Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(5): 730-736, 2024 May 28.
Article in English, Chinese | MEDLINE | ID: mdl-39174887

ABSTRACT

OBJECTIVES: The drug-resistant genes carried by carbapenem-resistant Klebsiella pneumoniae (CRKP) limit clinical treatment options, and its virulence genes severely affect patient prognosis. This study aims to investigate the distribution of virulence genes, capsular serotypes, and molecular epidemiological characteristics of CRKP in ICU, to understand the characteristics of CRKP infections in ICU, and to provide a scientific basis for effective monitoring and control of CRKP infections in ICU. METHODS: A total of 40 non-duplicate strains of CRKP isolated from the ICU of Guangdong Provincial People's Hospital between January 2021 and December 2022 were collected and analyzed. Whole-genome sequencing was used to analyze the distribution of resistance genes, virulence genes, and capsular serotypes of the strains. The sequences of 7 housekeeping genes of CRKP genome were uploaded to the Klebsiella pneumoniae (KPN)multilocus sequence typing (MLST) database to determine the sequence types (STs) of the strains. RESULTS: The age of the 40 ICU CRKP-infected patients was (69.03±17.82) years old, with various underlying diseases, and there were 20 patients with improved clinical outcome and 20 patients with death. The isolated strains primarily originated from mid-stream urine and bronchoalveolar lavage fluid. Whole-genome sequencing results revealed that the strains predominantly carried blaKPC-1 (29 strains, 72.5%) and blaNDM-1 (6 strains, 15.0%), with 5 strains carrying both blaKPC-1 and blaNDM-1. Various virulence genes were detected, among which the carriage rates of genes such as entA, entB, entE, entS, fepA, fepC, fepG, yag/ecp, and ompA reached 100%, while the carriage rates of genes such as entD, fimB, iroB, iroD, fes,and pla were low. The CRKP strains isolated from ICU were predominantly ST11 (27 cases, 67.5%), with KL64 being the main capsular serotype (29 cases, 72.5%). A total of 23 ST11-KL64 CRKP strains were detected, accounting for 57.5%. CONCLUSIONS: The main type of ICU CRKP is ST11-KL64, carrying various virulence genes, primarily those related to iron absorption. Furthermore, blaKPC has shifted from blaKPC-2 to blaKPC-1. Therefore, close monitoring of the molecular epidemiological changes of CRKP is necessary, and strict control measures should be implemented to effectively curb the occurrence of CRKP infections.


Subject(s)
Carbapenems , Intensive Care Units , Klebsiella Infections , Klebsiella pneumoniae , Whole Genome Sequencing , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/isolation & purification , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Carbapenems/pharmacology , Virulence/genetics , Whole Genome Sequencing/methods , Aged , Molecular Epidemiology , Anti-Bacterial Agents/pharmacology , Multilocus Sequence Typing , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , beta-Lactamases/genetics , Middle Aged , Male , Female , Microbial Sensitivity Tests , Virulence Factors/genetics
2.
BMC Microbiol ; 24(1): 309, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174950

ABSTRACT

BACKGROUND: Klebsiella pneumoniae (KP) is the second most prevalent Gram-negative bacterium causing bloodstream infections (BSIs). In recent years, the management of BSIs caused by KP has become increasingly complex due to the emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP). Although numerous studies have explored the risk factors for the development of CRKP-BSIs, the mortality of patients with KP-BSIs, and the molecular epidemiological characteristics of CRKP, the variability in data across different populations, countries, and hospitals has led to inconsistent conclusions. In this single-center retrospective observational study, we utilized logistic regression analyses to identify independent risk factors for CRKP-BSIs and factors associated with mortality in KP-BSI patients. Furthermore, a risk factor-based prediction model was developed. CRKP isolates underwent whole-genome sequencing (WGS), followed by an evaluation of microbiological characteristics, including antimicrobial resistance and virulence genes, as well as epidemiological characteristics and phylogenetic analysis. RESULTS: Our study included a total of 134 patients with KP-BSIs, comprising 50 individuals infected with CRKP and 84 with carbapenem-susceptible Klebsiella pneumoniae (CSKP). The independent risk factors for CRKP-BSIs were identified as gastric catheterization (OR = 9.143; CI = 1.357-61.618; P = 0.023), prior ICU hospitalization (OR = 4.642; CI = 1.312-16.422; P = 0.017), and detection of CRKP in non-blood sites (OR = 8.112; CI = 2.130-30.894; P = 0.002). Multivariate analysis revealed that microbiologic eradication after 6 days (OR = 3.569; CI = 1.119-11.387; P = 0.032), high Pitt bacteremia score (OR = 1.609; CI = 1.226-2.111; P = 0.001), and inappropriate empirical treatment after BSIs (OR = 6.756; CI = 1.922-23.753; P = 0.003) were independent risk factors for the 28-day mortality in KP-BSIs. The prediction model confirmed that microbiologic eradication after 6.5 days and a Pitt bacteremia score of 4.5 or higher were significant predictors of the 28-day mortality. Bioinformatics analysis identified ST11 as the predominant CRKP sequence type, with blaKPC-2 as the most prevalent gene variant. CRKP stains carried multiple plasmid-mediated resistance genes along with some virulence genes. Phylogenetic analysis indicated the presence of nosocomial transmission of ST11 CRKP within the ICU. CONCLUSIONS: The analysis of risk factors for developing CRKP-BSIs and the association between KP-BSIs and 28-day mortality, along with the development of a risk factor-based prediction model and the characterization of CRKP strains, enhances clinicians' understanding of the pathogens responsible for BSIs. This understanding may help in the timely administration of antibiotic therapy for patients with suspected KP-BSIs, potentially improving outcomes.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Retrospective Studies , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Klebsiella Infections/mortality , Klebsiella Infections/drug therapy , Risk Factors , Male , Female , Middle Aged , Aged , Bacteremia/microbiology , Bacteremia/mortality , Bacteremia/epidemiology , Bacteremia/drug therapy , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Phylogeny , Microbial Sensitivity Tests , Whole Genome Sequencing , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Virulence Factors/genetics , Aged, 80 and over , Adult
3.
BMC Infect Dis ; 24(1): 812, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134953

