Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
New Phytol ; 243(2): 781-796, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757746

ABSTRACT

The iconic, palmately compound leaves of Cannabis have attracted significant attention in the past. However, investigations into the genetic basis of leaf shape or its connections to phytochemical composition have yielded inconclusive results. This is partly due to prominent changes in leaflet number within a single plant during development, which has so far prevented the proper use of common morphometric techniques. Here, we present a new method that overcomes the challenge of nonhomologous landmarks in palmate, pinnate, and lobed leaves, using Cannabis as an example. We model corresponding pseudo-landmarks for each leaflet as angle-radius coordinates and model them as a function of leaflet to create continuous polynomial models, bypassing the problems associated with variable number of leaflets between leaves. We analyze 341 leaves from 24 individuals from nine Cannabis accessions. Using 3591 pseudo-landmarks in modeled leaves, we accurately predict accession identity, leaflet number, and relative node number. Intra-leaf modeling offers a rapid, cost-effective means of identifying Cannabis accessions, making it a valuable tool for future taxonomic studies, cultivar recognition, and possibly chemical content analysis and sex identification, in addition to permitting the morphometric analysis of leaves in any species with variable numbers of leaflets or lobes.


Subject(s)
Cannabis , Models, Biological , Plant Leaves , Plant Leaves/anatomy & histology , Cannabis/genetics , Cannabis/growth & development
2.
J Agric Food Chem ; 72(23): 12975-12987, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38807047

ABSTRACT

This study discovered the impact of high-tunnel (i.e., unheated greenhouse) and open-field production on two industrial hemp cultivars (SB1 and CJ2) over their yield parameters, cannabinoid development, and volatile profiles. Development of neutral cannabinoids (CBD, THC, and CBC), acidic cannabinoids (CBDA, THCA, and CBCA), and total cannabinoids during floral maturation were investigated. The volatile profiles of hemp flowers were holistically compared via HS-SPME-GC/MS. Findings indicated a high tunnel as an efficient practice for achieving greater total weight, stem number, and caliper, especially in the SB1 cultivar. Harvesting high-tunnel-grown SB1 cultivars during early flower maturation could obtain a high CBD yield while complying with THC regulations. Considering the volatile profiles, hemp flowers mainly consisted of mono- and sesquiterpenoids, as well as oxygenated mono- and sesquiterpenoids. Volatile analysis revealed the substantial impact of cultivars on the volatile profile compared to the production systems.


Subject(s)
Cannabinoids , Cannabis , Gas Chromatography-Mass Spectrometry , Inflorescence , Volatile Organic Compounds , Cannabis/chemistry , Cannabis/growth & development , Cannabis/metabolism , Cannabinoids/analysis , Cannabinoids/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Inflorescence/chemistry , Inflorescence/growth & development , Inflorescence/metabolism , Flowers/chemistry , Flowers/growth & development , Flowers/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism
3.
Plant Foods Hum Nutr ; 79(2): 322-329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753215

ABSTRACT

This study introduces the concept of developing a functional hemp drink enriched with γ-Aminobutyric acid (GABA) to enhance its nutritional value and functional properties utilizing Solid-State (SSF) co-Fermentation by Lactobacillus casei and Bacillus subtilis and germination bioprocesses. Bioprocesses may offer an alternative solution to challenges in hemp milk, such as product instability and the use of additives. Notably, the hemp milk produced through the germination for three days or co-fermentation processes yielded the highest GABA content of 79.84 and 102.45 mg/100 mL, respectively, compared to the untreated milk. These bioactive milk samples exhibited higher zeta potential and soluble protein content and also reduced solid particle sedimentation and droplet sizes (D4,3 and D3,2) compared to the untreated milk. Furthermore, the peptide, total phenolic content, and antioxidant activity of the produced GABA-enriched kinds of milk surpassed those of the untreated milk. Overall, the SSF and germination processes present a promising alternative for producing stable milk analogs with enhanced health-boosting properties.


