725

ABSTRACT

PURPOSE: An investigation for the co-occurrence of two unrelated genetic disorders of muscular dystrophy and Prader-Willi syndrome (PWS) (OMIM#176270) using joint whole genome sequencing (WGS). METHODS: Trio WGS joint analysis was performed to investigate the genetic etiology in a proband with PWS, prolonged muscular hypotonia associated hyperCKemia, and early-onset obesity. The parents were unaffected. RESULTS: Results showed maternal isodisomy uniparental disomy (UPD) in chromosome 15, expanding from 15q11.2 to 15q22.2, including PWS regions at 15q11.2-15q13. Maternal heterodisomy was detected from 15q22.2 to 15q26.3. A pathogenic variant, NM_000070.3(CAPN3):c.550del (p.Thr184fs), was identified at 15q15.1 in a heterozygous state in the mother that was homozygous in the proband due to maternal isodisomy. CONCLUSION: This is the first study of the concurrent molecular etiology of PWS and calpainopathy (OMIM#253600) in the same patient. This report highlights the utility of joint analysis and the need for the assessment of autosomal recessive disease in regions of isodisomy in patients with complex and unexplained phenotypes.


Subject(s)
Calpain , Chromosomes, Human, Pair 15 , Prader-Willi Syndrome , Uniparental Disomy , Female , Humans , Male , Calpain/genetics , Chromosomes, Human, Pair 15/genetics , Muscle Proteins , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/diagnosis , Prader-Willi Syndrome/pathology , Uniparental Disomy/genetics , Whole Genome Sequencing
9.
Cell Signal ; 121: 111295, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996955

ABSTRACT

Calpain2 is a conventional member of the non-lysosomal calpain protease family that has been shown to affect the dynamics of focal and cell-cell adhesions by proteolyzing the components of adhesion complexes. Here, we inactivated calpain2 using CRISPR/Cas9 in epithelial MDCK cells. We show that depletion of calpain2 has multiple effects on cell morphology and function. Calpain2-depleted cells develop epithelial shape, however, they cover a smaller area, and cell clusters are more compact. Inactivation of calpain2 enhanced restoration of transepithelial electrical resistance after calcium switch, decreased cell migration, and delayed cell scattering induced by HGF/SF. In addition, calpain2 depletion prevented morphological changes induced by ERK2 overexpression. Interestingly, proteolysis of several calpain2 targets, including E-cadherin, ß-catenin, talin, FAK, and paxillin, was not discernibly affected by calpain2 depletion. Taken together, these data suggest that calpain2 regulates the stability of cell-cell and cell-substratum adhesions indirectly without affecting the proteolysis of these adhesion complexes.


Subject(s)
Calpain , Cell Adhesion , Epithelial Cells , Animals , Dogs , beta Catenin/metabolism , Cadherins/metabolism , Calcium/metabolism , Calpain/metabolism , Cell Movement , CRISPR-Cas Systems , Epithelial Cells/metabolism , Epithelial Cells/cytology , Hepatocyte Growth Factor/metabolism , Madin Darby Canine Kidney Cells , Mitogen-Activated Protein Kinase 1/metabolism , Proteolysis
10.
J Mol Cell Cardiol ; 194: 85-95, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38960317

ABSTRACT

Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.


Subject(s)
Calpain , Heart Failure , Membrane Proteins , Myocardial Infarction , Animals , Humans , Male , Mice , Calpain/metabolism , Disease Models, Animal , Disease Progression , Heart Failure/metabolism , Heart Failure/etiology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Muscle Proteins , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Proteolysis
11.
Cell Death Dis ; 15(7): 480, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965233