ABSTRACT

BACKGROUND: Infections resulting from multidrug-resistant Enterobacterales (MDR-E) pose a growing global threat, presenting challenges in treatment and contributing significantly to morbidity and mortality rates. The main objective of this study was to characterize phenotypically and genetically extended-spectrum ß-lactamase- and carbapenemase- producing Enterobacterales (ESBLE and CPE respectively) isolated from clinical samples in the West Bank, Palestine. METHODS: A cross sectional study was conducted in October 2023 on clinical bacterial isolates collected from five governmental hospitals in the West Bank, Palestine. The isolates obtained from the microbiology laboratories of the participating hospitals, underwent identification and antibiotic susceptibility testing (AST) using the VITEK® 2 Compact system. ESBL production was determined by the Vitek2 Compact system. A modified carbapenem inactivation method (mCIM) was employed to identify carbapenemase-producing Enterobacterales (CPE). Resistance genes were detected by real-time PCR. RESULTS: Out of the total 1380 collected isolates, we randomly selected 600 isolates for analysis. Our analysis indicated that 287 (47.83%) were extended-spectrum beta-lactamase producers (ESBLE), and 102 (17%) as carbapenem-resistant Enterobacterales (CRE) isolates. A total of 424 isolates (70.67%) were identified as multidrug-resistant Enterobacterales (MDRE). The most prevalent ESBL species were K. pneumoniae (n = 124; 43.2%), E. coli (n = 119; 41.5%) and E. cloacae (n = 31; 10.8%). Among the CRE isolates, 85 (83.33%) were carbapenemase-producing Enterobacterales (CPE). The most frequent CRE species were K. pneumoniae (n = 63; 61.7%), E. coli (n = 25; 24.5%) and E. cloacae (n = 13; 12.8%). Additionally, 47 (7.83%) isolates exhibited resistance to colistin (CT), with 38 (37.62%) being CT-resistant CRE and 9 (3.14%) being CT-resistant ESBLE while sensitive to carbapenems. We noticed that 11 isolates (6 Klebsiella pneumoniae and 5 Enterobacter cloacae complex) demonstrated sensitivity to carbapenems by phenotype but carried silent CPE genes (1 blaOXA48, and 6 blaNDM, 4 blaOXA48, blaNDM). ESBL-producing Enterobacterales strains exhibited varied resistance patterns across different antibiotic classes. E. coli isolates showed notable 48% resistance to trimethoprim/sulfamethoxazole. K. pneumoniae isolates displayed a significant resistance to trimethoprim/sulfamethoxazole, nitrofurantoin, and fosfomycin (54%, 90%, and 70% respectively). E. cloacae isolates showed complete resistance to nitrofurantoin and fosfomycin. P. mirabilis isolates exhibited high resistance against fluoroquinolones (83%), and complete resistance to trimethoprim/sulfamethoxazole, nitrofurantoin and fosfomycin. CONCLUSION: This study showed the high burden of the ESBLE and CRE among the samples collected from the participating hospitals. The most common species were K. pneumoniae and E. coli. There was a high prevalence of blaCTXm. Adopting both conventional and molecular techniques is essential for better surveillance of the emergence and spread of antimicrobial-resistant Enterobacterales infections in Palestine.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , Microbial Sensitivity Tests , beta-Lactamases , Humans , beta-Lactamases/genetics , Cross-Sectional Studies , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Middle East/epidemiology , Female , Adult , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/enzymology , Male , Middle Aged , Phenotype , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Young Adult , Adolescent , Aged , Child , Carbapenems/pharmacology , Child, Preschool
4.
Ann Clin Microbiol Antimicrob ; 23(1): 73, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164718