Subject(s)
Antioxidants , Bacillus subtilis , Cannabis , Fermentation , Germination , gamma-Aminobutyric Acid , gamma-Aminobutyric Acid/analysis , gamma-Aminobutyric Acid/metabolism , Cannabis/chemistry , Cannabis/growth & development , Antioxidants/analysis , Nutritive Value , Lacticaseibacillus casei/metabolism , Lacticaseibacillus casei/growth & development , Phenols/analysis , Milk/chemistry , Peptides/analysis , Food, Fortified/analysis
4.
J Agric Food Chem ; 72(19): 10862-10878, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712687

ABSTRACT

Bama County is a world-famous longevity county in the Guangxi Province, China. Bama hemp is a traditional seed used in hemp cultivation in the Bama County. The seeds contain abundant unsaturated fatty acids, particularly linoleic acid (LA) and linolenic acid in the golden ratio. These two substances have been proven to be related to human health and the prevention of various diseases. However, the seed development and seed oil accumulation mechanisms remain unclear. This study employed a combined analysis of physiological, transcriptomic, and metabolomic parameters to elucidate the fatty acid formation patterns in Bama hemp seeds throughout development. We found that seed oil accumulated at a late stage in embryo development, with seed oil accumulation following an "S″-shaped growth curve, and positively correlated with seed size, sugar content, protein content, and starch content. Transcriptome analysis identified genes related to the metabolism of LA, α-linolenic acid (ALA), and jasmonic acid (JA). We found that the FAD2 gene was upregulated 165.26 folds and the FAD3 gene was downregulated 6.15 folds at day 21. Metabolomic changes in LA, ALA, and JA compounds suggested a competitive relationship among these substances. Our findings indicate that the peak period of substance accumulation and nutrient accumulation in Bama hemp seeds occurs during the midstage of seed development (day 21) rather than in the late stage (day 40). The results of this research will provide a theoretical basis for local cultivation and deep processing of Bama hemp.


Subject(s)
Cannabis , Gene Expression Regulation, Plant , Linoleic Acid , Metabolomics , Plant Proteins , Seeds , Transcriptome , alpha-Linolenic Acid , Seeds/metabolism , Seeds/growth & development , Seeds/genetics , Seeds/chemistry , alpha-Linolenic Acid/metabolism , Cannabis/genetics , Cannabis/growth & development , Cannabis/metabolism , Cannabis/chemistry , Linoleic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , China , Gene Expression Profiling
5.
J Pharm Biomed Anal ; 245: 116181, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38723555

ABSTRACT

Hemp-sprouts are emerging as a new class of attractive functional food due to their numerous health benefits when compared to other sprout species. Indeed, the high content of beneficial components including polyphenols and flavonoids makes this type of food a promising and successful market. However, the available literature on this topic is limited and often conflicting as regards to the content of phytocannabinoids. High-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) was applied in an untargeted metabolomics fashion to extracts of hemp seeds, sprouts and microgreens of nine different genotypes. Both unsupervised and supervised multivariate statistical analysis was performed to reveal variety-specific profiles of phytocannabinoids with surprisingly remarkable levels of phytocannabinoids even in chemotype V samples. Furthermore, a targeted HPLC-HRMS analysis was carried out for the quantitative determination of the major phytocannabinoids including CBDA, CBD, CBGA, CBG, CBCA, CBC, THCA, and trans-Δ9-THC. The last part of the study was focused on the evaluation of the enantiomeric composition of CBCA in hemp seeds, sprouts and microgreens in the different varieties by HPLC-CD (HPLC with online circular dichroism). Chiral analysis of CBCA showed a wide variability of its enantiomeric composition in the different varieties, thus contributing to the understanding of the intriguing stereochemical behavior of this compound in an early growth stage. However, further investigation is needed to determine the genetic factors responsible for the low enantiopurity of this compound.


Subject(s)
Cannabis , Seeds , Cannabis/chemistry , Cannabis/growth & development , Seeds/chemistry , Chromatography, High Pressure Liquid/methods , Cannabinoids/analysis , Cannabinoids/chemistry , Plant Extracts/chemistry , Plant Extracts/analysis , Mass Spectrometry/methods , Metabolomics/methods , Stereoisomerism , Circular Dichroism/methods
6.
Chemosphere ; 358: 142199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692366

ABSTRACT

Industrial hemp (Cannabis sativa L.) has great application potential in heavy metal-polluted soils owing to its safe non-food utilization. However, the fate of heavy metals in different varieties of hemp planted in strongly contaminated natural soils remains unknown. Here, we investigated the growth, heavy metal uptake, distribution, and transfer of nine hemp varieties in soils strongly contaminated with Cu, As, Cd, and Pb. Hemp variety and metal type were the main factors affecting the growth and heavy metal uptake in hemp. The nine hemp varieties grew well in the contaminated soils; however, differences existed among the varieties. The biomass of Z3 reached 5669.1 kg hm-1, whereas that of Yunma No. 1 was only 51.8 % of Z3. The plant height, stalk diameter, and stalk bark thickness of Z3 were greater than those of the other varieties, reaching 168 cm, 9.2 mm, and 0.56 mm, respectively. Permanova's analysis revealed that the total effects of Cu, As, Cd, and Pb on the growth of the nine hemp varieties reached 60 %, with leaf As having the greatest effect, reaching 16 %. , Even in strongly contaminated soils, the nine varieties showed poor Cu, As, Cd, and Pb uptake. Most of the Cu, As, Cd, and Pb were retained in the root, reaching 57.7-72.4, 47.6-64.7, 76.0-92.9, and 70.0-87.8 %, respectively. Overall, the Cu, As, Cd, and Pb uptake of Wanma No.1 was the highest among the nine varieties, whereas that of Guangxi Bama was the lowest. These results indicate that hemp is a viable alternative for phytoattenuation in soils contaminated with heavy metals because of its ability to tolerate and accumulate Cu, As, Cd, and Pb in its roots, and Guangxi Bama is superior to the other varieties considering the safe utilization of hemp products.


Subject(s)
Arsenic , Biodegradation, Environmental , Cadmium , Cannabis , Copper , Lead , Metals, Heavy , Soil Pollutants , Soil , Cannabis/growth & development , Cannabis/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , Metals, Heavy/analysis , Metals, Heavy/metabolism , Lead/metabolism , Lead/analysis , Cadmium/metabolism , Cadmium/analysis , Arsenic/metabolism , Arsenic/analysis , Copper/analysis , Soil/chemistry , Biomass , Plant Roots/metabolism , Plant Roots/growth & development
7.
Molecules ; 29(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38792258

ABSTRACT

The resurgence of cannabis (Cannabis sativa L.) has been propelled by changes in the legal framework governing its cultivation and use, increased demand for hemp-derived products, and studies recognizing the industrial and health benefits of hemp. This has led to the creation of novel high-cannabidiol, low-Δ9-tetrahydrocannabinol varieties, enabling hemp crop expansion worldwide. This review elucidates the recent implications for hemp cultivation in Europe, with a focus on the legislative impacts on the cultivation practices, prospective breeding efforts, and dynamic scientific landscape surrounding this crop. We also review the current cultivars' cannabinoid composition of the European hemp market and its major differences with that of the United States.


Subject(s)
Cannabis , Cannabis/chemistry , Cannabis/growth & development , Crops, Agricultural/growth & development , Cannabidiol , Europe , Cannabinoids , Plant Breeding , United States
8.
Plant J ; 119(1): 383-403, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38625758

ABSTRACT

Hemp (Cannabis sativa L.) is an extraordinarily versatile crop, with applications ranging from medicinal compounds to seed oil and fibre products. Cannabis sativa is a short-day plant, and its flowering is highly controlled by photoperiod. However, substantial genetic variation exists for photoperiod sensitivity in C. sativa, and photoperiod-insensitive ("autoflower") cultivars are available. Using a bi-parental mapping population and bulked segregant analysis, we identified Autoflower2, a 0.5 Mbp locus significantly associated with photoperiod-insensitive flowering in hemp. Autoflower2 contains an ortholog of the central flowering time regulator FLOWERING LOCUS T (FT) from Arabidopsis thaliana which we termed CsFT1. We identified extensive sequence divergence between alleles of CsFT1 from photoperiod-sensitive and insensitive cultivars of C. sativa, including a duplication of CsFT1 and sequence differences, especially in introns. Furthermore, we observed higher expression of one of the CsFT1 copies found in the photoperiod-insensitive cultivar. Genotyping of several mapping populations and a diversity panel confirmed a correlation between CsFT1 alleles and photoperiod response, affirming that at least two independent loci involved in the photoperiodic control of flowering, Autoflower1 and Autoflower2, exist in the C. sativa gene pool. This study reveals the multiple independent origins of photoperiod insensitivity in C. sativa, supporting the likelihood of a complex domestication history in this species. By integrating the genetic relaxation of photoperiod sensitivity into novel C. sativa cultivars, expansion to higher latitudes will be permitted, thus allowing the full potential of this versatile crop to be reached.


