Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.788
Filter
1.
Sci Rep ; 14(1): 15200, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956290

ABSTRACT

Anoikis, a distinct form of programmed cell death, is crucial for both organismal development and maintaining tissue equilibrium. Its role extends to the proliferation and progression of cancer cells. This study aimed to establish an anoikis-related prognostic model to predict the prognosis of pancreatic cancer (PC) patients. Gene expression data and patient clinical profiles were sourced from The Cancer Genome Atlas (TCGA-PAAD: Pancreatic Adenocarcinoma) and the International Cancer Genome Consortium (ICGC-PACA: Pancreatic Ductal Adenocarcinoma). Non-cancerous pancreatic tissue gene expression data were obtained from the Genotype-Tissue Expression (GTEx) project. The R package was used to construct anoikis-related PC prognostic models, which were later validated with the ICGC-PACA database. Survival analyses demonstrated a poorer prognosis for patients in the high-risk group, consistent across both TCGA-PAAD and ICGC-PACA datasets. A nomogram was designed as a predictive tool to estimate patient mortality. The study also analyzed tumor mutations and immune infiltration across various risk groups, uncovering notable differences in tumor mutation patterns and immune landscapes between high- and low-risk groups. In conclusion, this research successfully developed a prognostic model centered on anoikis-related genes, offering a novel tool for predicting the clinical trajectory of PC patients.


Subject(s)
Anoikis , Pancreatic Neoplasms , Anoikis/genetics , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Gene Expression Regulation, Neoplastic , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Nomograms , Biomarkers, Tumor/genetics , Mutation , Female , Male , Survival Analysis , Gene Expression Profiling
2.
BMC Microbiol ; 24(1): 235, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956452

ABSTRACT

BACKGROUND: Patients with pancreatic ductal adenocarcinoma (PDAC) display an altered oral, gastrointestinal, and intra-pancreatic microbiome compared to healthy individuals. However, knowledge regarding the bile microbiome and its potential impact on progression-free survival in PDACs remains limited. METHODS: Patients with PDAC (n = 45), including 20 matched pairs before and after surgery, and benign controls (n = 16) were included prospectively. The characteristics of the microbiomes of the total 81 bile were revealed by 16  S-rRNA gene sequencing. PDAC patients were divided into distinct groups based on tumor marker levels, disease staging, before and after surgery, as well as progression free survival (PFS) for further analysis. Disease diagnostic model was formulated utilizing the random forest algorithm. RESULTS: PDAC patients harbor a unique and diverse bile microbiome (PCoA, weighted Unifrac, p = 0.038), and the increasing microbial diversity is correlated with dysbiosis according to key microbes and microbial functions. Aliihoeflea emerged as the genus displaying the most significant alteration among two groups (p < 0.01). Significant differences were found in beta diversity of the bile microbiome between long-term PFS and short-term PFS groups (PCoA, weighted Unifrac, p = 0.005). Bacillota and Actinomycetota were identified as altered phylum between two groups associated with progression-free survival in all PDAC patients. Additionally, we identified three biomarkers as the most suitable set for the random forest model, which indicated a significantly elevated likelihood of disease occurrence in the PDAC group (p < 0.0001). The area under the receiver operating characteristic (ROC) curve reached 80.8% with a 95% confidence interval ranging from 55.0 to 100%. Due to the scarcity of bile samples, we were unable to conduct further external verification. CONCLUSION: PDAC is characterized by an altered microbiome of bile ducts. Biliary dysbiosis is linked with progression-free survival in all PDACs. This study revealed the alteration of the bile microbiome in PDACs and successfully developed a diagnostic model for PDAC.


Subject(s)
Bile , Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/microbiology , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Bile/microbiology , Male , Female , Pancreatic Neoplasms/microbiology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Microbiota/genetics , Middle Aged , Aged , Dysbiosis/microbiology , Progression-Free Survival , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Prospective Studies , RNA, Ribosomal, 16S/genetics
3.
Sci Rep ; 14(1): 15037, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951569