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is the most commonly encountered pathogen in clinical practice. Widespread use of broad-spectrum antibiotics has led to the current global dissemination of carbapenem-resistant K. pneumoniae, which poses a significant threat to antibacterial treatment efficacy and public health. Outer membrane vesicles (OMVs) have been identified as carriers capable of facilitating the transfer of virulence and resistance genes. However, the role of OMVs in carbapenem-resistant K. pneumoniae under external pressures such as antibiotic and phage treatments remains unclear. METHODS: To isolate and purify OMVs under the pressure of phages and tigecycline, we subjected K. pneumoniae 0692 harboring plasmid-mediated blaNDM-1 and blaKPC-2 genes to density gradient separation. The double-layer plate method was used to isolate MJ1, which efficiently lysed K. pneumoniae 0692 cells. Transmission electron microscopy (TEM) was used to characterize the isolated phages and extract OMV groups for relevant morphological identification. Determination of protein content of each OMV group was conducted through bicinchoninic acid assay (BCA) and proteomic analysis. RESULTS: K. pneumoniae 0692 released OMVs in response to different environmental stimuli, which were characterized through TEM as having the typical structure and particle size of OMVs. Phage or tigecycline treatment alone resulted in a slight increase in the mean protein concentration of OMVs secreted by K. pneumoniae 0692 compared to that in the untreated group. However, when phage treatment was combined with tigecycline, there was a significant reduction in the average protein concentration of OMVs compared to tigecycline treatment alone. Proteomics showed that OMVs encapsulated numerous functional proteins and that under different external stresses of phages and tigecycline, the proteins carried by K. pneumoniae 0692-derived OMVs were significantly upregulated or downregulated compared with those in the untreated group. CONCLUSIONS: This study confirmed the ability of OMVs to carry abundant proteins and highlighted the important role of OMV-associated proteins in bacterial responses to phages and tigecycline, representing an important advancement in microbial resistance research.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Carbapenems , Klebsiella pneumoniae , Proteomics , Tigecycline , Tigecycline/pharmacology , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Humans , Extracellular Vesicles/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Plasmids/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Braz J Biol ; 84: e277750, 2024.
Article in English | MEDLINE | ID: mdl-38985067

ABSTRACT

The One Health concept recognizes that human health is clearly linked to the health of animals and the environment. Infections caused by bacteria resistant to carbapenem antibiotics have become a major challenge in hospitals due to limited therapeutic options and consequent increase in mortality. In this study, we investigated the presence of carbapenem-resistant Enterobacteriaceae in 84 effluent samples (42 from hospital and 42 from non-hospital) from Campo Grande, midwest Brazil. First, sewage samples were inoculated in a selective culture medium. Bacteria with reduced susceptibility to meropenem and ertapenem were then identified and their antimicrobial susceptibility was determined using the Vitek-2 system. The blaKPC genes were detected using PCR and further confirmed by sequencing. Carbapenem-resistant Enterobacteriaceae (CRE) were identified in both hospital (n=32) and non-hospital effluent (n=16), with the most common being Klebsiella pneumoniae and of the Enterobacter cloacae complex species. This is the first study to indicate the presence of the blaKPC-2 gene in carbapenem-resistant Enterobacteriaceae, classified as a critical priority by the WHO, in hospital sewage in this region. The dissemination of carbapenem antibiotic-resistant genes may be associated with clinical pathogens. Under favorable conditions and microbial loads, resistant bacteria and antimicrobial-resistance genes found in hospital sewage can disseminate into the environment, causing health problems. Therefore, sewage treatment regulations should be implemented to minimize the transfer of antimicrobial resistance from hospitals.


Subject(s)
Anti-Bacterial Agents , Carbapenem-Resistant Enterobacteriaceae , Drug Resistance, Multiple, Bacterial , Hospitals , Microbial Sensitivity Tests , Sewage , Sewage/microbiology , Brazil , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Polymerase Chain Reaction , Bacterial Proteins/genetics , Humans
6.
J Infect ; 89(2): 106216, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964511

ABSTRACT

OBJECTIVES: We evaluated the effect of fecal microbiota transplantation (FMT) on the clearance of carbapenemase-producing Enterobacterales (CPE) carriage. METHODS: We performed a prospective, multi-center study, conducted among patients who received a single dose of FMT from one of four healthy donors. The primary endpoint was complete clearance of CPE carriage two weeks after FMT with a secondary endpoint at three months. Shotgun metagenomic sequencing was performed to assess gut microbiota composition of donors and recipients before and after FMT. RESULTS: Twenty CPE-colonized patients were included in the study, where post-FMT 20% (n = 4/20) of patients met the primary endpoint and 40% (n = 8/20) of patients met the secondary endpoint. Kaplan-Meier curves between patients with FMT intervention and the control group (n = 82) revealed a similar rate of decolonization between groups. Microbiota composition analyses revealed that response to FMT was not donor-dependent. Responders had a significantly lower relative abundance of CPE species pre-FMT than non-responders, and 14 days post-FMT responders had significantly higher bacterial species richness and alpha diversity compared to non-responders (p < 0.05). Responder fecal samples were also enriched in specific species, with significantly higher relative abundances of Faecalibacterium prausnitzii, Parabacteroides distasonis, Collinsella aerofaciens, Alistipes finegoldii and Blautia_A sp900066335 (q<0.01) compared to non-responders. CONCLUSION: FMT administration using the proposed regimen did not achieve statistical significance for complete CPE decolonization but was correlated with the relative abundance of specific bacterial taxa, including CPE species.