Subject(s)
Cannabis , Flowers , Photoperiod , Plant Proteins , Flowers/genetics , Flowers/physiology , Cannabis/genetics , Cannabis/physiology , Cannabis/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Alleles , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Chromosome Mapping
9.
Plant J ; 118(4): 1155-1173, 2024 May.
Article in English | MEDLINE | ID: mdl-38332528

ABSTRACT

Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.


Subject(s)
Acetates , Cannabis , Cyclopentanes , Deep Learning , Gene Expression Profiling , Gene Expression Regulation, Plant , Oxylipins , Trichomes , Oxylipins/pharmacology , Oxylipins/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Cannabis/genetics , Cannabis/growth & development , Cannabis/metabolism , Acetates/pharmacology , Trichomes/genetics , Trichomes/metabolism , Trichomes/growth & development , Gene Expression Profiling/methods , Transcriptome , Plant Growth Regulators/metabolism
10.
Adicciones (Palma de Mallorca) ; 35(3): 349-376, 2023. mapas, tab, graf
Article in English, Spanish | IBECS | ID: ibc-226076

ABSTRACT

En los últimos años se han producido importantes cambios legislativos en numerosos países respecto al consumo de cannabis con fines medicinales y/o recreativos, que han facilitado su accesibilidad. Actualmente, Uruguay, Canadá y algunos estados de EE.UU. han legalizado el consumo recreativo, aplicando distintos modelos legislativos. El objetivo de la presente revisión es analizar los efectos que ha tenido la legalización del cannabis recreativo sobre su consumo y sus consecuencias. En general, las evidencias indican que la legalización se ha asociado a un descenso en el precio, mayor concentración de THC (potencia), mayor diversidad de presentaciones para su consumo, una menor percepción de riesgo y un incremento en el consumo en adultos y de forma moderada en adolescentes (aunque sea ilegal el consumo para ellos), así como un aumento de las consecuencias adversas derivadas del consumo en la salud pública. Se ha producido un descenso en los arrestos relacionados con el consumo, pero el mercado ilegal sigue utilizándose de forma habitual. No se ha detectado un incremento de la demanda de tratamiento por este consumo. Por el momento, estos cambios legislativos no han conseguido alcanzar sus objetivos principales que eran suprimir el mercado ilegal y proteger a los grupos más vulnerables, mientras que, por el contrario, parecen implicar un incremento de algunos aspectos negativos asociados al consumo de cannabis. Sin embargo, teniendo en cuenta que la mayoría de estos cambios legislativos han entrado en vigor hace relativamente poco tiempo, se requiere un periodo de seguimiento mayor para poder extraer conclusiones definitivas. (AU)


In recent years, there have been important legislative changes in many countries regarding the use of cannabis for medicinal and/or recreational purposes, which have facilitated access to it. Uruguay, Canada and some of the US states are the only jurisdictions that have legalised recreational consumption, applying different legislative models. The aim of this review is to analyse the effects that the legalisation of recreational cannabis has had on its use and its consequences. In general, the evidence accumulated to date indicates that the legalisation of cannabis has been associated with a decrease in the price of the substance, higher concentration of THC (potency), greater diversity of presentations for consumption, lower risk perception and an increase in consumption in adults and moderately in adolescents (even though it is illegal for them to consume), as well as an increase in the adverse consequences derived from cannabis consumption on public health. There has been a decrease in drug-related arrests, but the illegal market continues to be frequently used. No increase in the demand for treatment due to cannabis consumption has been detected. Therefore, these legislative changes have so far failed to achieve their main objectives, which were to suppress the illegal market and protect the most vulnerable groups, while on the contrary, they seem to imply an increase in some of the negative aspects associated with cannabis consumption. However, taking into account that most of these legislative changes have entered into force relatively recently, a longer follow-up period is required to be able to draw definitive conclusions. (AU)


Subject(s)
Humans , Cannabis/growth & development , Marijuana Use/history , Marijuana Use/legislation & jurisprudence , Marijuana Use/trends , Public Health/legislation & jurisprudence , Public Health/statistics & numerical data
12.
Gene ; 822: 146290, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35176429

ABSTRACT

WRKY transcription factor is one of the largest transcription factor families in higher plants. However, the investigations of the WRKY gene family have not yet been reported in seed hemp. In the present study, we identified 39 CasWRKYs at the genome-wide level and analyzed phylogenetic relationship, chromosome location, cis-acting elements, gene structure, conserved motif, and expression pattern. Based on the gene structure and phylogenetic analyses, CasWRKY proteins were divided into 3 groups and 7 subgroups. The gene duplication investigation revealed that 6 and 5 pairs of CasWRKY genes underwent tandem and segmental duplication events, respectively. These events may contribute to the diversity and expansion of the CasWRKY gene family. The regulatory elements in the promoter regions of CasWRKYs contained diverse cis-regulatory elements, among which P-box cis-regulatory elements showed high frequency, indicating that CasWRKYs can respond to the regulation of gibberellin. The expression profiles derived from RNA-seq and qRT-PCR showed that 13 CasWRKY genes could respond to GA3 stress and affect fiber development, as well as play significant roles in stem growth and development. This study will serve as molecular basis and practical reference for further exploring the genetic evolution and biological function of CasWRKY genes in seed hemp.


Subject(s)
Cannabis/growth & development , Gene Expression Profiling/methods , Gibberellins/pharmacology , Transcription Factors/genetics , Cannabis/drug effects , Cannabis/genetics , Chromosome Mapping , Gene Expression Regulation, Plant/drug effects , Multigene Family , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Promoter Regions, Genetic , Protein Domains , RNA-Seq , Stress, Physiological , Transcription Factors/chemistry
13.
Article in English | MEDLINE | ID: mdl-34534603

ABSTRACT

With an increasing number of countries and states adopting legislation permitting the use of cannabis for medical purposes, there is a growing interest among health and research professionals into the system through which cannabinoids principally act, the endocannabinoid system (ECS). Much of the seminal research into the ECS dates back only 30 years and, although there has been tremendous development within the field during this time, many questions remain. More recently, investigations have emerged examining the contributions of the ECS to normative development and the effect of altering this system during important critical periods. One such period is adolescence, a unique period during which brain and behaviours are maturing and reorganizing in preparation for adulthood, including shifts in endocannabinoid biology. The purpose of this review is to discuss findings to date regarding the maturation of the ECS during adolescence and the consequences of manipulations of the ECS during this period to normative neurodevelopmental processes, as well as highlight sex differences in ECS function, important technical considerations, and future directions. Because most of what we know is derived from preclinical studies on rodents, we provide relevant background of this model and some commentary on the translational relevance of the research in this area.


Subject(s)
Brain , Cannabinoid Receptor Agonists/pharmacology , Cannabis , Endocannabinoids , Adolescent , Brain/drug effects , Brain/growth & development , Cannabis/growth & development , Cannabis/metabolism , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Humans , Sex Factors
14.
Chem Biodivers ; 18(12): e2100247, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34597470