ABSTRACT

The NK cell is an important component of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC), also plays a significant role in PDAC development. This study aimed to explore the relationship between NK cell marker genes and prognosis, immune response of PDAC patients. By scRNA-seq data, we found the proportion of NK cells were significantly downregulated in PDAC and 373 NK cell marker genes were screened out. By TCGA database, we enrolled 7 NK cell marker genes to construct the signature for predicting prognosis in PDAC patients. Cox analysis identified the signature as an independent factor for pancreatic cancer. Subsequently, the predictive power of signature was validated by 6 GEO datasets and had an excellent evaluation. Our analysis of relationship between the signature and patients' immune status revealed that the signature has a strong correlation with immunocyte infiltration, inflammatory reaction, immune checkpoint inhibitors (ICIs) response. The NK cell marker genes are closely related to the prognosis and immune capacity of PDAC patients, and they have potential value as a therapeutic target.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Killer Cells, Natural , Pancreatic Neoplasms , Single-Cell Analysis , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Killer Cells, Natural/immunology , Prognosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Biomarkers, Tumor/genetics , Single-Cell Analysis/methods , Female , Male , Gene Expression Regulation, Neoplastic , Sequence Analysis, RNA , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Middle Aged , Aged , Gene Expression Profiling
4.
World J Gastroenterol ; 30(23): 2927-2930, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38946872

ABSTRACT

In this editorial, we focus specifically on the mechanisms by which pancreatic inflammation affects pancreatic cancer. Cancer of the pancreas remains one of the deadliest cancer types. The highest incidence and mortality rates of pancreatic cancer are found in developed countries. Trends of pancreatic cancer incidence and mortality vary considerably worldwide. A better understanding of the etiology and identification of the risk factors is essential for the primary prevention of this disease. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this editorial, we highlight the foundational studies that have driven our understanding of these processes. In our experimental center, we have carefully studied the mechanisms of that link pancreatic inflammation and pancreatic cancer. We focused on the role of mast cells (MCs). MCs contain pro-angiogenic factors, including tryptase, that are associated with increased angiogenesis in various tumors. In this editorial, we address the role of MCs in angiogenesis in both pancreatic ductal adenocarcinoma tissue and adjacent normal tissue. The assessment includes the density of c-Kit receptor-positive MCs, the density of tryptase-positive MCs, the area of tryptase-positive MCs, and angiogenesis in terms of microvascularization density.


Subject(s)
Mast Cells , Neovascularization, Pathologic , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/immunology , Mast Cells/metabolism , Mast Cells/immunology , Tumor Microenvironment/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Pancreas/pathology , Pancreas/immunology , Pancreas/metabolism , Animals , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/immunology , Risk Factors , Inflammation Mediators/metabolism , Tryptases/metabolism , Inflammation/metabolism
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 708-716, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948268

ABSTRACT

Objective: To explore the relationship between baseline clinical characteristics and hematological parameters of patients undergoing radical resection for pancreatic ductal adenocarcinoma (PDAC) and their prognosis, and to provide references for stratifying the patients' clinical risks. Methods: We retrospectively collected clinical data from 445 patients who underwent radical surgical treatment for PDAC at West China Hospital, Sichuan University between January 2010 and February 2019. Then, we conducted retrospective clinical analysis with the collected data. Data on patients' basic clinical characteristics, routine blood test results, and tumor indicators were collected to explore their effects on the postoperative overall survival (OS) of PDAC patients. Cox proportional hazards regression was used to identify factors affecting OS. Statistical analysis was performed using the SPSS 23.0 software package. Results: The postoperative median overall survival (mOS) was 17.0 months (95% CI: 15.0-19.0). The 1, 2, 3, 4, and 5-year survival rates of the patients included in the study were 60.6%, 33.4%, 19.1%, 12.7%, and 9.6%, respectively. The multivariate Cox proportional hazards model analysis demonstrated that a number of factors independently affect postoperative survival in PDAC patients. These factors include tumor location (hazards ratio [HR]=1.574, 95% CI: 1.233-2.011), degree of tumor cell differentiation (HR=0.687, 95% CI: 0.542-0.870), presence of neural invasion (HR=0.686, 95% CI: 0.538-0.876), TNM staging (HR=1.572, 95% CI: 1.252-1.974), postoperative adjuvant therapy (HR=1.799, 95% CI: 1.390-2.328), preoperative drinking history (HR=0.744, 95% CI: 0.588-0.943), and high serum CA199 levels prior to the surgery (HR=0.742, 95% CI: 0.563-0.977). Conclusion: In PDAC patients, having tumors located in the head of the pancreas, moderate and high degrees of differentiated, being free from local neurovascular invasion, being in TNM stage Ⅰ, undergoing postoperative adjuvant therapy, no history of alcohol consumption prior to the surgery, and preoperative serum CA199 being less than or equal to 37 U/mL are significantly associated with a better prognosis.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/surgery , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/pathology , Retrospective Studies , Prognosis , Male , Female , Carcinoma, Pancreatic Ductal/surgery , Carcinoma, Pancreatic Ductal/blood , Survival Rate , Proportional Hazards Models , Middle Aged , China/epidemiology , Aged
6.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 354-360, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38953259

ABSTRACT

Objective To construct a risk prediction model by integrating the molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) and immune-related genes.Methods With GSE71729 data set (n=145) as the training set,the differentially expressed genes and differential immune-related genes between the squamous and non-squamous subtypes of PDAC were integrated to construct a regulatory network,on the basis of which five immune marker genes regulating the squamous subtype were screened out.An integrated immune score (IIS) model was constructed based on patient survival information and immune marker genes to predict the clinical prognosis of PDAC patients,and its predictive performance was tested with 5 validation sets (n=758).Results PDAC patients were assigned into high risk and low risk groups according to the IIS.In both training and validation sets,the overall survival of patients in the high risk group was shorter than that in the low risk group (both P<0.001).The multivariable Cox regression showed that IIS was an independent prognostic factor for PDAC (HR=2.16,95%CI=1.50-3.10,P<0.001).Conclusion IIS can be used for risk stratification of PDAC patients and may become a potential prognostic marker for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/mortality , Prognosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Female , Male , Middle Aged , Biomarkers, Tumor/genetics , Risk Assessment/methods
7.
BMC Cancer ; 24(1): 709, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853244

ABSTRACT

BACKGROUND: Pancreatic cancer, predominantly characterized by ductal adenocarcinoma (PDAC) accounts for 90% of cases and is the fourth leading cause of cancer-related deaths globally. Its incidence is notably increasing. This poor prognosis is primarily due to late-stage diagnosis (approximately 70% to 80% of patients are diagnosed at an advanced stage), aggressive tumor biology, and low sensitivity to chemotherapy. Consequently, it is crucial to identify and develop a simple, feasible and reproducible blood-based signature (i.e., combination of biomarkers) for early detection of PDAC. METHODS: The PANLIPSY study is a multi-center, non-interventional prospective clinical trial designed to achieve early detection of PDAC with high specificity and sensitivity, using a combinatorial approach in blood samples. These samples are collected from patients with resectable, borderline or locally advanced, and metastatic stage PDAC within the framework of the French Biological and Clinical Database for PDAC cohort (BACAP 2). All partners of the BACAP consortium are eligible to participate. The study will include 215 PDAC patients, plus 25 patients with benign pancreatic conditions from the PAncreatic Disease Cohort of TOuLouse (PACTOL) cohort, and 115 healthy controls, totaling 355 individuals. Circulating biomarkers will be collected in a total volume of 50 mL of blood, divided into one CellSave tube (10 mL), two CELL-FREE DNA BCT® preservative tubes (18 mL), and five EDTA tubes (22 mL in total). Samples preparation will adhere to the guidelines of the European Liquid Biopsy Society (ELBS). A unique feature of the study is the AI-based comparison of these complementary liquid biopsy biomarkers. Main end-points: i) to define a liquid biopsy signature that includes the most relevant circulating biomarkers, ii) to validate the multi-marker panel in an independent cohort of healthy controls and patients, with resectable PDAC, and iii) to establish a unique liquid biopsy biobank for PDAC study. DISCUSSION: The PANLIPSY study is a unique prospective non-interventional clinical trial that brings together liquid biopsy experts. The aim is to develop a biological signature for the early detection of PDAC based on AI-assisted detection of circulating biomarkers in blood samples (CTCs, ctDNA, EVs, circulating immune system, circulating cell-free nucleosomes, proteins, and microbiota). TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06128343 / NCT05824403. Registration dates: June 8,2023 and April 21, 2023.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Early Detection of Cancer , Pancreatic Neoplasms , Aged , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/pathology , Early Detection of Cancer/methods , France , Liquid Biopsy/methods , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/pathology , Prospective Studies
8.
Sci Rep ; 14(1): 13602, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38866899

ABSTRACT

Mouse models for the study of pancreatic ductal adenocarcinoma (PDAC) are well-established and representative of many key features observed in human PDAC. To monitor tumor growth, cancer cells that are implanted in mice are often transfected with reporter genes, such as firefly luciferase (Luc), enabling in vivo optical imaging over time. Since Luc can induce an immune response, we aimed to evaluate whether the expression of Luc could affect the growth of KPC tumors in mice by inducing immunogenicity. Although both cell lines, KPC and Luc transduced KPC (KPC-Luc), had the same proliferation rate, KPC-Luc tumors had significantly smaller sizes or were absent 13 days after orthotopic cell implantation, compared to KPC tumors. This coincided with the loss of bioluminescence signal over the tumor region. Immunophenotyping of blood and spleen from KPC-Luc tumor-bearing mice showed a decreased number of macrophages and CD4+ T cells, and an increased accumulation of natural killer (NK) cells in comparison to KPC tumor mice. Higher infiltration of CD8+ T cells was found in KPC-Luc tumors than in their controls. Moreover, the immune response against Luc peptide was stronger in splenocytes from mice implanted with KPC-Luc cells compared to those isolated from KPC wild-type mice, indicating increased immunogenicity elicited by the presence of Luc in the PDAC tumor cells. These results must be considered when evaluating the efficacy of anti-cancer therapies including immunotherapies in immunocompetent PDAC or other cancer mouse models that use Luc as a reporter for bioluminescence imaging.


Subject(s)
Carcinoma, Pancreatic Ductal , Disease Models, Animal , Pancreatic Neoplasms , Animals , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Mice , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Humans , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Luciferases, Firefly/genetics , Luciferases/metabolism , Luciferases/genetics
9.
Front Immunol ; 15: 1406250, 2024.
Article in English | MEDLINE | ID: mdl-38873607

ABSTRACT

The five-year survival rates for pancreatic ductal adenocarcinoma (PDAC) have scarcely improved over the last half-century. It is inherently resistant to FDA-approved immunotherapies, which have transformed the outlook for patients with other advanced solid tumours. Accumulating evidence relates this resistance to its hallmark immunosuppressive milieu, which instils progressive dysfunction among tumour-infiltrating effector T cells. This milieu is established at the inception of neoplasia by immunosuppressive cellular populations, including regulatory T cells (Tregs), which accumulate in parallel with the progression to malignant PDAC. Thus, the therapeutic manipulation of Tregs has captured significant scientific and commercial attention, bolstered by the discovery that an abundance of tumour-infiltrating Tregs correlates with a poor prognosis in PDAC patients. Herein, we propose a mechanism for the resistance of PDAC to anti-PD-1 and CTLA-4 immunotherapies and re-assess the rationale for pursuing Treg-targeted therapies in light of recent studies that profiled the immune landscape of patient-derived tumour samples. We evaluate strategies that are emerging to limit Treg-mediated immunosuppression for the treatment of PDAC, and signpost early-stage trials that provide preliminary evidence of clinical activity. In this context, we find a compelling argument for investment in the ongoing development of Treg-targeted immunotherapies for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Immunotherapy , Pancreatic Neoplasms , T-Lymphocytes, Regulatory , Animals , Humans , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology
10.
Methods Cell Biol ; 188: 153-169, 2024.
Article in English | MEDLINE | ID: mdl-38880522

ABSTRACT

Pancreatic cancer remains an unmet medical need. Late diagnosis and the lack of efficient treatment significantly impact the prognosis of patients suffering from pancreatic cancer. Improving patient outcomes requires a deeper comprehension of the tumor ecosystem. To achieve this, a thorough exploration of the tumor microenvironment using pre-clinical models that accurately replicate human disease is imperative, particularly in understanding the dynamics of immune cell subsets. Surprisingly, the impact of model variations on the composition of the tumor microenvironment has been largely neglected. In this study, we introduce an orthotopic model of pancreatic ductal adenocarcinoma and a spontaneous model of insulinoma. Our findings reveal striking differences in the innate lymphoid cell infiltrate, highlighting the importance of considering model-specific influences when investigating the tumor microenvironment.


Subject(s)
Carcinoma, Pancreatic Ductal , Disease Models, Animal , Immunity, Innate , Lymphocytes , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Mice , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Tumor Microenvironment/immunology , Lymphocytes/immunology , Humans , Insulinoma/pathology , Insulinoma/immunology , Cell Line, Tumor , Mice, Inbred C57BL
11.
J Exp Clin Cancer Res ; 43(1): 165, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877560

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer with an aggressive metastatic phenotype and very poor clinical prognosis. Interestingly, a lower occurrence of PDAC has been described in individuals with severe and long-standing asthma. Here we explored the potential link between PDAC and the glucocorticoid (GC) budesonide, a first-line therapy to treat asthma. METHODS: We tested the effect of budesonide and the classical GCs on the morphology, proliferation, migration and invasiveness of patient-derived PDAC cells and pancreatic cancer cell lines, using 2D and 3D cultures in vitro. Furthermore, a xenograft model was used to investigate the effect of budesonide on PDAC tumor growth in vivo. Finally, we combined genome-wide transcriptome analysis with genetic and pharmacological approaches to explore the mechanisms underlying budesonide activities in the different environmental conditions. RESULTS: We found that in 2D culture settings, high micromolar concentrations of budesonide reduced the mesenchymal invasive/migrating features of PDAC cells, without affecting proliferation or survival. This activity was specific and independent of the Glucocorticoid Receptor (GR). Conversely, in a more physiological 3D environment, low nanomolar concentrations of budesonide strongly reduced PDAC cell proliferation in a GR-dependent manner. Accordingly, we found that budesonide reduced PDAC tumor growth in vivo. Mechanistically, we demonstrated that the 3D environment drives the cells towards a general metabolic reprogramming involving protein, lipid, and energy metabolism (e.g., increased glycolysis dependency). This metabolic change sensitizes PDAC cells to the anti-proliferative effect of budesonide, which instead induces opposite changes (e.g., increased mitochondrial oxidative phosphorylation). Finally, we provide evidence that budesonide inhibits PDAC growth, at least in part, through the tumor suppressor CDKN1C/p57Kip2. CONCLUSIONS: Collectively, our study reveals that the microenvironment influences the susceptibility of PDAC cells to GCs and provides unprecedented evidence for the anti-proliferative activity of budesonide on PDAC cells in 3D conditions, in vitro and in vivo. Our findings may explain, at least in part, the reason for the lower occurrence of pancreatic cancer in asthmatic patients and suggest a potential suitability of budesonide for clinical trials as a therapeutic approach to fight pancreatic cancer.


Subject(s)
Budesonide , Cell Proliferation , Energy Metabolism , Pancreatic Neoplasms , Humans , Budesonide/pharmacology , Budesonide/therapeutic use , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Energy Metabolism/drug effects , Cell Proliferation/drug effects , Animals , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Xenograft Model Antitumor Assays , Cell Movement/drug effects
12.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891849

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of all pancreatic cancers and is the most fatal of all cancers. The treatment response from combination chemotherapies is far from satisfactory and surgery remains the mainstay of curative strategies. These challenges warrant identifying effective treatments for combating this deadly cancer. PDAC tumor progression is associated with the robust activation of the coagulation system. Notably, cancer-associated thrombosis (CAT) is a significant risk factor in PDAC. CAT is a concept whereby cancer cells promote thromboembolism, primarily venous thromboembolism (VTE). Of all cancer types, PDAC is associated with the highest risk of developing VTE. Hypoxia in a PDAC tumor microenvironment also elevates thrombotic risk. Direct oral anticoagulants (DOACs) or low-molecular-weight heparin (LMWH) are used only as thromboprophylaxis in PDAC. However, a precision medicine approach is recommended to determine the precise dose and duration of thromboprophylaxis in clinical setting.


Subject(s)
Pancreatic Neoplasms , Venous Thromboembolism , Humans , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Anticoagulants/therapeutic use , Risk Factors , Animals , Tumor Microenvironment
13.
JCI Insight ; 9(12)2024 May 23.
Article in English | MEDLINE | ID: mdl-38912584

ABSTRACT

The regulated glycosylation of the proteome has widespread effects on biological processes that cancer cells can exploit. Expression of N-acetylglucosaminyltransferase V (encoded by Mgat5 or GnT-V), which catalyzes the addition of ß1,6-linked N-acetylglucosamine to form complex N-glycans, has been linked to tumor growth and metastasis across tumor types. Using a panel of murine pancreatic ductal adenocarcinoma (PDAC) clonal cell lines that recapitulate the immune heterogeneity of PDAC, we found that Mgat5 is required for tumor growth in vivo but not in vitro. Loss of Mgat5 results in tumor clearance that is dependent on T cells and dendritic cells, with NK cells playing an early role. Analysis of extrinsic cell death pathways revealed Mgat5-deficient cells have increased sensitivity to cell death mediated by the TNF superfamily, a property that was shared with other non-PDAC Mgat5-deficient cell lines. Finally, Mgat5 knockout in an immunotherapy-resistant PDAC line significantly decreased tumor growth and increased survival upon immune checkpoint blockade. These findings demonstrate a role for N-glycosylation in regulating the sensitivity of cancer cells to T cell killing through classical cell death pathways.


Subject(s)
Carcinoma, Pancreatic Ductal , N-Acetylglucosaminyltransferases , Pancreatic Neoplasms , Animals , Glycosylation , Mice , N-Acetylglucosaminyltransferases/metabolism , N-Acetylglucosaminyltransferases/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Cell Line, Tumor , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice, Knockout
14.
Mol Metab ; 85: 101964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823776

ABSTRACT

OBJECTIVE: Cancer cells must maintain lipid supplies for their proliferation and do so by upregulating lipogenic gene programs. The sterol regulatory element-binding proteins (SREBPs) act as modulators of lipid homeostasis by acting as transcriptional activators of genes required for fatty acid and cholesterol synthesis and uptake. SREBPs have been recognized as chemotherapeutic targets in multiple cancers, however it is not well understood which SREBP target genes are essential for tumorigenesis. In this study, we examined the requirement of SREBP target genes for pancreatic ductal adenocarcinoma (PDAC) tumor growth. METHODS: Here we constructed a custom CRISPR knockout library containing known SREBP target genes and performed in vitro 2D culture and in vivo orthotopic xenograft CRISPR screens using a patient-derived PDAC cell line. In vitro, we grew cells in medium supplemented with 10% fetal bovine serum (FBS) or 10% lipoprotein-deficient serum (LPDS) to examine differences in gene essentiality in different lipid environments. In vivo, we injected cells into the pancreata of nude mice and collected tumors after 4 weeks. RESULTS: We identified terpenoid backbone biosynthesis genes as essential for PDAC tumor development. Specifically, we identified the non-sterol isoprenoid product of the mevalonate pathway, geranylgeranyl diphosphate (GGPP), as an essential lipid for tumor growth. Mechanistically, we observed that restricting mevalonate pathway activity using statins and SREBP inhibitors synergistically induced apoptosis and caused disruptions in small G protein prenylation that have pleiotropic effects on cellular signaling pathways. Finally, we demonstrated that geranylgeranyl diphosphate synthase 1 (GGPS1) knockdown significantly reduces tumor burden in an orthotopic xenograft mouse model. CONCLUSIONS: These findings indicate that PDAC tumors selectively require GGPP over other lipids such as cholesterol and fatty acids and that this is a targetable vulnerability of pancreatic cancer cells.


Subject(s)
Cell Proliferation , Mice, Nude , Pancreatic Neoplasms , Polyisoprenyl Phosphates , Humans , Animals , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Polyisoprenyl Phosphates/metabolism , Polyisoprenyl Phosphates/pharmacology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Sterol Regulatory Element Binding Proteins/metabolism , Sterol Regulatory Element Binding Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
15.
ESMO Open ; 9(6): 103489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838501

ABSTRACT

BACKGROUND: Most patients with pancreatic ductal adenocarcinoma (PDAC) do not benefit from immune checkpoint inhibitor treatment. However, the phase II study CheckPAC (NCT02866383) showed a clinical benefit (CB) rate of 37% and a response rate of 14% in patients with metastatic PDAC receiving stereotactic radiation therapy and nivolumab with or without ipilimumab. Translational studies were initiated to characterize the patients who would benefit from this treatment. Here, we evaluated the association between treatment outcome and 92 circulating immuno-oncology-related proteins in patients from the CheckPAC trial. MATERIALS AND METHODS: The study included 78 patients with chemoresistant metastatic PDAC treated with nivolumab ± ipilimumab combined with radiotherapy. Proteins were measured in serum samples collected at baseline and on treatment with the use of the Olink Target 96 Immuno-Oncology panel. A cohort of 234 patients with metastatic PDAC treated with first-line chemotherapy were also included. RESULTS: High levels of Fas ligand (FASLG) and galectin 1 (Gal-1) and low levels of C-C motif chemokine 4 were associated with CB. High FASLG and Gal-1 were associated with longer progression-free survival in univariable analysis. In the multivariable Cox regression analysis, the association was significant for Gal-1 (P < 0.001) but not significant for FASLG (P = 0.06). A focused unsupervised hierarchal clustering analysis, including T-cell activation and immune checkpoint-related proteins, identified clusters of patients with higher CB rate and higher tumor expression of leukocyte or T-cell markers (CD3, CD45, granzyme B). Thirty-six proteins increased significantly during immunotherapy. Several proteins (including FASLG, checkpoint proteins, and immune activation markers) increased independently of response during immunotherapy but did not increase in the cohort of patients treated with chemotherapy. CONCLUSIONS: Circulating levels of immune-related proteins like FASLG and Gal-1 might be used to predict the efficacy of checkpoint inhibitors in patients with metastatic PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Immune Checkpoint Inhibitors , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/drug therapy , Male , Female , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Aged , Middle Aged , Biomarkers, Tumor/blood , Ipilimumab/therapeutic use , Ipilimumab/pharmacology , Treatment Outcome
16.
J Hazard Mater ; 474: 134790, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850938

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC)/pancreatic cancer, is a highly aggressive malignancy with poor prognosis. Gemcitabine-based chemotherapy remains the cornerstone of PDAC treatment. Nonetheless, the development of resistance to gemcitabine among patients is a major factor contributing to unfavorable prognostic outcomes. The resistance exhibited by tumors is modulated by a constellation of factors such as genetic mutations, tumor microenvironment transforms, environmental contaminants exposure. Currently, comprehension of the relationship between environmental pollutants and tumor drug resistance remains inadequate. Our study found that PFOS/6:2 Cl-PFESA exposure increases resistance to gemcitabine in PDAC. Subsequent in vivo trials confirmed that exposure to PFOS/6:2 Cl-PFESA reduces gemcitabine's efficacy in suppressing PDAC, with the inhibition rate decreasing from 79.5 % to 56.7 %/38.7 %, respectively. Integrative multi-omics sequencing and molecular biology analyses have identified the upregulation of ribonucleotide reductase catalytic subunit M1 (RRM1) as a critical factor in gemcitabine resistance. Subsequent research has demonstrated that exposure to PFOS and 6:2 Cl-PFESA results in the upregulation of the RRM1 pathway, consequently enhancing chemotherapy resistance. Remarkably, the influence exerted by 6:2 Cl-PFESA exceeds that of PFOS. Despite 6:2 Cl-PFESA being regarded as a safer substitute for PFOS, its pronounced effect on chemotherapeutic resistance in PDAC necessitates a thorough evaluation of its potential risks related to gastrointestinal toxicity.


Subject(s)
Alkanesulfonic Acids , Carcinoma, Pancreatic Ductal , Deoxycytidine , Drug Resistance, Neoplasm , Fluorocarbons , Gemcitabine , Pancreatic Neoplasms , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Pancreatic Neoplasms/drug therapy , Humans , Fluorocarbons/toxicity , Alkanesulfonic Acids/toxicity , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Drug Resistance, Neoplasm/drug effects , Animals , Ribonucleoside Diphosphate Reductase , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Antimetabolites, Antineoplastic/therapeutic use , Female , Mice , Male , Mice, Nude
17.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892190

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive cancer with striking fibrosis, and its mortality rate is ranked second across human cancers. Cancer-associated fibroblasts (CAFs) play a critical role in PDAC progression, and we reviewed the molecular understanding of PDAC CAFs and novel therapeutic potential at present. CAFs-associated genes (CAFGs) were tentatively classified into three categories by stroma specificity representing stroma/epithelia expression ratios (SE ratios). The recent classification using single cell transcriptome technology clarified that CAFs were composed of myofibroblasts (myCAFs), inflammatory CAFs (iCAFs), and other minor ones (e.g., POSTN-CAFs and antigen presenting CAFs, apCAFs). LRRC15 is a myCAFs marker, and myCAFs depletion by diphtheria toxin induces the rapid accumulation of cytotoxic T lymphocytes (CTLs) and therefore augment PDL1 antibody treatments. This finding proposes that myCAFs may be a critical regulator of tumor immunity in terms of PDAC progression. myCAFs are located in CAFs adjacent to tumor cells, while iCAFs marked by PDPN and/or COL14A1 are distant from tumor cells, where hypoxic and acidic environments being located in iCAFs putatively due to poor blood supply is consistent with HIF1A and GPR68 expressions. iCAFs may be shared with SASP (secretion-associated phenotypes) in senescent CAFs. myCAFs are classically characterized by CAFGs induced by TGFB1, while chemoresistant CAFs with SASP may dependent on IL6 expression and accompanied by STAT3 activation. Recently, it was found that the unique metabolism of CAFs can be targeted to prevent PDAC progression, where PDAC cells utilize glucose, whereas CAFs in turn utilize lactate, which may be epigenetically regulated, mediated by its target genes including CXCR4. In summary, CAFs have unique molecular characteristics, which have been rigorously clarified as novel therapeutic targets of PDAC progression.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Animals
18.
Int J Biol Sci ; 20(8): 3156-3172, 2024.
Article in English | MEDLINE | ID: mdl-38904009

ABSTRACT

Pancreatic cancer is the deadliest malignancy with a poor response to chemotherapy but is potentially indicated for ferroptosis therapy. Here we identified that cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates NRF2 proteostasis and susceptibility to ferroptosis in pancreatic ductal adenocarcinoma (PDAC). We found that CPEB1 deficiency in cancer cells promotes the translation of p62/SQSTM1 by facilitating mRNA polyadenylation. Consequently, upregulated p62 enhances NRF2 stability by sequestering KEAP1, an E3 ligase for proteasomal degradation of NRF2, leading to the transcriptional activation of anti-ferroptosis genes. In support of the critical role of this signaling cascade in cancer therapy, CPEB1-deficient pancreatic cancer cells display higher resistance to ferroptosis-inducing agents than their CPEB1-normal counterparts in vitro and in vivo. Furthermore, based on the pathological evaluation of tissue specimens from 90 PDAC patients, we established that CPEB1 is an independent prognosticator whose expression level is closely associated with clinical therapeutic outcomes in PDAC. These findings identify the role of CPEB1 as a key ferroptosis regulator and a potential prognosticator in pancreatic cancer.


Subject(s)
Ferroptosis , NF-E2-Related Factor 2 , Pancreatic Neoplasms , Humans , Ferroptosis/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Cell Line, Tumor , Animals , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Mice , Proteostasis , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice, Nude
19.
Int J Biol Sci ; 20(8): 3173-3184, 2024.
Article in English | MEDLINE | ID: mdl-38904016

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges in terms of prognosis and treatment. Recent research has identified splicing deregulation as a new cancer hallmark. Herein, we investigated the largely uncharacterized alternative splicing profile and the key splicing factor SF3B1 in PDAC pancreatic cells and tissues as a potential discovery source of plausible drug targets and new predictive biomarkers of clinical outcome. The research involved a transcriptome-wide analysis, comparing profiles of splicing profiles in PDAC primary cells with normal ductal cells. This revealed more than 400 significant differential splicing events in genes involved in regulation of gene expression, primarily related to mRNA splicing, and metabolism of nucleic acids. PDAC cultures were highly sensitive to the SF3B1 modulators, E7107 and Pladienolide-B, showing IC50s in the low nanomolar range. These compounds induced apoptosis, associated to induction of the MCL-1/S splice variant. and reduced cell migration, associated to RON mis-splicing. In an orthotopic mouse model, E7107 showed promising results. Furthermore, we evaluated SF3B1 expression in specimens from 87 patients and found a significant association of SF3B1 expression with progression-free and overall survival. In conclusion, SF3B1 emerges as both a potential prognostic factor and therapeutic target in PDAC, impacting cell proliferation, migration, and apoptosis. These findings warrant future studies on this new therapeutic strategy against PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , RNA Splicing Factors , Humans , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Animals , Mice , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Prognosis , Phosphoproteins/metabolism , Phosphoproteins/genetics , Macrolides/therapeutic use , Macrolides/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , RNA Splicing , Alternative Splicing , Female , Cell Movement/genetics
20.
Immunobiology ; 229(4): 152822, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852289

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that represents a significant challenge in cancer research and clinical management. In this study, we reanalyzed a published single-cell RNA sequencing (scRNA-seq) dataset from PDAC and adjacent tissues to investigate the heterogeneity of tumor and normal tissue, specifically focusing on the regulatory T cells (Tregs) and their interactions with other cells in the tumor microenvironment (TME). Treg cells were identified and clustered into natural Tregs (nTreg) and induced Tregs (iTreg) based on the expression of specific genes. It was found that the number of iTregs was higher in the tumor than in healthy tissues, while the number of n Tregs was higher in healthy tissues. Differential gene expression analysis was performed, and biological process analysis revealed that the Tregs in PDAC were mostly involved in protein targeting and translation pathways. In addition, ligand-receptor pairs between Tregs and other cell types were identified, and the critical communication pathways between Tregs and endothelial and ductal cells were revealed, which could potentially contribute to the immunosuppressive TME of PDAC. These findings provide insights into the role of Tregs in PDAC and their interactions with other cell types in the TME, highlighting potential targets for immunotherapy, such as the inhibitory immune checkpoint receptors CTLA4 and TIGIT, which are known to be expressed on Tregs and have been shown to play a role in suppressing anti-tumor immune responses.


Subject(s)
CTLA-4 Antigen , Carcinoma, Pancreatic Ductal , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Receptors, Immunologic , Single-Cell Analysis , T-Lymphocytes, Regulatory , Tumor Microenvironment , Humans , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , T-Lymphocytes, Regulatory/immunology , CTLA-4 Antigen/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Single-Cell Analysis/methods , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Sequence Analysis, RNA , Gene Expression Profiling , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...