Subject(s)
Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Humans , Male , Female , Middle Aged , Prospective Studies , Adult , Feces/microbiology , Aged , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae Infections/therapy , Enterobacteriaceae Infections/microbiology , beta-Lactamases/genetics , Carrier State/microbiology , Carrier State/therapy , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Biodiversity
7.
Diagn Microbiol Infect Dis ; 110(2): 116414, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032321

ABSTRACT

This study aimed to molecularly identify carbapenem-resistant Klebsiella pneumoniae (CRKP) strains isolated from clinical samples and to determine antibiotic resistance genes. Only carbapenem-resistant strains were included in our study. Of the 35 CRKP strains, 18 (51.4%) were extensive drug, 11 (31.4%) were multi-drug, and 6 (17.1%) were pan-drug resistances. PCR amplification revealed that 25% of the strains carried the OXA-51, 20% the OXA-48, and %5 the OXA23 genes. Multilocus sequence typing (MLST) analysis based on seven house-keeping genes revealed sequence type 39. The capsule and O-antigen types were determined as KL103 and O2a, respectively. WGS analysis revealed the existence of ß-lactamase, aminoglycoside, sulfonamide, Phenicol, and Fosfomycin-resistant genes. While the K. pneumoniae OmpK37 gene was detected in all 3 strains, the OmpK36 gene was detected only in the CRSU20 strain. This study is important as it is the first study to perform molecular analysis of CRKP strains from Siirt, Türkiye.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Multilocus Sequence Typing , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Turkey , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Whole Genome Sequencing , Bacterial Proteins/genetics , Male , Genes, Bacterial/genetics
8.
J Infect Dis ; 230(1): e159-e170, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052705

ABSTRACT

BACKGROUND: Carbapenemase-producing Enterobacterales (CPE) are challenging in healthcare, with resistance to multiple classes of antibiotics. This study describes the emergence of imipenemase (IMP)-encoding CPE among diverse Enterobacterales species between 2016 and 2019 across a London regional network. METHODS: We performed a network analysis of patient pathways, using electronic health records, to identify contacts between IMP-encoding CPE-positive patients. Genomes of IMP-encoding CPE isolates were overlaid with patient contacts to imply potential transmission events. RESULTS: Genomic analysis of 84 Enterobacterales isolates revealed diverse species (predominantly Klebsiella spp, Enterobacter spp, and Escherichia coli); 86% (72 of 84) harbored an IncHI2 plasmid carrying blaIMP and colistin resistance gene mcr-9 (68 of 72). Phylogenetic analysis of IncHI2 plasmids identified 3 lineages showing significant association with patient contacts and movements between 4 hospital sites and across medical specialties, which was missed in initial investigations. CONCLUSIONS: Combined, our patient network and plasmid analyses demonstrate an interspecies, plasmid-mediated outbreak of blaIMPCPE, which remained unidentified during standard investigations. With DNA sequencing and multimodal data incorporation, the outbreak investigation approach proposed here provides a framework for real-time identification of key factors causing pathogen spread. Plasmid-level outbreak analysis reveals that resistance spread may be wider than suspected, allowing more interventions to stop transmission within hospital networks.SummaryThis was an investigation, using integrated pathway networks and genomics methods, of the emergence of imipenemase-encoding carbapenemase-producing Enterobacterales among diverse Enterobacterales species between 2016 and 2019 in patients across a London regional hospital network, which was missed on routine investigations.


Subject(s)
Bacterial Proteins , Disease Outbreaks , Enterobacteriaceae Infections , Plasmids , beta-Lactamases , Humans , Plasmids/genetics , beta-Lactamases/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/transmission , Bacterial Proteins/genetics , London/epidemiology , Anti-Bacterial Agents/pharmacology , Phylogeny , Genome, Bacterial , Male , Female , Middle Aged , Microbial Sensitivity Tests , Adult , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Aged , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Colistin/pharmacology
9.
Expert Rev Mol Diagn ; 24(7): 583-590, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054637

ABSTRACT

INTRODUCTION: Carbapenem-resistant Enterobacterales (CRE) causing severe infections in humans have represented an important challenge for clinicians worldwide during the past two decades. AREAS COVERED: Novel ß-lactams and ß-lactam/ß-lactamase inhibitor combinations have led to a shift in the first-line approach to the treatment of severe CRE infections from polymyxin-based regimens to treatment with less toxic agents. This new scenario offers the opportunity to apply rapid molecular diagnostic tests for CRE infection to identify different types of carbapenemases. Herein, the authors provide an overview of this subject and follow it with their expert perspectives. EXPERT OPINION: When considering studies actually measuring the clinical impact of rapid molecular tests in real-life scenarios, high certainty evidence from randomized controlled trials is still limited and not focused on CRE infections. Nonetheless, it is indisputable that rapid molecular tests have been shown to impact early therapeutic choices (in terms of both escalation and de-escalation) when used in real-life settings, thus issues in the clinical interpretation of their results are already relevant. Overall, increased expertise is required for the appropriate interpretation of rapid molecular tests for personalized antibiotic selection by understanding their strengths and limitations.


Subject(s)
Anti-Bacterial Agents , Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Molecular Diagnostic Techniques , Humans , Molecular Diagnostic Techniques/methods , Enterobacteriaceae Infections/diagnosis , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Carbapenems/therapeutic use , Carbapenems/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microbial Sensitivity Tests/methods
10.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(7): 1041-1047, 2024 Jul 06.
Article in Chinese | MEDLINE | ID: mdl-39034789

ABSTRACT

To examine the molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) and investigate the horizontal transmission of blaKPC and blaNDM genes for the prevention and treatment of CRKP. A total of 49 clinically isolated CRKP strains were retrospectively analyzed from January to December 2022 at The First Hospital of Hunan University of Chinese Medicine. Phenotypic screening was performed using modified carbapenem inactivation assay (mCIM) and EDTA-carbapenem inactivation assay (eCIM). Polymerase chain reaction (PCR) was utilized to identify carbapenem resistance genes, ß-lactamase resistance genes, and virulence genes, while multi-locus sequence analysis (MLST) was employed to assess the homology of CRKP strains. Conjugation experiments were conducted to infer the horizontal transmission mechanism of blaKPC and blaNDM genes. The results showed that the study included 49 CRKP strains, with 44 carrying blaKPC and 8 carrying blaNDM, Three strains were identified as blaKPC+blaNDM-CRKP. In this study, 28 out of 49 CRKP strains (57.2%) were found to carry virulence genes. Additionally, one CRKP strain tested positive in the string test and was found to carry both Aerobactin and rmpA virulence genes. MLST results revealed a total of 5 ST types, with ST11 being predominant (41/49, 83.7%). Successful conjugation was observed in all 3 blaKPC-CRKP strains, while only 1 out of 3 blaNDM-CRKP strains showed successful conjugation. The transconjugant exhibited significantly reduced susceptibility to imipenem and cephalosporin antibiotics. In conclusion, the resistance mechanism of CRKP in this study is primarily attributed to the production of KPC enzymes, along with the presence of multiple ß-lactamase resistance genes. Additionally, there is a local prevalence of hv-CRKP and blaKPC+blaNDM-CRKP. blaKPC and blaNDM can be horizontally transmitted through plasmids, with varying efficiency among different strains.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Molecular Epidemiology , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Carbapenems/pharmacology , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , beta-Lactamases/genetics , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , China/epidemiology , Multilocus Sequence Typing , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Hospitals
11.
Front Cell Infect Microbiol ; 14: 1407246, 2024.
Article in English | MEDLINE | ID: mdl-38962322

ABSTRACT

Introduction: In the battle against multidrug-resistant bacterial infections, ceftazidime- avibactam (CZA) stands as a pivotal defense, particularly against carbapenemresistant (CR) Gram-negative pathogens. However, the rise in resistance against this drug poses a significant threat to its effectiveness, highlighting the critical need for in-depth studies about its resistance mechanisms. Methods: This research focuses on the genomic characterization of CR- and CZA-resistant Escherichia coli (n=26) and Klebsiella pneumoniae (n=34) strains, harboring the blaNDM and/or blaOXA-48-like genes, at a major Lebanese tertiary care medical center, using whole genome sequencing (WGS). Results: Our findings revealed a notable prevalence of blaNDM in all K. pneumoniae strains isolates, with 27 of these also harboring blaOXA-48. On the other hand, E. coli strains predominantly carried the blaNDM-5 gene. Whole genome sequencing (WGS) identified a predominance of ST383 among K. pneumoniae strains, which possessed a multi-replicon IncFIB-IncHI1B plasmid harboring the blaNDM-5. Additionally, various Inc group plasmids in K. pneumoniae across multiple sequence types were found to carry the blaNDM. Similarly, diverse STs of E. coli were observed to carry blaNDM-5 on different plasmids. Discussion: The study underscores NDM carbapenemases as a paramount resistance mechanism in Lebanon,jeopardizing critical last-resort treatments. It also illuminates the role of varied sequence types and mobile genetic elements in the spread of NDM resistance,stressing the urgent need for strategies to mitigate this threat, especially in nosocomial infections.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenems , Ceftazidime , Drug Combinations , Drug Resistance, Multiple, Bacterial , Escherichia coli , Klebsiella pneumoniae , Whole Genome Sequencing , beta-Lactamases , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , Humans , Lebanon , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Microbial Sensitivity Tests , Gene Transfer, Horizontal , Genome, Bacterial , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Tertiary Care Centers
12.
Emerg Microbes Infect ; 13(1): 2366354, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38979571

ABSTRACT

In recent years, polymyxin has been used as a last-resort therapy for carbapenem-resistant bacterial infections. The emergence of heteroresistance (HR) to polymyxin hampers the efficacy of polymyxin treatment by amplifying resistant subpopulation. However, the mechanisms behind polymyxin HR remain unclear. Small noncoding RNAs (sRNAs) play an important role in regulating drug resistance. The purpose of this study was to investigate the effects and mechanisms of sRNA on polymyxin B (PB)-HR in carbapenem-resistant Klebsiella pneumoniae. In this study, a novel sRNA PhaS was identified by transcriptome sequencing. PhaS expression was elevated in the PB heteroresistant subpopulation. Overexpression and deletion of PhaS were constructed in three carbapenem-resistant K. pneumoniae strains. Population analysis profiling, growth curve, and time-killing curve analysis showed that PhaS enhanced PB-HR. In addition, we verified that PhaS directly targeted phoP through the green fluorescent protein reporter system. PhaS promoted the expression of phoP, thereby encouraging the expression of downstream genes pmrD and arnT. This upregulation of arnT promoted the 4-amino-4-deoxyL-arabinosaccharide (L-Ara4N) modification of lipid A in PhaS overexpressing strains, thus enhancing PB-HR. Further, within the promoter region of PhaS, specific PhoP recognition sites were identified. ONPG assays and RT-qPCR analysis confirmed that PhaS expression was positively modulated by PhoP and thus up-regulated by PB stimulation. To sum up, a novel sRNA enhancing PB-HR was identified and a positive feedback regulatory pathway of sRNA-PhoP/Q was demonstrated in the study. This helps to provide a more comprehensive and clear understanding of the underlying mechanisms behind polymyxin HR in carbapenem-resistant K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae , Polymyxin B , RNA, Small Untranslated , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , RNA, Small Untranslated/genetics , Microbial Sensitivity Tests , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , RNA, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Resistance, Bacterial/genetics
13.
Emerg Microbes Infect ; 13(1): 2387446, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39082402

ABSTRACT

ABSTRACTDespite no carbapenem use in food animals, carbapenem-resistant Klebsiella pneumoniae (CRKP) perseveres within food animals, rising significant concerns regarding public health risks originating from these non-clinical reservoirs. To investigate the potential link between CRKP in food animals and its infections in humans, we conducted a cross-sectional study encompassing human clinical, meat products, and farm animals, in Qingdao city, Shandong province, China. We observed a relatively higher presence of CRKP among hospital inpatients (7.3%) compared to that in the meat products (2.7%) and farm animals (pig, 4.6%; chicken, 0.63%). Multilocus sequence typing and core-genome phylogenetic analyses confirm there is no evidence of farm animals and meat products in the clinical acquisition of K. pneumoniae isolates and carbapenem-resistant genes. However, potential transmission of K. pneumoniae of ST659 and IncX3 plasmid harbouring blaNDM-5 gene from pigs to pork and farm workers was observed. Our findings suggest a limited role of farm animals and meat products in the human clinical acquisition of K. pneumoniae, and the transmission of K. pneumoniae is more common within settings, than between them.


Subject(s)
Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Multilocus Sequence Typing , Animals , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/transmission , Klebsiella Infections/epidemiology , Klebsiella Infections/veterinary , China/epidemiology , Cross-Sectional Studies , Swine , Carbapenems/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Chickens/microbiology , Anti-Bacterial Agents/pharmacology , Phylogeny , Male , Female , Middle Aged , Animals, Domestic/microbiology , Microbial Sensitivity Tests , Meat/microbiology , Plasmids/genetics , Adult
14.
Sci Rep ; 14(1): 16836, 2024 07 22.
Article in English | MEDLINE | ID: mdl-39039157

ABSTRACT

The surge in mobile colistin-resistant genes (mcr) has become an increasing public health concern, especially in carbapenem-resistant Enterobacterales (CRE). Prospective surveillance was conducted to explore the genomic characteristics of clinical CRE isolates harbouring mcr in 2015-2020. In this study, we aimed to examine the genomic characteristics and phonotypes of mcr-8 and mcr-9 harbouring carbapenem-resistant K. pneumoniae complex (CRKpnC). Polymerase chain reaction test and genome analysis identified CRKpnC strain AMR20201034 as K. pneumoniae (CRKP) ST147 and strain AMR20200784 as K. quasipneumoniae (CRKQ) ST476, harbouring mcr-8 and mcr-9, respectively. CRKQ exhibited substitutions in chromosomal-mediated colistin resistance genes (pmrB, pmrC, ramA, and lpxM), while CRKP showed two substitutions in crrB, pmrB, pmrC, lpxM and lapB. Both species showed resistance to colistin, with minimal inhibitory concentrations of 8 µg/ml for mcr-8-carrying CRKP isolate and 32 µg/ml for mcr-9-carrying CRKQ isolate. In addition, CRKP harbouring mcr-8 carried blaNDM, while CRKQ harbouring mcr-9 carried blaIMP, conferring carbapenem resistance. Analysis of plasmid replicon types carrying mcr-8 and mcr-9 showed FIA-FII (96,575 bp) and FIB-HI1B (287,118 bp), respectively. In contrast with the plasmid carrying the carbapenemase genes, the CRKQ carried blaIMP-14 on an IncC plasmid, while the CRKP harboured blaNDM-1 on an FIB plasmid. This finding provides a comprehensive insight into another mcr-carrying CRE from patients in Thailand. The other antimicrobial-resistant genes in the CRKP were blaCTX-M-15, blaSHV-11, blaOXA-1, aac(6')-Ib-cr, aph(3')-VI, ARR-3, qnrS1, oqxA, oqxB, sul1, catB3, fosA, and qacE, while those detected in CRKQ were blaOKP-B-15, qnrA1, oqxA, oqxB, sul1, fosA, and qacE. This observation highlights the importance of strengthening official active surveillance efforts to detect, control, and prevent mcr-harbouring CRE and the need for rational drug use in all sectors.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Colistin , Klebsiella pneumoniae , Microbial Sensitivity Tests , Colistin/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Thailand , Bacterial Proteins/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Male , Plasmids/genetics , Female , Genomics/methods , Drug Resistance, Bacterial/genetics , Middle Aged , Adult , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Aged , Genome, Bacterial , Klebsiella
15.
J Infect Dev Ctries ; 18(7): 1020-1025, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39078779