ABSTRACT

Hemp (Cannabis sativa L.) belongs to the Cannabaceae family. It is very rich in chemical constituents, especially the cannabinoids which has not been reported in any other plant, and has broad pharmacological properties. Hemp as a multi-purpose crop is a good source of fibers, seed, fixed and volatile oil. It is known that the cannabinoid content of hemp is related to genetic factors, as well as plant's growth stages and environmental factors such as latitude, altitude, weather, particularly moisture availability and nutrient supply during the growing season. The present study was designed to produce hemp that contains allowable concentration of THC (<3 %) by comparing different varieties of hemp, different stages of plant growth, and different geographical locations where it was planted. To achieve this, seeds of two native populations from Iran (Fars and Yazd Provinces) and one foreign variety from France (Fedora17, as an industrial hemp cultivar) with its progenies (Fedora17-2) were cultivated in 3 research fields (Gilan, Golestan and Alborz provinces) in Iran. The following plant materials were extracted with methanol/chloroform and analyzed by HPLC: foliage in the vegetative stage, inflorescent in the flowering stage, inflorescent of seeds in the seeding stage and the mature seed. The THC concentration of Fedora17 (Fed17) in all three geographical locations was found to be under 0.03 % or even non-detectable. Same result was also observed in its progenies (Fed17-2), indicating stability of the trait in this cultivar. The THC concentration of the Yazd variety that was planted in Alborz and Gilan regions was less than 0.080 % in all growth stages. The female flowers planted in Golestan, showed a THC concentration of 1.029 % which was more than the allowed THC concentration of <3 %. The THC concentration in all growth stages of all of the different varieties planted varied from 0 to 1.392 %. The above results indicates that the type of cannabinoid produced depends on the difference in genetic prosperities of the different seed types as well as the growth stage in which the plant material was extracted. On the other hand, the climate and the region in which the seeds were planted had little influence on the THC concentration.


Subject(s)
Cannabinoids/analysis , Cannabis/chemistry , Cannabis/growth & development , Flowers/chemistry , France , Iran , Seeds/chemistry , Species Specificity
15.
PLoS One ; 16(9): e0256273, 2021.
Article in English | MEDLINE | ID: mdl-34469430

ABSTRACT

Illegal cannabis cultivation on public lands has emerged as a major threat to wildlife in California and southern Oregon due to the rampant use of pesticides, habitat destruction, and water diversions associated with trespass grow sites. The spatial distribution of cultivation sites, and the factors influencing where they are placed, remain largely unknown due to covert siting practices and limited surveillance funding. We obtained cannabis grow-site locality data from law enforcement agencies and used them to model the potential distribution of cultivation sites in forested regions of California and southern Oregon using maximum entropy (MaxEnt) methods. We mapped the likely distribution of trespass cannabis cultivation sites and identified environmental variables influencing where growers establish their plots to better understand the cumulative impacts of trespass cannabis cultivation on wildlife. We overlaid the resulting grow-site risk maps with habitat distribution maps for three forest species of conservation concern: Pacific fisher (Pekania pennanti), Humboldt marten (Martes caurina humboldtensis), and northern spotted owl (Strix occidentalis caurina). Results indicate that cannabis cultivation is fairly predictably distributed on public lands in low to mid-elevation (~800-1600m) forests and on moderate slopes (~30-60%). Somewhat paradoxically, results also suggest that growers either preferred sites inside of recently disturbed vegetation (especially those burned 8-12 years prior to cultivation) or well outside (>500m) of recent disturbance, perhaps indicating avoidance of open edges. We ground-truthed the model by surveying randomly selected stream courses for cultivation site presence in subsets of the modeling region and found previously undiscovered sites mostly within areas with predicted high likelihood of grow-site occurrence. Moderate to high-likelihood areas of trespass cultivation overlapped with 40 to 48% of modeled habitats of the three sensitive species. For the endangered southern Sierra Nevada fisher population, moderate-high likelihood growing areas overlapped with over 37% of modeled fisher denning habitat and with 100% of annual female fisher home ranges (mean overlap = 48.0% + 27.0 SD; n = 134) in two intensively studied populations on the Sierra National Forest. Locating and reclaiming contaminated cannabis grow sites by removing all environmental contaminants should be a high priority for resource managers.


Subject(s)
Cannabis/growth & development , Ecosystem , Forests , Predatory Behavior , Animals , California , Oregon
16.
PLoS One ; 16(8): e0235525, 2021.
Article in English | MEDLINE | ID: mdl-34388148

ABSTRACT

Cannabis sativa is relatively recalcitrant to de novo regeneration, but several studies have reported shoot organogenesis or somatic embryogenesis from non-meristematic tissues. Most report infrequent regeneration rates from these tissues, but a landmark publication from 2010 achieved regeneration from leaf explants with a 96% response rate, producing an average of 12.3 shoots per explant in a single drug-type accession. Despite the importance regeneration plays in plant biotechnology and the renewed interest in this crop the aforementioned protocol has not been used in subsequent papers in the decade since it was published, raising concerns over its reproducibility. Here we attempted to replicate this important Cannabis regeneration study and expand the original scope of the study by testing it across 10 drug-type C. sativa genotypes to assess genotypic variation. In our study, callus was induced in all 10 genotypes but callus growth and appearance substantially differed among cultivars, with the most responsive genotype producing 6-fold more callus than the least responsive. The shoot induction medium failed to induce shoot organogenesis in any of the 10 cultivars tested, instead resulting in necrosis of the calli. The findings of this replication study raise concerns about the replicability of existing methods. However, some details of the protocol could not be replicated due to missing details in the original paper and regulatory issues, which could have impacted the outcome. These results highlight the importance of using multiple genotypes in such studies and providing detailed methods to facilitate replication.


Subject(s)
Cannabis/growth & development , Cannabis/genetics , Regeneration/genetics , Genotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Plant Shoots/genetics , Plant Shoots/growth & development , Reproducibility of Results
17.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443479

ABSTRACT

Cannabis sativa L. has been used for a long time to obtain food, fiber, and as a medicinal and psychoactive plant. Today, the nutraceutical potential of C.sativa is being increasingly reappraised; however, C. sativa roots remain poorly studied, despite citations in the scientific literature. In this direction, we identified and quantified the presence of valuable bioactives (namely, ß-sitosterol, stigmasterol, campesterol, friedelin, and epi-friedelanol) in the root extracts of C. sativa, a finding which might pave the way to the exploitation of the therapeutic potential of all parts of the C. sativa plant. To facilitate root harvesting and processing, aeroponic (AP) and aeroponic-elicited cultures (AEP) were established and compared to soil-cultivated plants (SP). Interestingly, considerably increased plant growth-particularly of the roots-and a significant increase (up to 20-fold in the case of ß-sitosterol) in the total content of the aforementioned roots' bioactive molecules were observed in AP and AEP. In conclusion, aeroponics, an easy, standardized, contaminant-free cultivation technique, facilitates the harvesting/processing of roots along with a greater production of their secondary bioactive metabolites, which could be utilized in the formulation of health-promoting and health-care products.


Subject(s)
Cannabis/chemistry , Cannabis/growth & development , Hydroponics , Cholesterol/analogs & derivatives , Cholesterol/analysis , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/analysis , Phytosterols/analysis , Plant Extracts/chemistry , Plant Roots/chemistry , Plant Roots/growth & development , Sitosterols/analysis , Stigmasterol/analysis , Triterpenes/analysis
18.
Molecules ; 26(13)2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34279420

ABSTRACT

Cannabis sativa L. is an annual species cultivated since antiquity for different purposes. While, in the past, hemp inflorescences were considered crop residues, at present, they are regarded as valuable raw materials with different applications, among which extraction of the essential oil (EO) has gained increasing interest in many fields. The aim of the present study is the evaluation of the yield and the chemical composition of the EO obtained by hydrodistillation from eleven hemp genotypes, cultivated in the same location for two consecutive growing seasons. The composition of the EOs was analyzed by GC-MS, and then subjected to multivariate statistical analysis. Sesquiterpenes represented the main class of compounds in all the EOs, both in their hydrocarbon and oxygenated forms, with relative abundances ranging from 47.1 to 78.5%; the only exception was the Felina 32 sample collected in 2019, in which cannabinoids predominated. Cannabinoids were the second most abundant class of compounds, of which cannabidiol was the main one, with relative abundances between 11.8 and 51.5%. The statistical distribution of the samples, performed on the complete chemical composition of the EOs, evidenced a partition based on the year of cultivation, rather than on the genotype, with the exception of Uso-31. Regarding the extraction yield, a significant variation was evidenced among both the genotypes and the years of cultivation.


Subject(s)
Cannabis/genetics , Oils, Volatile/analysis , Oils, Volatile/chemistry , Plant Extracts/analysis , Plant Extracts/chemistry , Cannabinoids/analysis , Cannabinoids/chemistry , Cannabis/classification , Cannabis/growth & development , Cannabis/metabolism , Genotype
19.
PLoS One ; 16(7): e0252985, 2021.
Article in English | MEDLINE | ID: mdl-34324496

ABSTRACT

Five essential oil hemp (Cannabis sativa L.) cultivars (Cherry Blossom, Cherry Blossom (Tuan), Berry Blossom, Cherry Wine, and Cherry Blossom × Trump) were treated with six fertigation treatments to quantify the effects of synthetic fertilizer rates and irrigation electrical conductivity on plant growth, biomass accumulation, and cannabinoid profiles. Irrigation water was injected with a commercial 20-20-20 fertilizer at rates of 0, 50, 150, 300, 450, and 600 ppm nitrogen equating to 0.33 (control), 0.54, 0.96, 1.59, 2.22, and 2.85 dS m-1, respectively. Plants were grown under artificial lighting (18 hr) to maintain vegetative growth for eight weeks, followed by an eight-week flowering period. High linear relationship between chlorophyll concentrations and SPAD-502 measurements validated the utilization of SPAD meters to rapidly identify nutrient deficiency in essential oil hemp. Cultivars expressed significant variation in plant height and cannabinoid profiles (% dry mass), in concurrence with limited biomass and cannabinoid (g per plant) yield variation. Cherry Blossom was the best performing cultivar and Cherry Wine was the least productive. Variation in plant growth, biomass, and cannabinoid concentrations were affected to a greater extent by fertilizer rates. Optimal fertilizer rates were observed at 50 ppm N, while increased fertilizer rates significantly reduced plant growth, biomass accumulation, and cannabinoid concentrations. Increased fertilizer rates (> 300 ppm N) resulted in compliant THC levels (< 0.3%), although when coupled with biomass reductions resulted in minimal cannabinoid yields. Additionally, CBD concentration demonstrated higher sensitivity to increased fertilizer rates (> 300 ppm N) compared to THC and CBG (> 450 ppm N). The results of this study can serve as a guide when using fertigation methods on essential oil hemp cultivars; although results may differ with cultivar selection, environmental conditions, and management practices.


Subject(s)
Cannabinoids/analysis , Cannabis/growth & development , Fertilizers , Cannabis/chemistry , Chlorophyll/analysis , Electric Conductivity
20.
PLoS One ; 16(7): e0255232, 2021.
Article in English | MEDLINE | ID: mdl-34314454

ABSTRACT

Photons during the dark period delay flowering in short-day plants (SDP). Red photons applied at night convert phytochromes to the active far-red absorbing form (Pfr), leading to inhibition of flowering. Far-red photons (greater than 700 nm) re-induce flowering when applied after a pulse of red photons during the dark period. However, far-red photons at sufficiently high intensity and duration delay flowering in sensitive species. Mechanistically, this response occurs because phytochrome-red (Pr) absorbance is not zero beyond 700 nm. We applied nighttime photons from near infrared (NIR) LEDs (peak 850 nm) over a 12 h dark period. Flowering was delayed in Glycine max and Cannabis sativa (two photosensitive species) by 3 and 12 days, respectively, as the flux of photons from NIR LEDs was increased up to 83 and 116 µmol m-2 s-1. This suggests that long wavelength photons from NIR LEDs can activate phytochromes (convert Pr to Pfr) and thus alter plant development.


Subject(s)
Cannabis/growth & development , Glycine max/growth & development , Infrared Rays , Phytochrome/metabolism , Cannabis/metabolism , Cannabis/radiation effects , Flowers/growth & development , Flowers/metabolism , Flowers/radiation effects , Photons , Plant Stems/growth & development , Plant Stems/metabolism , Plant Stems/radiation effects , Glycine max/metabolism , Glycine max/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...