ABSTRACT

Chemotherapy persists as the primary intervention for breast cancer, with chemoresistance posing the principal obstacle to successful treatment. Herein, we show that cartilage oligomeric matrix protein (COMP) expression leads to increased cancer cell survival and attenuated apoptosis under treatment with several chemotherapeutic drugs, anti-HER2 targeted treatment, and endocrine therapy in several breast cancer cell lines tested. The COMP-induced chemoresistance was independent of the breast cancer subtype. Extracellularly delivered recombinant COMP failed to rescue cells from apoptosis while endoplasmic reticulum (ER)-restricted COMP-KDEL conferred resistance to apoptosis, consistent with the localization of COMP in the ER, where it interacted with calpain. Calpain activation was reduced in COMP-expressing cells and maintained at a lower level of activation during treatment with epirubicin. Moreover, the downstream caspases of calpain, caspases -9, -7, and -3, exhibited significantly reduced activation in COMP-expressing cells under chemotherapy treatment. Chemotherapy, when combined with calpain activators, rendered the cells expressing COMP more chemosensitive. Also, the anti-apoptotic proteins phospho-Bcl2 and survivin were increased in COMP-expressing cells upon chemotherapy. Cells expressing a mutant COMP lacking thrombospondin repeats exhibited reduced chemoresistance compared to cells expressing full-length COMP. Evaluation of calcium levels in the ER, cytosol, and mitochondria revealed that COMP expression modulates intracellular calcium homeostasis. Furthermore, patients undergoing chemotherapy or endocrine therapy demonstrated significantly reduced overall survival time when tumors expressed high levels of COMP. This study identifies a novel role of COMP in chemoresistance and calpain inactivation in breast cancer, a discovery with potential implications for anti-cancer therapy.


Subject(s)
Apoptosis , Breast Neoplasms , Calpain , Cartilage Oligomeric Matrix Protein , Drug Resistance, Neoplasm , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/drug effects , Female , Cartilage Oligomeric Matrix Protein/metabolism , Cartilage Oligomeric Matrix Protein/genetics , Cell Line, Tumor , Apoptosis/drug effects , Calpain/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects
12.
FASEB J ; 38(14): e23825, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031532

ABSTRACT

Limb-Girdle Muscular Dystrophy R1/2A (LGMD R1/2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wild-type (WT) mice, we determined whether loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD R1/2A pathology.


Subject(s)
Calcium , Calpain , Mice, Knockout , Muscle Proteins , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Calpain/metabolism , Mice , Calcium/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Male , Mice, Inbred C57BL , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Calcium Signaling
13.
Sci Rep ; 14(1): 15642, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977865

ABSTRACT

Oxidative stress plays an essential role in the progression of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. Streptozotocin (STZ)-induced abnormal brain insulin signaling and oxidative stress play crucial roles in the progression of Alzheimer's disease (AD)-like pathology. Peroxiredoxins (Prxs) are associated with protection from neuronal death induced by oxidative stress. However, the molecular mechanisms underlying Prxs on STZ-induced progression of AD in the hippocampal neurons are not yet fully understood. Here, we evaluated whether Peroxiredoxin 1 (Prx1) affects STZ-induced AD-like pathology and cellular toxicity. Prx1 expression was increased by STZ treatment in the hippocampus cell line, HT-22 cells. We evaluated whether Prx1 affects STZ-induced HT-22 cells using overexpression. Prx1 successfully protected the forms of STZ-induced AD-like pathology, such as neuronal apoptosis, synaptic loss, and tau phosphorylation. Moreover, Prx1 suppressed the STZ-induced increase of mitochondrial dysfunction and fragmentation by down-regulating Drp1 phosphorylation and mitochondrial location. Prx1 plays a role in an upstream signal pathway of Drp1 phosphorylation, cyclin-dependent kinase 5 (Cdk5) by inhibiting the STZ-induced conversion of p35 to p25. We found that STZ-induced of intracellular Ca2+ accumulation was an important modulator of AD-like pathology progression by regulating Ca2+-mediated Calpain activation, and Prx1 down-regulated STZ-induced intracellular Ca2+ accumulation and Ca2+-mediated Calpain activation. Finally, we identified that Prx1 antioxidant capacity affected Ca2+/Calpain/Cdk5-mediated AD-like pathology progress. Therefore, these findings demonstrated that Prx1 is a key factor in STZ-induced hippocampal neuronal death through inhibition of Ca2+/Calpain/Cdk5-mediated mitochondrial dysfunction by protecting against oxidative stress.