ABSTRACT

INTRODUCTION: To ensure the appropriate usage of ceftazidime-avibactam (CAZ-AVI), recently introduced in our hospital, we aimed to determine susceptibility rates, enzyme analysis, and clonal relationship among strains, together with clinical data. METHODOLOGY: Between June 1 and September 30, 2021, demographic and microbiological data of the patients were recorded. In the obtained samples, meropenem and colistin minimal inhibitory concentration (MIC) levels, carbapenem resistance genes, and the clonal relationship were studied by molecular methods. CAZ-AVI was not used in any of the patients. RESULTS: 140 carbapenem-resistant Klebsiella pneumoniae were isolated from 57 patients. Resistance to CAZ-AVI was found in 76 (54.3%) strains. Out of 57 patients, 31 (54.4%) isolates could be reached. Meropenem MIC level was ≥ 32 µg/mL in 26 (83.9%), and colistin MIC level was ≥ 4 µg/mL in 17 (54.8%) isolates. Enzyme analysis revealed NDM in 20 (64.5%), OXA-48 in 17 (54.8%), and KPC in seven (22.6%). NDM + OXA-48 was determined in 10 (32.2%) strains. NDM was determined in all CAZ-AVI resistant strains, OXA-48 in 16.1% (2/5) strains. Seven genotypes were detected. The largest cluster was genotype 3 clusters (11 isolates). Of 31 patients, 22 (71.0%) died. CAZ-AVI was susceptible in one of the patients who survived and four who died. CONCLUSIONS: Before using a new antibiotic, each center should determine the basal data and phenotypic/genotypic resistance ratios specific to that antibiotic. While a high NDM rate and low CAZ-AVI sensitivity limit the use of the drug in our center, it is clear that CAZ-AVI use in sensitive strains will decrease mortality.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenem-Resistant Enterobacteriaceae , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Humans , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Male , Female , Middle Aged , Aged , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Adult , Aged, 80 and over , Carbapenems/pharmacology , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial/genetics
16.
Sci Rep ; 14(1): 16333, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009596

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) have diminished treatment options causing serious morbidities and mortalities. This systematic review and meta-analysis assessed the prevalence and associated factors of Enterobacteriaceae infections in clinical, livestock and environmental settings globally. The population intervention comparison and outcome strategy was used to enroll studies using the preferred reporting system for systematic review and meta-analysis to include only cross-sectional studies. Search engines used to retrieve articles included journal author name estimator, PubMed, Google Scholar and African Journals Online (AJOL). The Newcastle-Ottawa scale was used to assess the quality of studies. Sixteen articles from 2013 to 2023 in Africa, Asia, Europe and South America were studied. The pooled prevalence of CRE was 43.06% (95% CI 21.57-66.03). Klebsiella pneumoniae (49.40%), Escherichia coli (26.42%), and Enterobacter cloacae (14.24%) were predominant. Klebsiella pneumoniae had the highest resistance with the blaKPC-2 in addition to blaNDM, blaOXA-48, blaIMP and blaVIM. The blaKPC-2 genes occurrence was associated with environmental (P-value < 0.0001) and South American studies (P-value < 0.0001), but there was no difference in the trends over time (P-value = 0.745). This study highlights the high rates of CRE infections, particularly within blaKPC production. Monitoring and surveillance programs, research and infection control measures should be strengthened. Additionally, further studies are needed to explore the mechanisms driving the predominance of specific bacterial species and the distribution of resistance genes within this bacterial family.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Livestock , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Animals , Livestock/microbiology , Humans , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Prevalence , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use
17.
Med Sci Monit ; 30: e943596, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831571

ABSTRACT

BACKGROUND In China, the most prevalent type of CRKP is ST11, but the high-risk clone ST15 has grown in popularity in recent years, posing a serious public health risk. Therefore, we investigated the molecular prevalence characteristics of ST15 CRKP detected in a tertiary hospital in Ningbo to understand the current potential regional risk of ST15 CRKP outbreak. MATERIAL AND METHODS We collected and evaluated 18 non-duplicated CRKP strains of ST15 type for antibiotic resistance. Their integrons, virulence genes, and resistance genes were identified using polymerase chain reaction (PCR), and their homology was determined using MALDI-TOF MS. RESULTS The predominant serotype of 18 ST15 CRKP strains was K5. ST15 CRKP exhibited the lowest antimicrobial resistance to Cefoperazone/sulbactam (11.1%), followed by trimethoprim/sulfamethoxazole (22.2%). Resistance gene testing revealed that 14 out of 18 ST15 CRKP strains (77.8%) carried Klebsiella pneumoniae carbapenemase 2 (KPC-2), whereas all ST15 CRKP integrons were of the intI1 type. Furthermore, virulence gene testing revealed that all 18 ST15 CRKP strains carried ybtS, kfu, irp-1, and fyuA genes, followed by the irp-2 gene (17 strains) and entB (16 strains). The homology analysis report showed that 2 clusters had closer affinity, which was mainly concentrated in classes C and D. CONCLUSIONS The ST15 CRKP antibiotic resistance rates demonstrate clear geographical differences in Ningbo. Additionally, some strains carried highly virulent genes, indicating a possible evolution towards carbapenem-resistant highly virulent strains. To reduce the spread of ST15 CRKP, we must rationalize the clinical use of antibiotics and strengthen resistance monitoring to control nosocomial infections.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Tertiary Care Centers , China/epidemiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Prevalence , Integrons/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Drug Resistance, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects
18.
An Acad Bras Cienc ; 96(2): e20231322, 2024.
Article in English | MEDLINE | ID: mdl-38922280

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) is a major cause of healthcare-associated infections and plays a prominent role in the widespread antibiotic resistance crisis. Accurate identification of carbapenemases is essential to facilitate effective antibiotic treatment and reduce transmission of K. pneumoniae. This study aimed to detect carbapenemase production in carbapenem-resistant K. pneumoniae strains using phenotypic and genotypic methods. A total of 67 carbapenem-resistant K. pneumoniae strains obtained from various clinical samples were utilized for identification and antimicrobial susceptibility by the Vitek 2 Compact system (Biomerieux, France). Carbapenemase production was determined by using the Polymerase chain reaction, Blue-carba test (BCT) and Carbapenem inactivation method (CIM). Out of the isolates, 59 (88.1%) were positive bla OXA-48, 16 (23.9%) bla IMP, and five (7.5%) were positive bla NDM. No bla KPC genes were detected. The CIM identified 62 (92.5%), BCT identified 63 (94%) of PCR-positive isolates. The sensitivity and specificity of the BCT and the CIM were determined to be 96.7%, 40%, and 96.7%, 25% respectively. The bla OXA-48 gene was found to be the most prevalent in K. pneumoniae isolates. Early identification of carbapenem resistance plays a vital role in designing effective infection control strategies and mitigating the emergence and transmission of carbapenem resistance, thus reducing healthcare-associated infections.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Genotype , Klebsiella pneumoniae , Microbial Sensitivity Tests , Phenotype , Polymerase Chain Reaction , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Klebsiella Infections/microbiology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification
19.
BMC Microbiol ; 24(1): 230, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943054

ABSTRACT

BACKGROUND: Carbapenemase-producing Klebsiella pneumoniae (CRKP) presents a significant challenge to antimicrobial therapy, especially when compounded by resistance to colistin. The objective of this study was to explore molecular epidemiological insights into strains of clinical K. pneumoniae that produce carbapenemases and exhibit resistance to colistin. Eighty clinical isolates of CRKP were obtained from Milad Hospital in Tehran, Iran. Antimicrobial susceptibility and colistin broth disk elution were determined. PCR assays were conducted to examine the prevalence of resistance-associated genes, including blaKPC, blaIMP, blaVIM, blaOXA-48, blaNDM and mcr-1 to -10. Molecular typing (PFGE) was used to assess their spread. RESULTS: Colistin resistance was observed in 27 isolates (33.7%) using the Broth Disk Elution method. Among positive isolates for carbapenemase genes, the most frequent gene was blaOXA-48, identified in 36 strains (45%). The mcr-1 gene was detected in 3.7% of the obtained isolates, with none of the other of the other mcr genes detected in the studied isolates. CONCLUSION: To stop the spread of resistant K. pneumoniae and prevent the evolution of mcr genes, it is imperative to enhance surveillance, adhere rigorously to infection prevention protocols, and implement antibiotic stewardship practices.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Colistin , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Tertiary Care Centers , beta-Lactamases , Colistin/pharmacology , Iran/epidemiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Klebsiella Infections/drug therapy , Tertiary Care Centers/statistics & numerical data , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , beta-Lactamases/genetics , Carbapenems/pharmacology , Drug Resistance, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Molecular Epidemiology
20.
J Clin Lab Anal ; 38(10): e25081, 2024 May.
Article in English | MEDLINE | ID: mdl-38884333

ABSTRACT

BACKGROUND: The global spread of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Enterobacterales (CRE) poses a significant concern. Acquisition of antimicrobial resistance genes leads to resistance against several antibiotics, limiting treatment options. We aimed to study ESBL-producing and CRE transmission in clinical settings. METHODS: From clinical samples, 227 ESBL-producing and CRE isolates were obtained. The isolates were cultured on bacterial media and confirmed by VITEK 2. Antibiograms were tested against several antibiotics using VITEK 2. The acquired resistance genes were identified by PCR. RESULTS: Of the 227 clinical isolates, 145 (63.8%) were Klebsiella pneumoniae and 82 (36.1%) were Escherichia coli; 76 (33.4%) isolates were detected in urine, 57 (25.1%) in pus swabs, and 53 (23.3%) in blood samples. A total of 58 (70.7%) ESBL-producing E. coli were resistant to beta-lactams, except for carbapenems, and 17.2% were amikacin-resistant; 29.2% of E. coli isolates were resistant to carbapenems. A total of 106 (73.1%) ESBL-producing K. pneumoniae were resistant to all beta-lactams, except for carbapenems, and 66.9% to ciprofloxacin; 38 (26.2%) K. pneumoniae were resistant to carbapenems. Colistin emerged as the most effective antibiotic against both bacterial types. Twelve (20.6%) E. coli isolates were positive for blaCTX-M, 11 (18.9%) for blaTEM, and 8 (33.3%) for blaNDM. Forty-six (52.3%) K. pneumoniae isolates had blaCTX-M, 27 (18.6%) blaTEM, and 26 (68.4%) blaNDM. CONCLUSION: This study found a high prevalence of drug-resistant ESBL-producing and CRE, highlighting the need for targeted antibiotic use to combat resistance.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Escherichia coli , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification , Humans , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli/isolation & purification , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Female , Male , Middle Aged , Adult , Aged , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Adolescent , Young Adult , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Klebsiella Infections/drug therapy , Child , Child, Preschool , Drug Resistance, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL