Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41.859
1.
Sci Rep ; 14(1): 10504, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714788

We compared cardiovascular parameters obtained with the Mobil-O-Graph and functional capacity assessed by the Duke Activity Status Index (DASI) before and after Heart Transplantation (HT) and also compared the cardiovascular parameters and the functional capacity of candidates for HT with a control group. Peripheral and central vascular pressures increased after surgery. Similar results were observed in cardiac output and pulse wave velocity. The significant increase in left ventricular ejection fraction (LVEF) postoperatively was not followed by an increase in the functional capacity. 24 candidates for HT and 24 controls were also compared. Functional capacity was significantly lower in the HT candidates compared to controls. Stroke volume, systolic, diastolic, and pulse pressure measured peripherally and centrally were lower in the HT candidates when compared to controls. Despite the significant increase in peripheral and central blood pressures after surgery, the patients were normotensive. The 143.85% increase in LVEF in the postoperative period was not able to positively affect functional capacity. Furthermore, the lower values of LVEF, systolic volume, central and peripheral arterial pressures in the candidates for HT are consistent with the characteristics signs of advanced heart failure, negatively impacting functional capacity, as observed by the lower DASI score.


Heart Transplantation , Pulse Wave Analysis , Stroke Volume , Humans , Heart Transplantation/methods , Male , Pilot Projects , Female , Middle Aged , Stroke Volume/physiology , Adult , Blood Pressure/physiology , Heart Failure/physiopathology , Heart Failure/surgery , Ventricular Function, Left/physiology , Aorta/surgery , Aorta/physiopathology , Cardiac Output/physiology
2.
Zhonghua Fu Chan Ke Za Zhi ; 59(5): 375-382, 2024 May 25.
Article Zh | MEDLINE | ID: mdl-38797567

Objective: To investigate the variation of reference ranges of hemodynamic parameters in normal pregnancy and their relation to maternal basic characteristics. Methods: A total of 598 healthy pregnant women who underwent regular prenatal examination at the Third Affiliated Hospital of Guangzhou Medical University from January to December 2023 were prospectively enrolled, and noninvasive hemodynamic monitors were used to detect changes in hemodynamic parameters of the pregnant women with the week of gestation, including cardiac output (CO), stroke volume (SV), thoracic fluid content (TFC), systemic vascular resistance (SVR), mean arterial pressure (MAP), and heart rate (HR). Relationships between hemodynamic parameters and maternal basic characteristics, including age, height, and weight, were analyzed using restricted cubic spline. Results: (1) CO (r=0.155, P<0.001), TFC (r=0.338, P<0.001), MAP (r=0.204, P<0.001), and HR (r=0.352, P<0.001) were positively correlated with the week of gestation, and SV was negatively correlated with the week of gestation (r=-0.158, P<0.001). There was no significant correlation between SVR and gestational age (r=-0.051, P=0.258). (2) CO exhibited a positive correlation with maternal height and weight (all P<0.001). The taller and heavier of pregnant women, the higher their CO. A linear relationship was observed between maternal weight and SV, MAP and HR (all P<0.01). As maternal weight increased, SV, MAP and HR showed an upward trend. Furthermore, there was an inverse association between maternal age and SVR (P<0.001). (3) There was a significant nonlinear association observed between TFC and body mass index during pregnancy (P<0.05). Additionally, a nonlinear relationship was found between SVR and MAP in relation to maternal age (all P<0.05). Notably, when the age exceeded 31 years old, there was an evident upward trend observed in both SVR and MAP. Conclusions: The hemodynamic parameters of normal pregnant women are influenced by their height, body weight, and age. It is advisable to maintain a reasonable weight during pregnancy and give birth at an appropriate age.


Cardiac Output , Heart Rate , Hemodynamics , Stroke Volume , Vascular Resistance , Humans , Female , Pregnancy , Cardiac Output/physiology , Stroke Volume/physiology , Vascular Resistance/physiology , Prospective Studies , Heart Rate/physiology , Gestational Age , Reference Values , Adult , Blood Pressure/physiology , Arterial Pressure/physiology , Body Weight
3.
Curr Opin Crit Care ; 30(3): 251-259, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38690954

PURPOSE OF REVIEW: To describe current and near future developments and applications of CO2 kinetics in clinical respiratory and cardiovascular monitoring. RECENT FINDINGS: In the last years, we have witnessed a renewed interest in CO2 kinetics in relation with a better understanding of volumetric capnography and its derived parameters. This together with technological advances and improved measurement systems have expanded the monitoring potential of CO2 kinetics including breath by breath continuous end-expiratory lung volume and continuous noninvasive cardiac output. Dead space has slowly been gaining relevance in clinical monitoring and prognostic evaluation. Easy to measure dead space surrogates such as the ventilatory ratio have demonstrated a strong prognostic value in patients with acute respiratory failure. SUMMARY: The kinetics of carbon dioxide describe many relevant physiological processes. The clinical introduction of new ways of assessing respiratory and circulatory efficiency based on advanced analysis of CO2 kinetics are paving the road to a long-desired goal in clinical monitoring of critically ill patients: the integration of respiratory and circulatory monitoring during mechanical ventilation.


Capnography , Carbon Dioxide , Humans , Carbon Dioxide/analysis , Capnography/methods , Monitoring, Physiologic/methods , Respiration, Artificial/methods , Kinetics , Cardiac Output/physiology , Biomarkers , Respiratory Dead Space/physiology
4.
J Physiol ; 602(10): 2227-2251, 2024 May.
Article En | MEDLINE | ID: mdl-38690610

Passive whole-body hyperthermia increases limb blood flow and cardiac output ( Q ̇ $\dot Q$ ), but the interplay between peripheral and central thermo-haemodynamic mechanisms remains unclear. Here we tested the hypothesis that local hyperthermia-induced alterations in peripheral blood flow and blood kinetic energy modulate flow to the heart and Q ̇ $\dot Q$ . Body temperatures, regional (leg, arm, head) and systemic haemodynamics, and left ventricular (LV) volumes and functions were assessed in eight healthy males during: (1) 3 h control (normothermic condition); (2) 3 h of single-leg heating; (3) 3 h of two-leg heating; and (4) 2.5 h of whole-body heating. Leg, forearm, and extracranial blood flow increased in close association with local rises in temperature while brain perfusion remained unchanged. Increases in blood velocity with small to no changes in the conduit artery diameter underpinned the augmented limb and extracranial perfusion. In all heating conditions, Q ̇ $\dot Q$ increased in association with proportional elevations in systemic vascular conductance, related to enhanced blood flow, blood velocity, vascular conductance and kinetic energy in the limbs and head (all R2 ≥ 0.803; P < 0.001), but not in the brain. LV systolic (end-systolic elastance and twist) and diastolic functional profiles (untwisting rate), pulmonary ventilation and systemic aerobic metabolism were only altered in whole-body heating. These findings substantiate the idea that local hyperthermia-induced selective alterations in peripheral blood flow modulate the magnitude of flow to the heart and Q ̇ $\dot Q$ through changes in blood velocity and kinetic energy. Localised heat-activated events in the peripheral circulation therefore affect the human heart's output. KEY POINTS: Local and whole-body hyperthermia increases limb and systemic perfusion, but the underlying peripheral and central heat-sensitive mechanisms are not fully established. Here we investigated the regional (leg, arm and head) and systemic haemodynamics (cardiac output: Q ̇ $\dot Q$ ) during passive single-leg, two-leg and whole-body hyperthermia to determine the contribution of peripheral and central thermosensitive factors in the control of human circulation. Single-leg, two-leg, and whole-body hyperthermia induced graded increases in leg blood flow and Q ̇ $\dot Q$ . Brain blood flow, however, remained unchanged in all conditions. Ventilation, extracranial blood flow and cardiac systolic and diastolic functions only increased during whole-body hyperthermia. The augmented Q ̇ $\dot Q$ with hyperthermia was tightly related to increased limb and head blood velocity, flow and kinetic energy. The findings indicate that local thermosensitive mechanisms modulate regional blood velocity, flow and kinetic energy, thereby controlling the magnitude of flow to the heart and thus the coupling of peripheral and central circulation during hyperthermia.


Cardiac Output , Hyperthermia , Humans , Male , Adult , Hyperthermia/physiopathology , Cardiac Output/physiology , Blood Flow Velocity/physiology , Regional Blood Flow/physiology , Fever/physiopathology , Young Adult , Hot Temperature , Hemodynamics
5.
PLoS One ; 19(5): e0298727, 2024.
Article En | MEDLINE | ID: mdl-38768104

Cardiac output (CO) is one of the primary prognostic factors evaluated during the follow-up of patients treated for pulmonary hypertension (PH). It is recommended that it be measured using the thermodilution technique during right heart catheterization. The difficulty to perform iterative invasive measurements on the same individual led us to consider a non-invasive option. The aims of the present study were to assess the agreement between CO values obtained using bioreactance (Starling™ SV) and thermodilution, and to evaluate the ability of the bioreactance monitor to detect patients whose CO decreased by more than 15% during follow-up and, accordingly, its usefulness for patient monitoring. A prospective cohort study evaluating the performance of the Starling™ SV monitor was conducted in patients with clinically stable PH. Sixty patients referred for hemodynamic assessment were included. CO was measured using both the thermodilution technique and bioreactance during two follow-up visits. A total of 60 PH patients were included. All datasets were available at the baseline visit (V0) and 50 of them were usable during the follow-up visit (V1). Median [IQR] CO was 4.20 l/min [3.60-4.70] when assessed by bioreactance, and 5.30 l/min [4.57-6.20] by thermodilution (p<0.001). The Spearman correlation coefficient was 0.51 [0.36-0.64], and the average deviation on Bland-Altman plot was -1.25 l/min (95% CI [-1.48-1.01], p<0.001). The ability of the monitor to detect a variation in CO of more than 15% between two follow-up measurements, when such variation existed using thermodilution, was insufficient for clinical practice (AUC = 0.54, 95% CI [0.33-0.75]).


Cardiac Output , Hypertension, Pulmonary , Thermodilution , Humans , Cardiac Output/physiology , Female , Male , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/diagnosis , Middle Aged , Thermodilution/methods , Follow-Up Studies , Prospective Studies , Aged , Reproducibility of Results , Monitoring, Physiologic/methods , Cardiac Catheterization , Adult
6.
BMC Anesthesiol ; 24(1): 187, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796436

PURPOSE: Oxygen delivery (DO2) and its monitoring are highlighted to aid postoperative goal directed therapy (GDT) to improve perioperative outcomes such as acute kidney injury (AKI) after high-risk cardiac surgeries associated with multiple morbidities and mortality. However, DO2 monitoring is neither routine nor done postoperatively, and current methods are invasive and only produce intermittent DO2 trends. Hence, we proposed a novel algorithm that simultaneously integrates cardiac output (CO), hemoglobin (Hb) and oxygen saturation (SpO2) from the Edwards Life Sciences ClearSight System® and Masimo SET Pulse CO-Oximetry® to produce a continuous, real-time DO2 trend. METHODS: Our algorithm was built systematically with 4 components - machine interface to draw data with PuTTY, data extraction with parsing, data synchronization, and real-time DO2 presentation using a graphic-user interface. Hb readings were validated. RESULTS: Our algorithm was implemented successfully in 93% (n = 57 out of 61) of our recruited cardiac surgical patients. DO2 trends and AKI were studied. CONCLUSION: We demonstrated a novel proof-of-concept and feasibility of continuous, real-time, non-invasive DO2 monitoring, with each patient serving as their own control. Our study also lays the foundation for future investigations aimed at identifying personalized critical DO2 thresholds and optimizing DO2 as an integral part of GDT to enhance outcomes in perioperative cardiac surgery.


Algorithms , Cardiac Surgical Procedures , Feasibility Studies , Oximetry , Oxygen , Humans , Cardiac Surgical Procedures/methods , Male , Female , Oxygen/metabolism , Oxygen/administration & dosage , Oxygen/blood , Oximetry/methods , Aged , Middle Aged , Proof of Concept Study , Acute Kidney Injury , Monitoring, Physiologic/methods , Cardiac Output/physiology , Hemoglobins/metabolism , Hemoglobins/analysis , Oxygen Saturation/physiology
7.
Medicina (Kaunas) ; 60(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38792934

The key objective in the hemodynamic treatment of septic shock is the optimization of tissue perfusion and oxygenation. This is usually achieved by the utilization of fluids, vasopressors, and inotropes. Dobutamine is the inotrope most commonly recommended and used for this purpose. Despite the fact that dobutamine was introduced almost half a century ago in the treatment of septic shock, and there is widespread use of the drug, several aspects of its pharmacodynamics remain poorly understood. In normal subjects, dobutamine increases contractility and lacks a direct effect on vascular tone. This results in augmented cardiac output and blood pressure, with reflex reduction in systemic vascular resistance. In septic shock, some experimental and clinical research suggest beneficial effects on systemic and regional perfusion. Nevertheless, other studies found heterogeneous and unpredictable effects with frequent side effects. In this narrative review, we discuss the pharmacodynamic characteristics of dobutamine and its physiologic actions in different settings, with special reference to septic shock. We discuss studies showing that dobutamine frequently induces tachycardia and vasodilation, without positive actions on contractility. Since untoward effects are often found and therapeutic benefits are occasional, its profile of efficacy and safety seems low. Therefore, we recommend that the use of dobutamine in septic shock should be cautious. Before a final decision about its prescription, efficacy, and tolerance should be evaluated throughout a short period with narrow monitoring of its wanted and side effects.


Cardiotonic Agents , Dobutamine , Shock, Septic , Humans , Cardiac Output/drug effects , Cardiotonic Agents/therapeutic use , Cardiotonic Agents/pharmacology , Dobutamine/therapeutic use , Dobutamine/pharmacology , Hemodynamics/drug effects , Shock, Septic/drug therapy , Shock, Septic/physiopathology , Animals
8.
Acta Biochim Pol ; 71: 12377, 2024.
Article En | MEDLINE | ID: mdl-38721303

Background: Goal-directed fluid therapy, as a crucial component of accelerated rehabilitation after surgery, plays a significant role in expediting postoperative recovery and enhancing the prognosis of major surgical procedures. Methods: In line with this, the present study aimed to investigate the impact of target-oriented fluid therapy on volume management during ERAS protocols specifically for gastrointestinal surgery. Patients undergoing gastrointestinal surgery at our hospital between October 2019 and May 2021 were selected as the sample population for this research. Results: 41 cases of gastrointestinal surgery patients were collected from our hospital over 3 recent years. Compared with T1, MAP levels were significantly increased from T2 to T5; cardiac output (CO) was significantly decreased from T2 to T3, and significantly increased from T4 to T5; and SV level was significantly increased from T3 to T5. Compared with T2, HR and cardiac index (CI) were significantly elevated at T1 and at T3-T5. Compared with T3, SVV was significantly decreased at T1, T2, T4, and T5; CO and stroke volume (SV) levels were increased significantly at T4 and T5. In this study, pressor drugs were taken for 23 days, PACU residence time was 40.22 ± 12.79 min, time to get out of bed was 12.41 ± 3.97 h, exhaust and defecation time was 18.11 ± 7.52 h, and length of postoperative hospital stay was 4.47 ± 1.98 days. The average HAMA score was 9.11 ± 2.37, CRP levels were 10.54 ± 3.38 mg/L, adrenaline levels were 132.87 ± 8.97 ng/L, and cortisol levels were 119.72 ± 4.08 ng/L. Prealbumin levels were 141.98 ± 10.99 mg/L at 3 d after surgery, and 164.17 ± 15.84 mg/L on the day of discharge. Lymphocyte count was 1.22 ± 0.18 (109/L) at 3 d after surgery, and 1.47 ± 0.17 (109/L) on the day of discharge. Serum albumin levels were 30.51 ± 2.28 (g/L) at 3 d after surgery, and 33.52 ± 2.07 (g/L) on the day of discharge. Conclusion: Goal-directed fluid therapy (GDFT) under the concept of Enhanced Recovery After Surgery (ERAS) is helpful in volume management during radical resection of colorectal tumors, with good postoperative recovery. Attention should be paid to the influence of pneumoperitoneum and intraoperative posture on GDFT parameters.


Digestive System Surgical Procedures , Fluid Therapy , Humans , Fluid Therapy/methods , Male , Female , Middle Aged , Digestive System Surgical Procedures/methods , Digestive System Surgical Procedures/rehabilitation , Aged , Enhanced Recovery After Surgery , Stroke Volume , Length of Stay/statistics & numerical data , Cardiac Output , Adult
9.
PLoS One ; 19(5): e0302793, 2024.
Article En | MEDLINE | ID: mdl-38739601

BACKGROUND: In cardiology, cardiac output (CO) is an important parameter for assessing cardiac function. While invasive thermodilution procedures are the gold standard for CO assessment, transthoracic Doppler echocardiography (TTE) has become the established method for routine CO assessment in daily clinical practice. However, a demand persists for non-invasive approaches, including oscillometric pulse wave analysis (PWA), to enhance the accuracy of CO estimation, reduce complications associated with invasive procedures, and facilitate its application in non-intensive care settings. Here, we aimed to compare the TTE and oscillometric PWA algorithm Antares for a non-invasive estimation of CO. METHODS: Non-invasive CO data obtained by two-dimensional TTE were compared with those from an oscillometric blood pressure device (custo med GmbH, Ottobrunn, Germany) using the integrated algorithm Antares (Redwave Medical GmbH, Jena, Germany). In total, 59 patients undergoing elective cardiac catheterization for clinical reasons (71±10 years old, 76% males) were included. Agreement between both CO measures were assessed by Bland-Altman analysis, Student's t-test, and Pearson correlations. RESULTS: The mean difference in CO was 0.04 ± 1.03 l/min (95% confidence interval for the mean difference: -0.23 to 0.30 l/min) for the overall group, with lower and upper limits of agreement at -1.98 and 2.05 l/min, respectively. There was no statistically significant difference in means between both CO measures (P = 0.785). Statistically significant correlations between TTE and Antares CO were observed in the entire cohort (r = 0.705, P<0.001) as well as in female (r = 0.802, P<0.001) and male patients (r = 0.669, P<0.001). CONCLUSIONS: The oscillometric PWA algorithm Antares and established TTE for a non-invasive estimation of CO are highly correlated in male and female patients, with no statistically significant difference between both approaches. Future validation studies of the Antares CO are necessary before a clinical application can be considered.


Algorithms , Cardiac Output , Echocardiography, Doppler , Pulse Wave Analysis , Humans , Male , Female , Cardiac Output/physiology , Aged , Pulse Wave Analysis/methods , Echocardiography, Doppler/methods , Middle Aged , Aged, 80 and over , Oscillometry/methods
10.
Physiol Rep ; 12(9): e16027, 2024 May.
Article En | MEDLINE | ID: mdl-38684421

Resistance breathing may restore cardiac output (CO) and cerebral blood flow (CBF) during hypovolemia. We assessed CBF and cerebral autoregulation (CA) during tilt, resistance breathing, and paced breathing in 10 healthy subjects. Blood velocities in the internal carotid artery (ICA), middle cerebral arteries (MCA, four subjects), and aorta were measured by Doppler ultrasound in 30° and 60° semi-recumbent positions. ICA blood flow and CO were calculated. Arterial blood pressure (ABP, Finometer), and end-tidal CO2 (ETCO2) were recorded. ICA blood flow response was assessed by mixed-models regression analysis. The synchronization index (SI) for the variable pairs ABP-ICA blood velocity, ABP-MCA velocities in 0.005-0.08 Hz frequency interval was calculated as a measure of CA. Passive tilting from 30° to 60° resulted in 12% decrease in CO (p = 0.001); ICA blood flow tended to fall (p = 0.04); Resistance breathing restored CO and ICA blood flow despite a 10% ETCO2 drop. ETCO2 and CO contributed to ICA blood flow variance (adjusted R2: 0.9, p < 0.0001). The median SI was low (<0.2) indicating intact CA, confirmed by surrogate date testing. The peak SI was transiently elevated during resistance breathing in the 60° position. Resistance breathing may transiently reduce CA efficiency. Paced breathing did not restore CO or ICA blood flow.


Cerebrovascular Circulation , Homeostasis , Humans , Male , Cerebrovascular Circulation/physiology , Homeostasis/physiology , Pilot Projects , Adult , Female , Blood Flow Velocity/physiology , Middle Cerebral Artery/physiology , Middle Cerebral Artery/diagnostic imaging , Cardiac Output/physiology , Healthy Volunteers , Carotid Artery, Internal/physiology , Carotid Artery, Internal/diagnostic imaging , Blood Pressure/physiology
11.
Am J Obstet Gynecol MFM ; 6(5): 101368, 2024 May.
Article En | MEDLINE | ID: mdl-38574856

BACKGROUND: Despite major advances in the pharmacologic treatment of hypertension in the nonpregnant population, treatments for hypertension in pregnancy have remained largely unchanged over the years. There is recent evidence that a more adequate control of maternal blood pressure is achieved when the first given antihypertensive drug is able to correct the underlying hemodynamic disorder of the mother besides normalizing the blood pressure values. OBJECTIVE: This study aimed to compare the blood pressure control in women receiving an appropriate or inappropriate antihypertensive therapy following the baseline hemodynamic findings. STUDY DESIGN: This was a prospective multicenter study that included a population of women with de novo diagnosis of hypertensive disorders of pregnancy. A noninvasive assessment of the following maternal parameters was performed on hospital admission via Ultrasound Cardiac Output Monitor before any antihypertensive therapy was given: cardiac output, heart rate, systemic vascular resistance, and stroke volume. The clinician who prescribed the antihypertensive therapy was blinded to the hemodynamic evaluation and used as first-line treatment a vasodilator (nifedipine or alpha methyldopa) or a beta-blocker (labetalol) based on his preferences or on the local protocols. The first-line pharmacologic treatment was retrospectively considered hemodynamically appropriate in either of the following circumstances: (1) women with a hypodynamic profile (defined as low cardiac output [≤5 L/min] and/or high systemic vascular resistance [≥1300 dynes/second/cm2]) who were administered oral nifedipine or alpha methyldopa and (2) women with a hyperdynamic profile (defined as normal or high cardiac output [>5 L/min] and/or low systemic vascular resistances [<1300 dynes/second/cm2]) who were administered oral labetalol. The primary outcome of the study was to compare the occurrence of severe hypertension between women treated with a hemodynamically appropriate therapy and women treated with an inappropriate therapy. RESULTS: A total of 152 women with hypertensive disorders of pregnancy were included in the final analysis. Most women displayed a hypodynamic profile (114 [75.0%]) and received a hemodynamically appropriate treatment (116 [76.3%]). The occurrence of severe hypertension before delivery was significantly lower in the group receiving an appropriate therapy than in the group receiving an inappropriately treated (6.0% vs 19.4%, respectively; P=.02). Moreover, the number of women who achieved target values of blood pressure within 48 to 72 hours from the treatment start was higher in the group who received an appropriate treatment than in the group who received an inappropriate treatment (70.7% vs 50.0%, respectively; P=.02). CONCLUSION: In pregnant individuals with de novo hypertensive disorders of pregnancy, a lower occurrence of severe hypertension was observed when the first-line antihypertensive agent was tailored to the correct maternal hemodynamic profile.


Antihypertensive Agents , Hemodynamics , Labetalol , Pre-Eclampsia , Humans , Female , Pregnancy , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/pharmacology , Antihypertensive Agents/administration & dosage , Prospective Studies , Adult , Hemodynamics/drug effects , Hemodynamics/physiology , Pre-Eclampsia/physiopathology , Pre-Eclampsia/drug therapy , Pre-Eclampsia/diagnosis , Labetalol/administration & dosage , Labetalol/pharmacology , Cardiac Output/drug effects , Cardiac Output/physiology , Nifedipine/pharmacology , Nifedipine/administration & dosage , Nifedipine/therapeutic use , Vascular Resistance/drug effects , Methyldopa/administration & dosage , Methyldopa/pharmacology , Methyldopa/therapeutic use , Blood Pressure/drug effects , Blood Pressure/physiology , Hypertension, Pregnancy-Induced/drug therapy , Hypertension, Pregnancy-Induced/physiopathology , Hypertension, Pregnancy-Induced/diagnosis , Treatment Outcome , Heart Rate/drug effects , Heart Rate/physiology , Stroke Volume/drug effects , Stroke Volume/physiology , Vasodilator Agents/administration & dosage , Vasodilator Agents/pharmacology , Vasodilator Agents/therapeutic use
12.
Article En | MEDLINE | ID: mdl-38673361

Adults who have had an amputation face barriers to having an active lifestyle which attenuates cardiorespiratory fitness. Prior studies in amputees typically involve treadmill walking or arm ergometry, yet physiological responses to bilateral leg cycling are less understood. This study assessed the hemodynamic and metabolic responses to moderate and vigorous cycle ergometry in men who have had a transtibial amputation (TTA). Five men who had had a unilateral TTA (age = 39 ± 15 yr) and six controls (CONs) without an amputation (age = 31 ± 11 yr) performed two 20 min bouts of cycling differing in intensity. Cardiac output (CO), stroke volume (SV), and oxygen consumption (VO2) were measured during moderate intensity continuous exercise (MICE) and high intensity interval exercise (HIIE) using thoracic impedance and indirect calorimetry. In response to MICE and HIIE, the HR and VO2 levels were similar (p > 0.05) between groups. Stroke volume and CO were higher (p < 0.05) in the CONs, which was attributed to their higher body mass. In men with TTAs, HIIE elicited a peak HR = 88%HRmax and substantial blood lactate accumulation, representing vigorous exercise intensity. No adverse events were exhibited in the men with TTAs. The men with TTAs show similar responses to MICE and HIIE versus the CONs.


Amputation, Surgical , Hemodynamics , Oxygen Consumption , Male , Humans , Adult , Middle Aged , Exercise Test , Young Adult , Tibia/surgery , Bicycling/physiology , Exercise/physiology , Cardiac Output/physiology
13.
Article En | MEDLINE | ID: mdl-38684395

PURPOSE: Goal-directed perfusion (GDP) refers to individualized goal-directed therapy using comprehensive monitoring and optimizing the delivery of oxygen during cardiopulmonary bypass (CPB). This study aims to determine whether the intraoperative GDP protocol method has better outcomes compared to conventional methods. METHODS: We searched the PubMed, Central, and Scopus databases up to October 12, 2023. We primarily examined the GDP protocol in adult cardiac surgery, using CPB with oxygen delivery index (DO2I) and cardiac index (CI) as the main parameters. RESULTS: In all, 1128 participants from seven studies were included in our analysis. The results showed significant differences in the duration of intensive care unit (ICU) stays (p = 0.01), with a mean difference of -0.33 (-0.59 to 0.07), and hospital length of stay (LOS) (p = 0.0002), with a mean difference of -0.84 (-1.29 to -0.39). There was also a notable reduction in postoperative complications (p <0.00001), odds ratio (OR) of 0.43 (0.32-0.60). However, there was no significant decrease in mortality rate (p = 0.54), OR of 0.77 (0.34-1.77). CONCLUSION: Postoperative acute kidney injury and ICU and hospital LOS are significantly reduced when GDP protocols with indicators of flow management, oxygen delivery index, and CI are used in intraoperative cardiac surgery using CPB.


Cardiac Surgical Procedures , Cardiopulmonary Bypass , Length of Stay , Humans , Cardiopulmonary Bypass/adverse effects , Treatment Outcome , Cardiac Surgical Procedures/adverse effects , Cardiac Surgical Procedures/mortality , Oxygen/blood , Postoperative Complications/etiology , Risk Factors , Male , Aged , Middle Aged , Intraoperative Care , Female , Time Factors , Monitoring, Intraoperative/methods , Predictive Value of Tests , Clinical Decision-Making , Cardiac Output
14.
Comput Methods Programs Biomed ; 250: 108191, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677079

BACKGROUND AND OBJECTIVE: Enhanced external counterpulsation (EECP) is a mechanically assisted circulation technique widely used in the rehabilitation and management of ischemic cardiovascular diseases. It contributes to cardiovascular functions by regulating the afterload of ventricle to improve hemodynamic effects, including increased diastolic blood pressure at aortic root, increased cardiac output and enhanced blood perfusion to multiple organs including coronary circulation. However, the effects of EECP on the coupling of the ventricle and the arterial system, termed ventricular-arterial coupling (VAC), remain elusive. We aimed to investigate the acute effect of EECP on the dynamic interaction between the left ventricle and its afterload of the arterial system from the perspective of ventricular output work. METHODS: A neural network assisted optimization algorithm was proposed to identify the ordinary differential equation (ODE) relation between aortic root blood pressure and flow rate. Based on the optimized order of ODE, a lumped parameter model (LPM) under EECP was developed taking into consideration of the simultaneous action of cardiac and EECP pressure sources. The ventricular output work, in terms of aortic pressure and flow rate cooperated with the LPM, was used to characterize the VAC of ventricle and its afterload. The VAC subjected to the principle of minimal ventricular output work was validated by solving the Euler-Poisson equation of cost function, ultimately determining the waveforms of aortic pressure and flow rate. RESULTS: A third-order ODE can precisely describe the hemodynamic relationship between aortic pressure and flow rate. An optimized dual-source LPM with three energy-storage elements has been constructed, showing the potential in probing VAC under EECP. The LPM simulation results demonstrated that the VAC in terms of aortic pressure and flow rate yielded to the minimal ventricular output work under different EECP pressures. CONCLUSIONS: The ventricular-arterial coupling under EECP is subjected to the minimal ventricular output work, which can serve as a criterion for determining aortic pressure and flow rate. This study provides insight for the understanding of VAC and has the potential in characterizing the performance of the ventricular and arterial system under EECP.


Algorithms , Counterpulsation , Heart Ventricles , Hemodynamics , Models, Cardiovascular , Humans , Counterpulsation/methods , Cardiac Output , Arteries/physiology , Blood Pressure , Computer Simulation , Aorta/physiology , Neural Networks, Computer
15.
J Am Heart Assoc ; 13(9): e033744, 2024 May 07.
Article En | MEDLINE | ID: mdl-38686853

BACKGROUND: The heart can metabolize the microbiota-derived short-chain fatty acid butyrate. Butyrate may have beneficial effects in heart failure, but the underlying mechanisms are unknown. We tested the hypothesis that butyrate elevates cardiac output by mechanisms involving direct stimulation of cardiac contractility and vasorelaxation in rats. METHODS AND RESULTS: We examined the effects of butyrate on (1) in vivo hemodynamics using parallel echocardiographic and invasive blood pressure measurements, (2) isolated perfused hearts in Langendorff systems under physiological conditions and after ischemia and reperfusion, and (3) isolated coronary arteries mounted in isometric wire myographs. We tested Na-butyrate added to injection solutions or physiological buffers and compared its effects with equimolar doses of NaCl. Butyrate at plasma concentrations of 0.56 mM increased cardiac output by 48.8±14.9%, stroke volume by 38.5±12.1%, and left ventricular ejection fraction by 39.6±6.2%, and lowered systemic vascular resistance by 33.5±6.4% without affecting blood pressure or heart rate in vivo. In the range between 0.1 and 5 mM, butyrate increased left ventricular systolic pressure by up to 23.7±3.4% in isolated perfused hearts and by 9.4±2.9% following ischemia and reperfusion, while reducing myocardial infarct size by 81.7±16.9%. Butyrate relaxed isolated coronary septal arteries concentration dependently with an EC50=0.57 mM (95% CI, 0.23-1.44). CONCLUSIONS: We conclude that butyrate elevates cardiac output through mechanisms involving increased cardiac contractility and vasorelaxation. This effect of butyrate was not associated with adverse myocardial injury in damaged hearts exposed to ischemia and reperfusion.


Butyrates , Cardiotonic Agents , Myocardial Contraction , Vasodilation , Vasodilator Agents , Ventricular Function, Left , Animals , Male , Myocardial Contraction/drug effects , Ventricular Function, Left/drug effects , Vasodilation/drug effects , Cardiotonic Agents/pharmacology , Butyrates/pharmacology , Vasodilator Agents/pharmacology , Isolated Heart Preparation , Rats , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Cardiac Output/drug effects , Stroke Volume/drug effects , Rats, Wistar , Coronary Vessels/drug effects , Coronary Vessels/physiopathology , Dose-Response Relationship, Drug , Disease Models, Animal , Rats, Sprague-Dawley
16.
J Appl Physiol (1985) ; 136(5): 1276-1283, 2024 May 01.
Article En | MEDLINE | ID: mdl-38602000

In patients with chronic obstructive pulmonary disease (COPD), pulmonary vascular dysfunction and destruction are observable before the onset of detectable emphysema, but it is unknown whether this is associated with central hypovolemia. We investigated if patients with COPD have reduced pulmonary blood volume (PBV) evaluated by 82Rb-positron emission tomography (PET) at rest and during adenosine-induced hyperemia. This single-center retrospective cohort study assessed 6,301 82Rb-PET myocardial perfusion imaging (MPI) examinations performed over a 6-yr period. We compared 77 patients with COPD with 44 healthy kidney donors (controls). Cardiac output ([Formula: see text]) and mean 82Rb bolus transit time (MBTT) were used to calculate PBV. [Formula: see text] was similar at rest (COPD: 3,649 ± 120 mL vs. control: 3,891 ± 160 mL, P = 0.368) but lower in patients with COPD compared with controls during adenosine infusion (COPD: 5,432 ± 124 mL vs. control: 6,185 ± 161 mL, P < 0.050). MBTT was shorter in patients with COPD compared with controls at rest (COPD: 8.7 ± 0.28 s vs. control: 11.4 ± 0.37 s, P < 0.001) and during adenosine infusion (COPD: 9.2 ± 0.28 s vs. control: 10.2 ± 0.37 s, P < 0.014). PBV was lower in patients with COPD, even after adjustment for body surface area, sex, and age at rest [COPD: 530 (29) mL vs. 708 (38) mL, P < 0.001] and during adenosine infusion [COPD: 826 (29) mL vs. 1,044 (38) mL, P < 0.001]. In conclusion, patients with COPD show evidence of central hypovolemia, but it remains to be determined whether this has any diagnostic or prognostic impact.NEW & NOTEWORTHY The present study demonstrated that patients with chronic obstructive pulmonary disease (COPD) exhibit central hypovolemia compared with healthy controls. Pulmonary blood volume may thus be a relevant physiological and/or clinical outcome measure in future COPD studies.


Blood Volume , Positron-Emission Tomography , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Male , Female , Retrospective Studies , Middle Aged , Aged , Blood Volume/physiology , Positron-Emission Tomography/methods , Lung/physiopathology , Lung/diagnostic imaging , Rubidium Radioisotopes , Myocardial Perfusion Imaging/methods , Adenosine/administration & dosage , Cardiac Output/physiology
20.
Physiol Rep ; 12(6): e15979, 2024 Mar.
Article En | MEDLINE | ID: mdl-38490814

Postural orthostatic tachycardia syndrome (POTS) is characterized by an excessive heart rate (HR) response upon standing and symptoms indicative of inadequate cerebral perfusion. We tested the hypothesis that during lower body negative pressure (LBNP), individuals with POTS would have larger decreases in cardiac and cerebrovascular function measured using magnetic resonance (MR) imaging. Eleven patients with POTS and 10 healthy controls were studied at rest and during 20 min of -25 mmHg LBNP. Biventricular volumes, stroke volume (SV), cardiac output (Qc), and HR were determined by cardiac MR. Cerebral oxygen uptake (VO2 ) in the superior sagittal sinus was calculated from cerebral blood flow (CBF; MR phase contrast), venous O2 saturation (SvO2 ; susceptometry-based oximetry), and arterial O2 saturation (pulse oximeter). Regional cerebral perfusion was determined using arterial spin labelling. HR increased in response to LBNP (p < 0.001) with no group differences (HC: +9 ± 8 bpm; POTS: +13 ± 11 bpm; p = 0.35). Biventricular volumes, SV, and Qc decreased during LBNP (p < 0.001). CBF and SvO2 decreased with LBNP (p = 0.01 and 0.03, respectively) but not cerebral VO2 (effect of LBNP: p = 0.28; HC: -0.2 ± 3.7 mL/min; POTS: +1.1 ± 2.0 mL/min; p = 0.33 between groups). Regional cerebral perfusion decreased during LBNP (p < 0.001) but was not different between groups. These data suggest patients with POTS have preserved cardiac and cerebrovascular function.


Postural Orthostatic Tachycardia Syndrome , Humans , Postural Orthostatic Tachycardia Syndrome/diagnostic imaging , Lower Body Negative Pressure , Cardiac Output/physiology , Cerebrovascular Circulation/physiology , Heart Rate/physiology , Blood Pressure/physiology
...