Subject(s)
Alzheimer Disease , Calcium , Calpain , Cyclin-Dependent Kinase 5 , Hippocampus , Mitochondria , Neurons , Peroxiredoxins , Streptozocin , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/etiology , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/genetics , Streptozocin/toxicity , Hippocampus/metabolism , Hippocampus/pathology , Neurons/metabolism , Neurons/pathology , Calpain/metabolism , Peroxiredoxins/metabolism , Peroxiredoxins/genetics , Mitochondria/metabolism , Mice , Calcium/metabolism , Cell Line , Oxidative Stress , Apoptosis , Dynamins/metabolism , Dynamins/genetics , Phosphorylation , tau Proteins/metabolism , Signal Transduction
14.
Cell Signal ; 122: 111298, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39004325

ABSTRACT

Circular RNAs (circRNAs) are covalently closed, single-stranded RNAs that play critical roles in various biological processes and diseases, including cancers. However, the functions and mechanisms of circRNAs in hepatocellular carcinoma (HCC) need further clarification. Here, we identified and confirmed that circATF6 is downregulated in HCC tissues and negatively associated with the overall survival of HCC patients. Ectopic overexpression of circATF6 inhibits malignant phenotypes of HCC cells in vitro and in vivo, while knockdown of circATF6 had opposite effects. Mechanistically, we found that circATF6 bound to calreticulin (CALR) protein and acted as a scaffold to enhance the interaction of CALR with calpain2 (CAPN2), which promoted the degradation of CALR by its enzymatic activity. Moreover, we found that circATF6 inhibited HCC cells by suppressing CALR-mediated wnt/ß-catenin signaling pathway. Taken together, our findings suggest that circATF6 is a potential prognostic biomarker and therapeutic target for HCC.


Subject(s)
Calreticulin , Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Circular , Wnt Signaling Pathway , Animals , Humans , Male , Mice , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , beta Catenin/metabolism , Calpain/metabolism , Calpain/genetics , Calreticulin/metabolism , Calreticulin/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice, Inbred BALB C , Mice, Nude , RNA, Circular/genetics , RNA, Circular/metabolism
15.
J Transl Med ; 22(1): 538, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844946

ABSTRACT

Apalutamide, a novel endocrine therapy agent, has been shown to significantly improve the prognosis of patients with metastatic hormone-sensitive prostate cancer (mHSPC). However, resistance to apalutamide has also been reported, and the underlying mechanism for this response has yet to be clearly elucidated. First, this study established apalutamide-resistant prostate cancer (PCa) cells, and confirmed that apalutamide activated the release of calcium ions (Ca2+) and endoplasmic reticulum stress (ERS) to enhance autophagy. Second, RNA sequencing, western blotting, and immunohistochemistry revealed significantly decreased Calpain 2 (CAPN2) expression in the apalutamide-resistant PCa cells and tissues. Furthermore, immunofluorescence and transmission electron microscopy (TEM) showed that CAPN2 promoted apalutamide resistance by activating protective autophagy. CAPN2 promoted autophagy by reducing Forkhead Box O1 (FOXO1) degradation while increasing nuclear translocation via nucleoplasmic protein isolation and immunofluorescence. In addition, FOXO1 promoted protective autophagy through the transcriptional regulation of autophagy-related gene 5 (ATG5). Furthermore, a dual-fluorescence assay confirmed that transcription factor 3 (ATF3) stimulation promoted CAPN2-mediated autophagy activation via transcriptional regulation. In summary, CAPN2 activated protective autophagy by inhibiting FOXO1 degradation and promoting its nuclear translocation via transcriptional ATG5 regulation. ATF3 activation and transcriptional CAPN2 regulation jointly promoted this bioeffect. Thus, our findings have not only revealed the mechanism underlying apalutamide resistance, but also provided a promising new target for the treatment of metastatic PCa.


Subject(s)
Autophagy , Calpain , Drug Resistance, Neoplasm , Neoplasm Metastasis , Prostatic Neoplasms , Thiohydantoins , Humans , Male , Autophagy/drug effects , Cell Line, Tumor , Calpain/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Thiohydantoins/pharmacology , Thiohydantoins/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Forkhead Box Protein O1/metabolism , Calcium/metabolism , Endoplasmic Reticulum Stress/drug effects , Animals
16.
Cardiovasc Res ; 120(11): 1312-1326, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-38832923

ABSTRACT

AIMS: ßII spectrin is a cytoskeletal protein known to be tightly linked to heart development and cardiovascular electrophysiology. However, the roles of ßII spectrin in cardiac contractile function and pathological post-myocardial infarction remodelling remain unclear. Here, we investigated whether and how ßII spectrin, the most common isoform of non-erythrocytic spectrin in cardiomyocytes, is involved in cardiac contractile function and ischaemia/reperfusion (I/R) injury. METHODS AND RESULTS: We observed that the levels of serum ßII spectrin breakdown products (ßII SBDPs) were significantly increased in patients with acute myocardial infarction (AMI). Concordantly, ßII spectrin was degraded into ßII SBDPs by calpain in mouse hearts after I/R injury. Using tamoxifen-inducible cardiac-specific ßII spectrin knockout mice, we found that deletion of ßII spectrin in the adult heart resulted in spontaneous development of cardiac contractile dysfunction, cardiac hypertrophy, and fibrosis at 5 weeks after tamoxifen treatment. Moreover, at 1 week after tamoxifen treatment, although spontaneous cardiac dysfunction in cardiac-specific ßII spectrin knockout mice had not developed, deletion of ßII spectrin in the heart exacerbated I/R-induced cardiomyocyte death and heart failure. Furthermore, restoration of ßII spectrin expression via adenoviral small activating RNA (saRNA) delivery into the heart reduced I/R injury. Immunoprecipitation coupled with mass spectrometry (IP-LC-MS/MS) analyses and functional studies revealed that ßII spectrin is indispensable for mitochondrial complex I activity and respiratory function. Mechanistically, ßII spectrin promotes translocation of NADH:ubiquinone oxidoreductase 75-kDa Fe-S protein 1 (NDUFS1) from the cytosol to mitochondria by crosslinking with actin filaments (F-actin) to maintain F-actin stability. CONCLUSION: ßII spectrin is an essential cytoskeletal element for preserving mitochondrial homeostasis and cardiac function. Defects in ßII spectrin exacerbate cardiac I/R injury.


Subject(s)
Disease Models, Animal , Mitochondria, Heart , Myocardial Contraction , Myocardial Reperfusion Injury , Myocytes, Cardiac , Spectrin , Animals , Humans , Male , Calpain/metabolism , Calpain/genetics , Calpain/deficiency , Carrier Proteins , Case-Control Studies , Cell Respiration , Cells, Cultured , Fibrosis , Heart Failure/physiopathology , Heart Failure/metabolism , Heart Failure/genetics , Heart Failure/pathology , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/enzymology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Infarction/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/enzymology , Proteolysis , Spectrin/metabolism , Spectrin/genetics , Ventricular Function, Left , Ventricular Remodeling
17.
Am J Physiol Heart Circ Physiol ; 327(2): H460-H472, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38940916

ABSTRACT

Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance, often treated via electrical cardioversion. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs, suggesting that defects in contractility occur in AFib and are revealed upon restoration of rhythm. This project aims to define the contractile remodeling that occurs in AFib. To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared with sinus rhythm atria. Atrial cardiomyocytes show reduced force of contraction, decreased resting tension, and increased calcium sensitivity in skinned single cardiomyocyte studies. These alterations correlated with degradation of myofilament proteins including myosin heavy chain altering force of contraction, titin altering resting tension, and troponin I altering calcium sensitivity. We measured degradation of other myofilament proteins, including cardiac myosin binding protein C and actinin, that show degradation products in the AFib samples that are absent in the sinus rhythm atria. Many of the degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. These results provide an understanding of the contractile remodeling that occurs in AFib and provide insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.NEW & NOTEWORTHY Atrial fibrillation is the most common cardiac rhythm disorder, and remodeling during atrial fibrillation is highly variable between patients. This study has defined the biophysical changes in contractility that occur in atrial fibrillation along with identifying potential molecular mechanisms that may drive this remodeling. This includes proteolysis of several myofilament proteins including titin, troponin I, myosin heavy chain, myosin binding protein C, and actinin, which is consistent with the observed contractile deficits.


Subject(s)
Atrial Fibrillation , Heart Atria , Myocardial Contraction , Myocytes, Cardiac , Proteolysis , Sarcomeres , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Animals , Dogs , Sarcomeres/metabolism , Heart Atria/metabolism , Heart Atria/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Calpain/metabolism , Disease Models, Animal , Male
18.
Hum Hered ; 89(1): 52-59, 2024.
Article in English | MEDLINE | ID: mdl-38830343

ABSTRACT

INTRODUCTION: Recessive mutations in the CAPN3 gene can lead to limb-girdle muscular dystrophy recessive 1 (LGMD R1). Targeted next-generation sequencing facilitates the discovery of new mutations linked with disease, owing to its ability to selectively enrich specific genomic regions. METHODS: We performed targeted next-generation sequencing of all exons of the CAPN3 gene in 4 patients with sporadic limb-girdle muscular dystrophy (LGMD) and further analyzed the effects of the novel identified variant using various software tools. RESULTS: We found 5 variants in CAPN3 gene in 4 patients, c.82_83insC (insertion mutation) and c.1115+2T>C (splicing mutation) are reported for the first time in CAPN3 (NM_000070.2). The bioinformatics analysis indicated that these two novel variants affected CAPN3 transcription as well as translation. DISCUSSION: Our findings reveal previously unreported splicing mutation and insertion mutation in CAPN3 gene, further expanding the pathogenic gene profile of LGMD.


Subject(s)
Calpain , Muscle Proteins , Muscular Dystrophies, Limb-Girdle , Adolescent , Adult , Female , Humans , Male , Young Adult , Calpain/genetics , China , East Asian People/genetics , Exons/genetics , High-Throughput Nucleotide Sequencing , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Mutation
19.
Exp Neurol ; 379: 114863, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38871070

ABSTRACT

Interleukin-17 A (IL-17 A) contributes to inflammation and causes secondary injury in post-stroke patients. However, little is known regarding the mechanisms that IL-17 A is implicated in the processes of neuronal death during ischemia. In this study, the mouse models of middle cerebral artery occlusion/reperfusion (MCAO/R)-induced ischemic stroke and oxygen-glucose deprivation/reoxygenation (OGD/R)-simulated in vitro ischemia in neurons were employed to explore the role of IL-17 A in promoting neuronal apoptosis. Mechanistically, endoplasmic reticulum stress (ERS)-induced neuronal apoptosis was accelerated by IL-17 A activation through the caspase-12-dependent pathway. Blocking calpain or phospholipase Cγ (PLCγ) inhibited IL-17 A-mediated neuronal apoptosis under ERS by inhibiting caspase-12 cleavage. Src and IL-17 A are linked, and PLCγ directly binds to activated Src. This binding causes intracellular Ca2+ flux and activates the calpain-caspase-12 cascade in neurons. The neurological scores showed that intracerebroventricular (ICV) injection of an IL-17 A neutralizing mAb decreased the severity of I/R-induced brain injury and suppressed apoptosis in MCAO mice. Our findings reveal that IL-17 A increases caspase-12-mediated neuronal apoptosis, and IL-17 A suppression may have therapeutic potential for ischemic stroke.


Subject(s)
Apoptosis , Brain Ischemia , Calpain , Caspase 12 , Interleukin-17 , Mice, Inbred C57BL , Neurons , Phospholipase C gamma , Signal Transduction , Animals , Calpain/metabolism , Calpain/antagonists & inhibitors , Interleukin-17/metabolism , Mice , Apoptosis/physiology , Apoptosis/drug effects , Phospholipase C gamma/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Male , Brain Ischemia/metabolism , Brain Ischemia/pathology , Signal Transduction/physiology , Signal Transduction/drug effects , Caspase 12/metabolism , src-Family Kinases/metabolism , src-Family Kinases/antagonists & inhibitors , Infarction, Middle Cerebral Artery/pathology , Cells, Cultured
20.
J Cell Mol Med ; 28(11): e18412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842132

ABSTRACT

Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions. However, exaggerated Cdk5 is implicated in different types of neurodegenerative diseases including Parkinson disease (PD). Therefore, modulation of Cdk5 signalling may mitigate PD neuropathology. Therefore, the aim of the present review was to discuss the critical role of Cdk5 in the pathogenesis of PD, and how Cdk5 inhibitors are effectual in the management of PD. In conclusion, overactivated Cdk5 is involved the development of neurodegeneration, and Cdk5/calpain inhibitors such as statins, metformin, fenofibrates and rosiglitazone can attenuate the progression of PD neuropathology.


Subject(s)
Cyclin-Dependent Kinase 5 , Parkinson Disease , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Animals , Calpain/metabolism , Calpain/antagonists & inhibitors , Signal Transduction/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL