Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.700
Filter
1.
J Environ Sci (China) ; 147: 474-486, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003063

ABSTRACT

Nano zero-valent iron (nZVI) is widely used in soil remediation due to its high reactivity. However, the easy agglomeration, poor antioxidant ability and passivation layer of Fe-Cr coprecipitates of nZVI have limited its application scale in Cr-contaminated soil remediation, especially in high concentration of Cr-contaminated soil. Herein, we found that the carboxymethyl cellulose on nZVI particles could increase the zeta potential value of soil and change the phase of nZVI. Along with the presence of biochar, 97.0% and 96.6% Cr immobilization efficiency through CMC-nZVI/BC were respectively achieved in high and low concentrations of Cr-contaminated soils after 90-days remediation. In addition, the immobilization efficiency of Cr(VI) only decreased by 5.1% through CMC-nZVI/BC treatment after 10 weeks aging in air, attributing to the strong antioxidation ability. As for the surrounding Cr-contaminated groundwater, the Cr(VI) removal capacity of CMC-nZVI/BC was evaluated under different reaction conditions through column experiments and COMSOL Multiphysics. CMC-nZVI/BC could efficiently remove 85% of Cr(VI) in about 400 hr when the initial Cr(VI) concentration was 40 mg/L and the flow rate was 0.5 mL/min. This study demonstrates that uniformly dispersed CMC-nZVI/BC has an excellent remediation effect on different concentrations of Cr-contaminated soils.


Subject(s)
Carboxymethylcellulose Sodium , Charcoal , Chromium , Environmental Restoration and Remediation , Iron , Soil Pollutants , Soil Pollutants/chemistry , Charcoal/chemistry , Environmental Restoration and Remediation/methods , Iron/chemistry , Chromium/chemistry , Carboxymethylcellulose Sodium/chemistry , Soil/chemistry , Metal Nanoparticles/chemistry
2.
ACS Appl Mater Interfaces ; 16(38): 51447-51458, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39276126

ABSTRACT

The combination of wearable sensors with machine learning enables intelligent perception in human-machine interaction and healthcare, but achieving high sensitivity and a wide working range in flexible strain sensors for signal acquisition and accurate recognition remains challenging. Herein, we introduced carboxymethyl cellulose (CMC) into a carbon nanotubes (CNTs)/MXene hybrid network, forming tight anchoring among the conductive materials and, thus, bringing enhanced interaction. The silicone-rubber-encapsulated CMC-anchored CNTs/MXene (CCM) strain sensor exhibits an excellent sensitivity (maximum gauge factor up to 71 294), wide working range (200%), ultralow detection limit (0.05%), and outstanding durability (over 10 000 cycles), which is superior to most of the recently reported counterparts also based on a conductive composite film. Moreover, the sensor achieves seamless integration with human skin with the help of a poly(acrylic acid) adhesive layer, successfully obtaining stable and clear waveforms with meaningful profiles from the human body. On this basis, we proposed and realized a novel in-air handwriting recognition method via extracting multiple features of high-quality strain signals assisted by deep neural networks, achieving a high classification accuracy of 98.00 and 94.85% for Arabic numerals and letters, respectively. Our work provides an effective approach for significantly improving strain sensing performance, thereby facilitating innovative applications of flexible sensors.


Subject(s)
Carboxymethylcellulose Sodium , Machine Learning , Nanotubes, Carbon , Wearable Electronic Devices , Nanotubes, Carbon/chemistry , Carboxymethylcellulose Sodium/chemistry , Humans , Handwriting
3.
Carbohydr Polym ; 346: 122612, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245494

ABSTRACT

Polysaccharide-based edible films have been widely developed as food packaging materials in response to the rising environmental concerns caused by the extensive use of plastic packaging. In recent years, the integration of carboxymethyl cellulose (CMC) and chitosan (CS) for a binary edible film has received considerable interest because this binary edible film can retain the advantages of both constituents (e.g., the great oxygen barrier ability of CMC and moderate antimicrobial activity of CS) while mitigating their respective disadvantages (e.g., the low water resistance of CMC and poor mechanical strength of CS). This review aims to present the latest advancements in CMC-CS edible films. The preparation methods and properties of CMC-CS edible films are comprehensively introduced. Potential additives and technologies utilized to enhance the properties are discussed. The applications of CMC-CS edible films on food products are summarized. Literature shows that the current preparation methods for CMC-CS edible film are solvent-casting (main) and thermo-mechanical methods. The CMC-CS binary films have superior properties compared to films made from a single constituent. Moreover, some properties, such as physical strength, antibacterial ability, and antioxidant activity, can be greatly enhanced via the incorporation of some bioactive substances (e.g. essential oils and nanomaterials). To date, several applications of CMC-CS edible films in vegetables, fruits, dry foods, dairy products, and meats have been studied. Overall, CMC-CS edible films are highly promising as food packaging materials.


Subject(s)
Carboxymethylcellulose Sodium , Chitosan , Edible Films , Food Packaging , Food Packaging/methods , Chitosan/chemistry , Carboxymethylcellulose Sodium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Humans
4.
Molecules ; 29(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274898

ABSTRACT

Multifunctional targeted drug delivery systems have been explored as a novel cancer treatment strategy to overcome limitations of traditional chemotherapy. The combination of photodynamic therapy and chemotherapy has been shown to enhance efficacy, but the phototoxicity of traditional photosensitizers is a challenge. In this study, we prepared a multi-sensitive composite hydrogel containing gold nanoclusters (Au NCs) and the temperature-sensitive antitumor drug 5-fluorourac il (5-FU) using carboxymethyl cellulose (Carr) as a dual-functional template. Au NCs were synthesized using sodium borohydride as a reducing agent and potassium as a promoter. The resulting Au NCs were embedded in the Carr hydrogel, which was then conjugated with lactobionic acid (LA) as a targeting ligand. The resulting Au NCs/5-FU@Carr-LA composite hydrogel was used for synergistic photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy. Au NCs/5-FU@Carr-LA releases the drug faster at pH 5.0 due to the acid sensitivity of the Carr polymer chain. In addition, at 50 °C, the release rate of Au NCs/5-FU@Carr-LA is 78.2%, indicating that the higher temperature generated by the photothermal effect is conducive to the degradation of Carr polymer chains. The Carr hydrogel stabilized the Au NCs and acted as a matrix for drug loading, and the LA ligand facilitated targeted delivery to tumor cells. The composite hydrogel exhibited excellent biocompatibility and synergistic antitumor efficacy, as demonstrated by in vitro and in vivo experiments. In addition, the hydrogel had thermal imaging capabilities, making it a promising multifunctional platform for targeted cancer therapy.


Subject(s)
Fluorouracil , Gold , Hydrogels , Metal Nanoparticles , Photochemotherapy , Gold/chemistry , Hydrogels/chemistry , Fluorouracil/pharmacology , Fluorouracil/chemistry , Animals , Metal Nanoparticles/chemistry , Mice , Humans , Photochemotherapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Delivery Systems , Cell Line, Tumor , Carboxymethylcellulose Sodium/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Drug Liberation , Photothermal Therapy/methods
5.
Int J Biol Macromol ; 277(Pt 3): 134287, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39095274

ABSTRACT

Concerned about water treatment, it is of great importance to present new approaches for improving photocatalytic activity. Since photocatalysis is ubiquitous in almost all chemical manufacturing processes, the development of photocatalytic systems carries significance for our environment. In this regard, three different amounts of covalent organic frameworks decorated with titanium(IV) oxide nanoparticles (TiO2/COF hybrids) in Alginate-Carboxymethyl cellulose (Alg-CMC) blend matrix were prepared under ultrasound irradiation, which Citric acid and Calcium chloride acted as two green cross-linkages. Based on the physio-chemical analyses of these bio-nanocomposite (bio-NC) beads, the Alg-CMC blend polymer appeared to be the best candidate for a disparity of TiO2/COF hybrids. Not only did COF aid to increase the distribution of TiO2 nanoparticles, but it declined the bandgap energies. The resultant Alg-CMC/TiO2/COF (TiO2/COF = 15:6) bio-NC beads demonstrated efficient photodegradation activity towards Methyl violet (MV) under Ultraviolet light. The obtained results of scavenger studies indicated that superoxide radicals and electron agents played a major role in MV degradation. Further investigation confirmed that single oxygen addition and N-de-methylation could be two important pathways for the decomposition of MV by these bio-NC beads.


Subject(s)
Alginates , Carboxymethylcellulose Sodium , Gentian Violet , Nanocomposites , Photolysis , Titanium , Ultraviolet Rays , Titanium/chemistry , Alginates/chemistry , Nanocomposites/chemistry , Carboxymethylcellulose Sodium/chemistry , Gentian Violet/chemistry , Metal-Organic Frameworks/chemistry , Catalysis , Microspheres
6.
Int J Biol Macromol ; 277(Pt 3): 134401, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39097049

ABSTRACT

An imbalance between energy intake and energy expenditure predisposes obesity and its related metabolic diseases. Soluble dietary fiber has been shown to improve metabolic homeostasis mainly via microbiota reshaping. However, the application and metabolic effects of insoluble fiber are less understood. Herein, we employed nanotechnology to design citric acid-crosslinked carboxymethyl cellulose nanofibers (CL-CNF) with a robust capacity of expansion upon swelling. Supplementation with CL-CNF reduced food intake and delayed digestion rate in mice by occupying stomach. Besides, CL-CNF treatment mitigated diet-induced obesity and insulin resistance in mice with enhanced energy expenditure, as well as ameliorated inflammation in adipose tissue, intestine and liver and reduced hepatic steatosis, without any discernible signs of toxicity. Additionally, CL-CNF supplementation resulted in enrichment of probiotics such as Bifidobacterium and decreased in the relative abundances of deleterious microbiota expressing bile salt hydrolase, which led to increased levels of conjugated bile acids and inhibited intestinal FXR signaling to stimulate the release of GLP-1. Taken together, our findings demonstrate that CL-CNF administration protects mice from diet-induced obesity and metabolic dysfunction by reducing food intake, enhancing energy expenditure and remodeling gut microbiota, making it a potential therapeutic strategy against metabolic diseases.


Subject(s)
Energy Metabolism , Gastrointestinal Microbiome , Nanofibers , Obesity , Animals , Nanofibers/chemistry , Obesity/metabolism , Obesity/prevention & control , Mice , Gastrointestinal Microbiome/drug effects , Energy Metabolism/drug effects , Cellulose/pharmacology , Cellulose/chemistry , Male , Insulin Resistance , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Solubility , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Dietary Fiber/pharmacology
7.
Int J Biol Macromol ; 277(Pt 4): 134563, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39116969

ABSTRACT

Despite the plethora of methods reported for fabricating ultraviolet (UV) shielding films using various UV absorbers to date, it remains a major challenge for the development of novel UV shielding films that simultaneously exhibit excellent transparency. In this work, a novel composite film (GA-x-CMC/PVA/PEI) is fabricated by integrating anionic carboxymethylcellulose (CMC), cationic polyethyleneimine (PEI), and polyvinyl alcohol (PVA) via electrostatic and hydrogen bond interactions and further cross-linking with glutaraldehyde (GA). Herein, PVA expands hydrogen bonding networks, reduces film haze, and enhances its mechanical strength. GA acts as a crosslinker in producing Schiff bases with PEI and acetals with CMC and PVA. The synthesized GA-x-CMC/PVA/PEI composite film possesses a notable amount of unsaturated -CH=N- bonds of Schiff base, resulting from the condensation of PEI and GA, which exhibit superior shielding efficiency against both UV-A and UV-B rays while maintaining exceptional transparency, visibility, and simultaneously enhancing mechanical properties and thermal stability. Notably, increasing the content of PEI leads to almost complete shielding of the entire UV spectrum (<400 nm) due to the increasing of the number of -CH=N- unsaturated bonds. Furthermore, the obtained film without any UV-shielding additives has exceptional mechanical properties, hydrophobicity, and antibacterial properties, rendering it a wide application prospect.


Subject(s)
Anti-Bacterial Agents , Carboxymethylcellulose Sodium , Glutaral , Polyethyleneimine , Polyvinyl Alcohol , Ultraviolet Rays , Polyvinyl Alcohol/chemistry , Carboxymethylcellulose Sodium/chemistry , Polyethyleneimine/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Glutaral/chemistry , Cross-Linking Reagents/chemistry , Water/chemistry , Mechanical Phenomena
8.
Biomater Adv ; 165: 213999, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39213959

ABSTRACT

The present study utilizes a combination of sodium alginate (Alg), gellan gum (GG), and sodium carboxymethyl cellulose (CMC) to fabricate a ternary composite hydrogel system to encapsulate and release lactoferrin (LF). Rheological properties as well as extensive microscopy and spectroscopy characterization are performed on these materials demonstrating that the physical properties of the resultant hydrogels, such as particle size, water content, gray value, and shrinkage rate were related to the concentration of Alg. In addition, most of these hydrogels were found to have reticulated shells and inner laminar structures assembled based on hydrogen bonding and electrostatic forces. Furthermore, the encapsulation efficiency of LF in hydrogels ranged from 78.3 ± 0.3 to 83.5 ± 0.2 %. Notably, a small amount of encapsulated LF was released from the hydrogel beads in an acid environment (up to 2.2 ± 0.3 % in 2 h), while a controlled release manner was found to take place in an alkaline environment. This phenomenon indicated the potential of these hydrogels as promising matrices for bioactive compound loading and adsorption. The release mechanism varied from Alg concentration suggesting the tunable and versatile properties of this ternary composite hydrogel system. Our findings identify the potential of Alg-GG-CMC hydrogel as a delivery system suitable for various applications in the food industry.


Subject(s)
Alginates , Carboxymethylcellulose Sodium , Hydrogels , Lactoferrin , Polysaccharides, Bacterial , Polysaccharides, Bacterial/chemistry , Carboxymethylcellulose Sodium/chemistry , Alginates/chemistry , Hydrogels/chemistry , Hydrogen-Ion Concentration , Lactoferrin/chemistry , Lactoferrin/administration & dosage , Biocompatible Materials/chemistry , Rheology , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Drug Delivery Systems/methods
9.
Int J Biol Macromol ; 278(Pt 2): 134770, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151862

ABSTRACT

Lightweight, flexible, efficient and easy-to-manufacture electromagnetic interference (EMI) shielding materials are in urgent demand in the communications industry, artificial intelligence and wearable electronics. Based on the large size difference between one-dimensional carboxymethyl cellulose nanofibers (CMC) and large-diameter silver nanowires (AgNWs), layered AgNWs/CMC nanocomposite films with large effective thickness, and high conductivity were first prepared by a simple one-step vacuum filtration self-assembly technique. The unique layered structure of the AgNWs/CMC nanocomposite film significantly enhances the conductive pathways within the film, endowing it excellent EMI shielding performance. The results show that the conductivity of the ultra-thin film with a thickness of 20 µm is 3.72 × 106 S/m, and the EMI SE in the X-band is 87.7 dB, which can effectively shield electromagnetic signals in mobile communications. Furthermore, the AgNWs/CMCs nanocomposite films exhibit excellent thermal management performance, which can be heated to 100-180 °C within 10 s at a low voltage of 1.5 V. In particular, this nanocomposite film with a new layered structure provides a noval preparation idea for future EMI shielding materials and wearable heating devices.


Subject(s)
Carboxymethylcellulose Sodium , Nanocomposites , Nanofibers , Nanowires , Silver , Silver/chemistry , Nanocomposites/chemistry , Nanowires/chemistry , Nanofibers/chemistry , Carboxymethylcellulose Sodium/chemistry , Electric Conductivity , Electromagnetic Phenomena
10.
Int J Biol Macromol ; 278(Pt 3): 134769, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151866

ABSTRACT

Heavy metal pollution poses a significant environmental challenge to worldwide, especially in developing countries. This study focuses on eliminating the heavy metal chromium (VI) ion from wastewater, employing an eco-friendly and economical ternary blend composed of Chitosan (CS), Carboxymethyl cellulose (CMC), and bioactive glass (BAG). The innovative bioactive glass is crafted from biosilica extracted from biowaste of cow dung ash, calcium oxide from eggshell ash, and phosphorus pentoxide. The CS/CMC/BAG blend is prepared via sol-gel method and characterized using XRD, FT-IR, TGA, BET, TEM and SEM revealing a porous structural morphology during blending. Batch adsorption studies explore various parameters such as pH, adsorbent dose, contact time and initial metal ion concentrations. The results are then evaluated through adsorption kinetics and adsorption isotherms (Langmuir, Freundlich, D-R, and Temkin isotherm modeling). The investigation concludes that the optimal conditions for Cr (VI) removal are pH 3, contact time of 300 min, adsorbent dosage of 0.5 g, and an initial metal ion concentration of 50 ppm. The adsorption isotherm model indicates an excellent fit with the Freundlich isotherm (R2 = 0.9576) and pseudo-second-order kinetics (R2 = 0.981). In summary, the CS/CMC/BAG ternary blend exhibits a remarkable ability to effectively remove heavy metal Cr(VI) ions from industrial wastewater.


Subject(s)
Carboxymethylcellulose Sodium , Chitosan , Chromium , Glass , Water Pollutants, Chemical , Chitosan/chemistry , Carboxymethylcellulose Sodium/chemistry , Chromium/chemistry , Adsorption , Glass/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration , Water Purification/methods , Wastewater/chemistry , Metals, Heavy/chemistry
11.
Int J Biol Macromol ; 278(Pt 3): 134816, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39154673

ABSTRACT

The hydrogel regeneration process, involving various cellulose types, results in distinct chemical bonding patterns. Even minor variations in chemical interactions among polymers during regeneration significantly impact properties like hydrogel-forming ability, hydrophilicity, and swelling capacity. This study focuses on regenerating a superabsorbent hydrogel from the interplay of native empty fruit bunch cellulose (EFBC), sodium carboxymethyl cellulose (NaCMC), and hydroxyethyl cellulose (HEC) using epichlorohydrin (ECH) as a crosslinker. The hydrogel was formed from dissolved EFBC solutions in an aqueous NaOH/urea solvent, supplemented with different NaCMC and HEC weight ratios, and ECH chemically assisted the crosslinking process. EFBC provides the hydrogel's supporting skeletal structure, while NaCMC and HEC play vital roles in enhancing forming ability and its physical and mechanical properties through diverse chemical interactions based on their electrovalent properties. Notably, NaCMC imparts hydrophilicity, while HEC indirectly improves superabsorbent properties through the enhancement of the elastic network's retraction force. Hydrogels combining NaCMC and HEC show a remarkable water absorption capacity exceeding 30,000 %, surpassing those regenerated solely with EFBC and NaCMC. The highest swelling, over 130,000 %, is achieved with 0.75 % NaCMC and 0.25 % HEC. Regarding thermal stability, hydrogels with a higher NaCMC proportion outperform those with increased HEC content. The study highlights the critical role of tailored chemical interactions in successfully regenerating an improved superabsorbent hydrogel with enhanced water absorption properties.


Subject(s)
Carboxymethylcellulose Sodium , Cellulose , Fruit , Hydrogels , Cellulose/chemistry , Cellulose/analogs & derivatives , Hydrogels/chemistry , Carboxymethylcellulose Sodium/chemistry , Fruit/chemistry , Epichlorohydrin/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions
12.
Int J Biol Macromol ; 278(Pt 2): 134827, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39154680

ABSTRACT

Three nanoparticles were fabricated for the co-delivery of quercetin and resveratrol. Nanoparticles consisted of a zein and carboxymethyl cellulose assembled using antisolvent precipitation/layer-by-layer deposition method. Nanoparticles contained quercetin in the core and resveratrol in the shell, resveratrol in the core and quercetin in the shell or both quercetin and resveratrol in the core. The particle sizes of nanoparticles were 280.4, 214.8, and 181.8 nm, respectively. Zeta-potential was about -50 mV and PDI was about 0.3. The different positions of polyphenol distribution nanoparticles could reduce the competition between the two polyphenols, the encapsulation rate, loading rate and storage stability reached up to 91.7 %, 5.37 % and 97.1 %, respectively. FT-IR showed that hydrophobic and electrostatic interactions were the main driving forces of nanoparticle assembly. XRD showed that two polyphenols were successfully encapsulated in nanoparticles. TGA showed that distributing the nanoparticles in different layers would enhance thermal stability. TEM and SEM showed that polysaccharides attached to the surface of nanoparticles formed a core-shell structure with uniform particle size. All three nanoparticles could release two polyphenols slowly in simulated gastrointestinal digestion, Korsmeyer-Peppas was the most suitable kinetic release model. Therefore, biopolymer-based nanocarriers can be created to enhance the loading, stability, and bioaccessibility of co-encapsulated nutraceuticals.


Subject(s)
Carboxymethylcellulose Sodium , Nanoparticles , Particle Size , Quercetin , Resveratrol , Zein , Zein/chemistry , Resveratrol/chemistry , Quercetin/chemistry , Carboxymethylcellulose Sodium/chemistry , Nanoparticles/chemistry , Drug Carriers/chemistry , Drug Liberation , Kinetics , Drug Compounding , Spectroscopy, Fourier Transform Infrared
13.
Food Chem ; 461: 140905, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39173260

ABSTRACT

Leveraging blackcurrant anthocyanin (BC) as an indicator and carboxymethyl cellulose (CMC), gum xanthan (GX), and citric acid (CA) as film fabricating materials, an innovative amine-responsive beef freshness intelligent film, known as CGC-BC, was successfully created. It was found that the physical characteristics, sensitivity to the biogenic amine reaction, and original color of the film were all highly influenced by the pH of the film-forming solutions. The film's freshness monitoring ability was assessed at 4, 25, and 35 °C, and various color changes were employed to monitor beef deterioration. ΔE values and the visual color difference of the low-concentration (SCG-BC-0.08 and SCG-BC-0.16) ammonia-sensitive indicator films demonstrated significant color changes than the high-concentration (SCG-BC-0.24 and SCG-BC-0.32) films. The films biodegradation (37.16 to 51.49%) ability was enhanced with increase in the proportions of BC. As the TVB-N and pH values of beef increased with the different temperatures and time and different color changes were observed from red to pink, black to brown, and yellow.


Subject(s)
Anthocyanins , Carboxymethylcellulose Sodium , Citric Acid , Color , Food Packaging , Polysaccharides, Bacterial , Polysaccharides, Bacterial/chemistry , Cattle , Anthocyanins/chemistry , Carboxymethylcellulose Sodium/chemistry , Animals , Citric Acid/chemistry , Food Packaging/instrumentation , Food Preservation/instrumentation , Food Preservation/methods , Ribes/chemistry , Meat/analysis , Hydrogen-Ion Concentration
14.
Int J Biol Macromol ; 277(Pt 2): 134356, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089551

ABSTRACT

With the rapid advancement of flexible, portable devices, hydrogel electrolytes have gained considerable attention as potential replacements for conventional liquid electrolytes. A hydrogel electrolyte was synthesised by cross-linking acrylic acid (AA), acrylamide (AM), carboxymethyl cellulose (CMC), and zinc sulphate (ZnSO4). The formation of hydrogen bonds and chelate interactions between the P(AA-co-AM) polymer, CMC, and ZnSO4 created a robust network, enhancing the mechanical properties of the hydrogel electrolytes. Notably, the hydrogel electrolyte containing 0.6 % CMC demonstrated superior mechanical strength (compression strength of 1.22 MPa, tensile stress of 230 kPa, tensile strain of 424 %, adhesion strength of 1.98 MPa on wood). Additionally, the CMC/P(AA-co-AM) hydrogels exhibited commendable electrical performance (38 mS/cm) and a high gauge factor (2.9), enabling the precise detection of physiological activity signals through resistance measurements. The unique network structure of the hydrogel electrolyte also ensured a stable bonding interface between the electrode and the electrolyte. After 2000 charge-discharge cycles, the supercapacitor maintained good capacitance characteristics, with a capacitance retention rate of 71.21 % and a stable Coulombic efficiency of 98.85 %, demonstrating excellent cyclic stability. This study introduces a novel methodology for fabricating multifunctional all-solid-state supercapacitors and suggests that the hydrogel can significantly advance the development of wearable energy storage devices.


Subject(s)
Electric Capacitance , Electrolytes , Hydrogels , Wearable Electronic Devices , Electrolytes/chemistry , Hydrogels/chemistry , Electrochemical Techniques/methods , Electrodes , Carboxymethylcellulose Sodium/chemistry
15.
Int J Biol Macromol ; 277(Pt 2): 134351, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089547

ABSTRACT

Chitosan, as a biomaterial, has increasingly garnered attention. However, its limited solubility in water-only dissolving in certain dilute acidic solutions-substantially restricts its broader application. In this investigation, chitosan underwent a solubilization modification to acquire water solubility, facilitating its dissolution in neutral aqueous mediums. Subsequently, this water-soluble chitosan (WSC) was interlinked with oxidized carboxymethyl cellulose (OCMC), characterized by varied oxidation extents, to synthesize hydrogels. Structural characterization verified the formation of imine bonds resulting from crosslinking interactions between the amino groups of water-soluble chitosan and the aldehyde groups of oxidized carboxymethyl cellulose. Employing performance characterization analysis, it was discerned that an increase in the oxidation level of the oxidized carboxymethyl cellulose corresponded to a denser hydrogel network architecture and the hardness increased from 3.01 N to 6.16 N. Moreover, the capacity of these hydrogels to adsorb methylene blue was meticulously examined. Notably, the hydrogel denoted as WSC/66%OCMC manifested an adsorption capability of 28.08 mg/g for methylene blue. Analytical findings from adsorption kinetics and isotherm studies indicate that the adsorption mechanism of the WSC/66%OCMC hydrogel follows the pseudo-second-order kinetic model and corresponds to the Freundlich isotherm model.


Subject(s)
Carboxymethylcellulose Sodium , Chitosan , Hydrogels , Methylene Blue , Oxidation-Reduction , Solubility , Water , Methylene Blue/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Chitosan/chemistry , Carboxymethylcellulose Sodium/chemistry , Water/chemistry , Adsorption , Kinetics
16.
Int J Biol Macromol ; 277(Pt 2): 134246, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098461

ABSTRACT

A novel nanoparticle screening technique was established to mostly enhance the aqueous solubility and oral bioavailability of aceclofenac using nanoparticle systems. Among the polymers investigated, sodium carboxymethylcellulose (Na-CMC) showed the greatest increase in drug solubility. Utilizing spray-drying technique, the solvent-evaporated solid dispersion (SESD), surface-attached solid dispersion (SASD), and solvent-wetted solid dispersion (SWSD) were prepared using aceclofenac and Na-CMC at a weight ratio of 1:1 in 50 % ethanol, distilled water, and ethanol, respectively. Using Na-CMC as a solid carrier, an aceclofenac-loaded liquid self-emulsifying drug delivery system was spray-dried and fluid-bed granulated together with microcrystalline cellulose, producing a solid self-nanoemulsifying drug delivery system (SNEDDS) and solid self-nanoemulsifying granule system (SNEGS), respectively. Their physicochemical properties and preclinical assessments in rats were performed. All nanoparticles exhibited very different properties, including morphology, crystallinity, and size. As a result, they significantly enhanced the solubility, dissolution, and oral bioavailability in the following order: SNEDDS ≥ SNEGS > SESD ≥ SASD ≥ SWSD. Based on our screening technique, the SNEDDS was selected as the optimal nanoparticle with the highest bioavailability of aceclofenac. Thus, our nanoparticle screening technique should be an excellent guideline for solubilization research to improve the solubility and bioavailability of many poorly water-soluble bioactive materials.


Subject(s)
Biological Availability , Carboxymethylcellulose Sodium , Diclofenac , Nanoparticles , Solubility , Water , Diclofenac/pharmacokinetics , Diclofenac/analogs & derivatives , Diclofenac/chemistry , Diclofenac/administration & dosage , Carboxymethylcellulose Sodium/chemistry , Nanoparticles/chemistry , Animals , Rats , Administration, Oral , Water/chemistry , Male , Emulsions/chemistry , Drug Carriers/chemistry , Particle Size , Rats, Sprague-Dawley
17.
Molecules ; 29(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39203013

ABSTRACT

Biofumigation was proposed as an alternative to synthetic pesticides for the disinfection of agricultural soils, in view of the biocidal effect of isothiocyanates (ITCs) released by some vegetal species, like Brassicaceae. However, biofumigation also presents limitations; thus, a novel and viable alternative could be the direct introduction of ITCs into agricultural soils as components loaded into biodegradable hydrogels. Thus, in this work, ITCs-based microemulsions were developed, which can be loaded into porous polymer-based hydrogel beads based on sodium alginate (ALG) or sodium carboxymethyl cellulose (CMC). Three ITCs (ethyl, phenyl, and allyl isothiocyanate) and three different surfactants (sodium dodecylsulfate, Brij 35, and Tween 80) were considered. The optimal system was characterized with attenuated ATR-FTIR spectroscopy and differential scanning calorimetry to study how the microemulsion/gels interaction affects the gel properties, such as the equilibrium water content or free water index. Finally, loading and release profiles were studied by means of UV-Vis spectrophotometry. It was found that CMC hydrogel beads showed a slightly more efficient profile of micelles' release in water with respect to ALG beads. For this reason, and due to the enhanced contribution of Fe(III) to their biocidal properties, CMC-based hydrogels are the most promising in view of the application on real agricultural soils.


Subject(s)
Emulsions , Hydrogels , Isothiocyanates , Soil , Hydrogels/chemistry , Emulsions/chemistry , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , Soil/chemistry , Agriculture , Biocompatible Materials/chemistry , Alginates/chemistry , Fertilizers , Carboxymethylcellulose Sodium/chemistry
18.
Int J Biol Macromol ; 278(Pt 2): 134358, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089560

ABSTRACT

A novel pH-triggered bilayer film was composed of zein (Z), carboxymethylcellulose (CMC), Eudragit L100 (L100), and purple cabbage anthocyanin (PCA), followed by casting for monitoring pork freshness during storage at 4 °C and 25 °C. This bilayer film was employed to encapsulate anthocyanins, preventing anthocyanins oxidation and photodegradation. Additionally, under pH 6, this film ruptures and releases anthocyanins, inducing a sudden color change in the indicator film, significantly reducing errors in freshness indications. Notably, the ZCLP8% film had excellent stability and pH response properties. The performance of the ZCLP8% film in monitoring pork freshness was evaluated. When the concentration of pork TVB-N reached 15.59 mg/100 g (pH = 6.35), the bilayer film was ruptured, and the release rate of PCA was 85.52 %, which was a significant change in the color of the bilayer film compared with that at pH = 5. Therefore, this work addresses the limitation that anthocyanin-based intelligent films are subject to judgment errors when applied, opening new possibilities for food freshness differentiation monitoring.


Subject(s)
Anthocyanins , Brassica , Carboxymethylcellulose Sodium , Zein , Anthocyanins/chemistry , Anthocyanins/analysis , Carboxymethylcellulose Sodium/chemistry , Hydrogen-Ion Concentration , Brassica/chemistry , Animals , Swine , Zein/chemistry , Food Packaging/methods , Polymethacrylic Acids/chemistry , Pork Meat/analysis , Color
19.
Int J Biol Macromol ; 278(Pt 2): 134528, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111499

ABSTRACT

Additive manufacturing can develop regenerative scaffolds for wound healing. 3D printing offers meticulous porosity, mechanical integrity, cell adhesion and cost-effectiveness. Herein, we prepared ink composed of carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), collagen, and oregano extract for the fabrication of tissue constructs. The blend was optimized to form a homogeneous ink and rheological characterization demonstrated shear thinning behavior. The scaffolds were printed using Direct Ink Write (DIW) at a flow speed of 4 mm3/s and a layer height of 0.18 mm. The fabricated scaffolds demonstrated an ultimate tensile strength (UTS) and toughness of 730 KPa and 2.72 MJ/m3, respectively. Scanning Electron Microscopy (SEM) revealed an average pore size of 300 ± 30 µm. Fourier transform infrared spectroscopy (FTIR) analysis confirmed that all materials were present. The contact angle of the composite scaffold was 68° ± 1°. Moreover, the scaffolds presented 82 % mass loss (degradation) in phosphate buffer saline (PBS) over 14 days. The composite scaffold exhibited inhibition zones of 9 mm and 12 mm against Staphylococcus aureus and Escherichia coli, respectively. The PVP/CMC/collagen/oregano 3D printed scaffolds exhibited excellent biocompatibility with the mesenchymal stem cells and humman dermal fibroblast cells, confirmed by water-soluble tetrazolium - 8 (WST-8) assay (test conducted for 7 days). The enhanced angiogenic potential of said scaffold was assesed by release of vascular endothelial growth factor followed by further validation through in-vivo CAM assay. Thus, confirming suitability for the potential wound healing application.


Subject(s)
Carboxymethylcellulose Sodium , Collagen , Origanum , Povidone , Tissue Scaffolds , Wound Healing , Povidone/chemistry , Wound Healing/drug effects , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Tissue Scaffolds/chemistry , Collagen/chemistry , Collagen/pharmacology , Humans , Origanum/chemistry , Staphylococcus aureus/drug effects , Printing, Three-Dimensional , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Escherichia coli/drug effects , Ink , Fibroblasts/drug effects , Fibroblasts/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Porosity , Tensile Strength , Animals
20.
Int J Biol Macromol ; 278(Pt 1): 134676, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137855

ABSTRACT

The convergence of polymer and pharmaceutical sciences has advanced drug delivery systems significantly. Carbohydrate polymers, especially carboxymethylated ones, offer versatile benefits for pharmaceuticals. Interpenetrating polymer networks (IPNs) combine synthetic and natural polymers to enhance drug delivery. The study aims to develop IPN beads using sodium carboxymethyl cellulose (SCMC) and carboxymethyl konjac glucomannan (CMKGM) for controlled release of ibuprofen (IB) after oral administration. Objectives include formulation optimization, characterization of physicochemical properties, evaluation of pH-dependent swelling and drug release behaviors to advance biocompatible and efficient oral drug delivery systems. The beads were analyzed using SEM, FTIR, DSC, and XRD techniques. Different ratio of polymers (CMKGM:SCMS) and crosslinker concentrations (2&4 %w/v) were used, significantly impacting bead size, swelling, drug encapsulation, and release characteristics. DSC results indicated higher thermal stability in IPN beads compared to native polymers. XRD revealed IB dispersion within the polymer matrix. IPN beads size ranged from 580 ± 0.56 to 324 ± 0.27 µm, with a nearly spherical shape. IPN beads exhibited continuous release in alkaline conditions (pH 7.4) and minimal release in acidic media (pH 1.2). These findings suggest that the formulated IPN beads can modulate drug release in both acidic and alkaline environments, potentially mitigating the gastric adverse effects often associated with oral administration of IB.


Subject(s)
Carboxymethylcellulose Sodium , Delayed-Action Preparations , Drug Carriers , Drug Liberation , Ibuprofen , Mannans , Carboxymethylcellulose Sodium/chemistry , Mannans/chemistry , Ibuprofen/chemistry , Hydrogen-Ion Concentration , Drug Carriers/chemistry , Microspheres
SELECTION OF CITATIONS
SEARCH DETAIL