Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 526
Filter
1.
An Acad Bras Cienc ; 96(suppl 1): e20240350, 2024.
Article in English | MEDLINE | ID: mdl-39109699

ABSTRACT

The current study aims at using non-hatchable artemia eggs of local origin and making use of these eggs by decapsulating and presenting them as food for the larvae of the Cyprinus carpio as a source of animal protein with high nutritional value instead of throwing them away. The results showed that the second parameter (A2) was highly significant at the level (P≤0.05) in the growth rates of the larvae that were fed on decapsulated artemia eggs alone, and it was better than the two control parameters (A1), in which the larvae were fed with feed designated for Cyprinus carpio fish. It also outperformed the third parameter (A3), in which the feed was mixed with artemia eggs with 50% decapsulation, which also outperformed the control parameter with high significance at the same level (P≤0.05).


Subject(s)
Animal Feed , Artemia , Carps , Larva , Animals , Carps/growth & development , Larva/growth & development , Aquaculture/methods
2.
PLoS One ; 19(8): e0308761, 2024.
Article in English | MEDLINE | ID: mdl-39133684

ABSTRACT

This study was conducted to investigate the effects of selenium nanoparticle (Se-NP) supplementation on the growth performance, carcass composition, antioxidant status, hepatic enzyme activities, and immunity of Cirrhinus mrigala. For this purpose, fish with an average initial weight of 7.44 ± 0.04 g were fed five experimental diets containing 0 (control), 0.25, 0.5, 1, and 2 mg kg-1 Se-NPs diets for 90 days. The analysed selenium (Se) contents of the diets were 0.35, 0.64, 0.92, 1.43, and 2.39 mg kg-1. Twenty five fish were randomly distributed in each of 5 aquarium (36 × 23.7 × 24.3 inches) in triplicate. The results showed that supplementation with Se up to 0.92 mg/kg significantly increased (p<0.05) weight gain, weight gain% (WG%), and specific growth rate (SGR) by 34%, 33%, and 16%, respectively, compared to the control diet. Dietary Se concentrations up to 0.92 mg/kg significantly increased the crude protein and crude fat and reduced (p<0.05) the moisture content as compared to the control group. Fish fed 0.92 mg kg-1 Se had significantly lower malondialdehyde (MDA) contents and higher activities of catalase, superoxide dismutase, and glutathione peroxidase in liver and serum as compared to other experimental diets. Moreover, a significant increase (p<0.05) in the level of serum immunoglobulin and lysozyme (LYZ) activity was recorded in fish fed 0.92 mg/kg Se diet. Moreover, the highest (p<0.05) values of aspartate transaminase (AST) and alanine transaminase (ALT) were recorded in fish fed 2.39 mg/kg Se level. However, serum alkaline phosphatase (ALP) activity remained unaffected by dietary treatment. Broken-line regression analysis indicated that 0.83 mg/kg Se is required for the optimum growth performance of C. mrigala.


Subject(s)
Antioxidants , Dietary Supplements , Liver , Selenium , Animals , Selenium/pharmacology , Liver/drug effects , Liver/metabolism , Antioxidants/metabolism , Nanoparticles , Animal Feed/analysis , Diet/veterinary , Carps/growth & development , Carps/metabolism , Carps/immunology
3.
Int J Biol Macromol ; 277(Pt 2): 134346, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094883

ABSTRACT

To date, although the high-carbohydrate (HC) feed has been extensively adopted in the aquaculture industry, its effects on the intestinal function and development of aquatic animals still remain unclear. In addition, the corresponding nutritional intervention is still barely reported. This study aimed to evaluate the influence of xylooligosaccharides (XOS) on the intestinal health of Megalobrama amblycephala subjected to a HC feeding. Fish (average weight: 44.55 ± 0.15 g) were randomly offered 3 diets, including a control one (29 % carbohydrate), a HC one (41 % carbohydrate), and a XOS supplemented one (HC + 1.0 % XOS, HCX) respectively for 12 weeks. The HC feeding caused morphological abnormalities of intestine, an increased intestinal permeability, and the intestinal immunosuppression, all of which were markedly reversed by XOS administration. In addition, compared with the HC group, HCX feeding remarkably promoted the intestinal activities of digestive and brush border enzymes, and the expressions of cell proliferation-related proteins (Wnt10b and Cyclin D1). The 16s rDNA sequencing also revealed that XOS administration increased the abundance of beneficial bacteria, and decreased that of pathogenic ones. In conclusion, dietary supplementation of XOS improved the intestinal histomorphology, barrier function, cell proliferation and bacterial communities of carbohydrate-overloaded fish Megalobrama amblycephala.


Subject(s)
Carps , Gastrointestinal Microbiome , Glucuronates , Intestines , Oligosaccharides , Animals , Gastrointestinal Microbiome/drug effects , Oligosaccharides/pharmacology , Glucuronates/pharmacology , Carps/microbiology , Carps/growth & development , Intestines/drug effects , Intestines/pathology , Intestines/microbiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Animal Feed , Dietary Carbohydrates/pharmacology , Dietary Carbohydrates/adverse effects , Dietary Supplements
4.
Article in English | MEDLINE | ID: mdl-38987002

ABSTRACT

The effects and underlying mechanisms of metformin which can improve glucose homeostasis of fish have rarely been explored. This experiment aimed to explore the influence of metformin on growth performance, body composition, liver health, hepatic glucolipid metabolic capacity and IR/PI3K/AKT pathway in grass carp (Ctenopharyngodon idella) fed high-carbohydrate diets. A normal diet (Control) and high carbohydrate diets with metformin supplementation (0.00 %, 0.20 %, 0.40 %, 0.60 % and 0.80 %) were configured. Six groups of healthy fish were fed with the experimental diet for eight weeks. The results showed that the growth performance of grass carp was impaired in high carbohydrate diet. Impairment of IR/PI3K/AKT signalling pathway reduced insulin sensitivity, while hepatic oxidative stress damage and decreased immunity affected liver metabolic function. The glycolysis and lipolysis decrease while the gluconeogenesis and fat synthesis increase, which triggers hyperglycaemia and lipid deposition in the body. Metformin supplementation restored the growth performance of grass carp. Metformin improved IR/PI3K/AKT pathway signalling and alleviated insulin resistance, while liver antioxidant capacity and immunity were enhanced resulting in the restoration of liver health. The elevation of glycolysis and lipolysis maintains glycaemic homeostasis and reduces lipid deposition, respectively. These results suggest that metformin supplementation restores liver health and activates the IR/PI3K/AKT signalling pathway, ameliorating insulin resistance and glucose-lipid metabolism disorders caused by a high-carbohydrate diet. As judged by HOMA-IR, the optimum supplementation level of metformin in grass carp (C. idella) fed a high-carbohydrate diet is 0.67 %.


Subject(s)
Carps , Insulin Resistance , Lipid Metabolism , Liver , Metformin , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Carps/metabolism , Carps/growth & development , Metformin/pharmacology , Liver/metabolism , Liver/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Lipid Metabolism/drug effects , Animal Feed/analysis , Hypoglycemic Agents/pharmacology , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/adverse effects
5.
Int J Biol Macromol ; 275(Pt 2): 133711, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977043

ABSTRACT

Ginger polysaccharides (GP) promote growth and development in fish. However, the effects of GP on crucian carp remain unclear. The present study investigated the effects of GP on the growth performance, immunity, intestinal microbiota, and disease resistance in crucian carp. Four treatment groups were established with different concentrations of GP (0.1 %, 0.2 %, 0.4 %, and 0.8 %). GP was not added as the control group, and the feeding period lasted for 56 d, followed by a 96-h anti-infection treatment using Aeromonas hydrophila. The results showed that dietary GP significantly improved growth performance, especially in the 0.4 % GP group. Furthermore, GP administration notably increased serum lysozyme (LMZ) activity, digestive enzyme performance, and antioxidant capacity of crucian carp. Moreover, dietary inclusion of GP up-regulated the expression of tumour necrosis factor-α (TNF-α), interleukin-8 (IL-8), interferon-γ (IFN-γ), and nuclear factor kappa-B (NF-κB) genes while down-regulating IL-10 and transforming growth factor-ß (TGF-ß) gene expressions, thus promoting liver health in crucian carp. Additionally, incorporating GP into the diet regulated both the diversity and composition of the intestinal microbiota in crucian carp, explicitly enhancing the relative abundance of beneficial bacteria, such as Fusobacteriota and Firmicutes. Therefore, GP reduces the mortality of crucian carp infected with A. hydrophila. In conclusion, this study provides novel insights into the application of dietary GP in cultured fish and evaluates the value of traditional Chinese medicinal polysaccharides against pathogenic bacteria.


Subject(s)
Aeromonas hydrophila , Antioxidants , Carps , Disease Resistance , Fish Diseases , Gastrointestinal Microbiome , Polysaccharides , Zingiber officinale , Animals , Aeromonas hydrophila/drug effects , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Disease Resistance/drug effects , Antioxidants/pharmacology , Fish Diseases/microbiology , Fish Diseases/immunology , Zingiber officinale/chemistry , Carps/growth & development , Carps/immunology , Carps/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/drug therapy , Dietary Supplements , Animal Feed
6.
Environ Microbiol Rep ; 16(3): e13262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725141

ABSTRACT

Common carp (Cyprinus carpio) were fed food with different protein concentrations following different feeding regimes, which were previously shown to affect growth, nitrogen excretion and amino acid catabolism. 16S rRNA gene amplicon sequencing was performed to investigate the gut microbiota of these fish. Lower dietary protein content increased microbial richness, while the combination of demand feeding and dietary protein content affected the composition of the gut microbiota. Hepatic glutamate dehydrogenase (GDH) activity was correlated to the composition of the gut microbiota in all dietary treatments. We found that demand-fed carp fed a diet containing 39% protein had a significantly higher abundance of Beijerinckiaceae compared to other dietary groups. Network analysis identified this family and two Rhizobiales families as hubs in the microbial association network. In demand-fed carp, the microbial association network had significantly fewer connections than in batch-fed carp. In contrast to the large effects of the feeding regime and protein content of the food on growth and nitrogen metabolism, it had only limited effects on gut microbiota composition. However, correlations between gut microbiota composition and liver GDH activity showed that host physiology and gut microbiota are connected, which warrants functional studies into the role of the gut microbiota in fish physiology.


Subject(s)
Animal Feed , Bacteria , Carps , Dietary Proteins , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Carps/microbiology , Carps/growth & development , Animal Feed/analysis , RNA, Ribosomal, 16S/genetics , Dietary Proteins/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/genetics , Nitrogen/metabolism , Liver/metabolism , Phylogeny , Diet/veterinary
7.
Mol Reprod Dev ; 91(5): e23744, 2024 May.
Article in English | MEDLINE | ID: mdl-38800960

ABSTRACT

This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role. This hormonal symphony was further amplified by increased activity of key transcriptional regulators (gata1, gata2, cdx1, sp1, n-myc, hoxc8, plc, tac3, tacr3) and decreased expression of delayed puberty genes (mkrn1, dlk1). In contrast, short days (SD) muted this hormonal chorus, with decreased gnrh gene and regulator expression, elevated mtnr1a, and suppressed gonadal development. In in-vitro, estradiol mimicked the LD effect, boosting gnrh and regulator genes while dampening mtnr1a and melatonin-responsive genes. Conversely, melatonin acted as a conductor, downregulating gnrh and regulator genes and amplifying mtnr1a. Our findings illuminate the crucial roles of melatonin and kisspeptin as opposing forces in regulating pubertal timing. LD-induced melatonin suppression allows the kisspeptin symphony to flourish, triggering GnRH release and, ultimately, gonadal maturation. This delicate dance between photoperiod, melatonin, and kisspeptin orchestrates common carp's transition from juvenile to reproductive life.


Subject(s)
Carps , Kisspeptins , Melatonin , Photoperiod , Sexual Maturation , Animals , Melatonin/metabolism , Kisspeptins/metabolism , Kisspeptins/genetics , Female , Carps/metabolism , Carps/genetics , Carps/growth & development , Carps/physiology , Sexual Maturation/physiology , Fish Proteins/metabolism , Fish Proteins/genetics
8.
Article in English | MEDLINE | ID: mdl-38759883

ABSTRACT

In this study, grass carp (33.28 ± 0.05 g) were fed three diets for 8 weeks: control (crude protein [CP] 30%, crude lipid [CL] 6%), low protein (LP; CP16%, CL6%), and low protein with high-fat (LPHF; CP16%, CL10%). The final body weight decreased in the LP and LPHF groups compared to the Control (P < 0.05). Liver triglycerides, total cholesterol, and nonesterified fatty acids were higher in the LP group than the Control, whereas these indexes in the LPHF group were higher than those in the LP group (P < 0.05). The LP group had intestinal barrier damage, while the LPHF group had a slight recovery. TNF-α, IL-8, and IL-1ß content were lower in the LP group than in the Control (P < 0.05), and even higher in the LPHF group (P < 0.05). The expressions of endoplasmic reticulum stress-related genes Activating transcription factor 6 (ATF-6) and Glucose-regulated protein (GRP78) were higher in the LPHF group against the LP group (P < 0.05). The IL-1ß and TNF-α content negatively correlated with intestinal Actinomycetes and Mycobacterium abundance (P < 0.05). The muscle fiber diameter was smaller in both the LP and LPHF groups than the control (P < 0.05), with the LP group showing metabolites related to protein digestion and absorption, and LPHF group exhibiting metabolites related to taste transmission. The results demonstrate reducing dietary protein affects growth, causing liver lipid accumulation, reduced enteritis response, and increased muscle tightness, while increasing fat content accelerates fat accumulation and inflammation.


Subject(s)
Animal Feed , Carps , Liver , Animals , Carps/metabolism , Carps/growth & development , Carps/physiology , Animal Feed/analysis , Liver/metabolism , Liver/drug effects , Dietary Proteins/pharmacology , Fish Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Intestines/drug effects , Intestines/physiology
9.
Fish Shellfish Immunol ; 149: 109547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593522

ABSTRACT

Heat-killed probiotics offer an alternative approach to enhance growth and disease resistance in farmed fish. In this study, we isolated Lactiplantibacillus plantarum VSG3 from the gut of Labeo rohita to investigate the effects of heat-killed L. plantarum (HK-LP) on the health and growth performance of Cyprinus carpio fingerlings. Different concentrations of HK-LP (0, 50, 100, 200, 300, and 400 mg/kg) were administered to the fish, followed by a challenge with Aeromonas hydrophila after 8 weeks of feeding. Notably, the LP200 group exhibited significantly improved percentage weight gain and specific growth rate, accompanied by the lowest feed conversion ratio. Post-challenge survival rates were considerably enhanced in the LP200 group, reaching 60.65%. Moreover, serum analysis indicated significantly higher levels of total protein and albumin in the LP200 group than in the control group. Although HK-LP had no substantial impact on certain serum parameters (glucose, total cholesterol, cortisol, and alanine aminotransferase), aspartate aminotransferase levels were considerably low in the LP200 group. Intestinal protease and trypsin activities significantly increased in the LP200 group, while no significant changes were observed in lipase and amylase activities post-pathogen challenge. Serum immunological indices, including lysozyme, alternative complement pathway, and phagocytic activity, improved considerably in the LP200 group. Additionally, serum antioxidant enzyme activities (superoxide dismutase [SOD], glutathione peroxidase [GPx], catalase [CAT], and myeloperoxidase) were significantly elevated in the LP200 group, while malondialdehyde level was reduced. Gene expression analysis in liver tissue indicated strong upregulation of antioxidant-related genes (SOD, CAT, nuclear factor erythroid 2 [NFE2]-related factor 2 [Nrf2], Kelch-like ECH-associated protein 1[Keap1]) in the LP100 and LP200 groups. Pro-inflammatory cytokines (IL-1ß and TNF-α) were considerably downregulated in the kidneys of the LP200 post-challenged fish, although the anti-inflammatory cytokine IL-10 showed an increased expression. Quadratic regression analysis identified the optimal dietary HK-LP level for maximizing growth and immune performance (200.381-270.003 mg/kg). In summary, our findings underscore the potential of HK-LP as a valuable dietary supplement for enhancing carp aquaculture, particularly at the appropriate concentration.


Subject(s)
Aeromonas hydrophila , Animal Feed , Antioxidants , Carps , Diet , Fish Diseases , Gram-Negative Bacterial Infections , Probiotics , Animals , Probiotics/administration & dosage , Probiotics/pharmacology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Carps/immunology , Carps/growth & development , Animal Feed/analysis , Fish Diseases/immunology , Diet/veterinary , Aeromonas hydrophila/physiology , Antioxidants/metabolism , Immunity, Innate , Lactobacillus plantarum/chemistry , Hot Temperature , Gene Expression , Dietary Supplements/analysis , Random Allocation , Disease Resistance
10.
Fish Shellfish Immunol ; 149: 109573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636742

ABSTRACT

This research elucidates the potential of Lycium barbarum residue (LBR), a by-product rich in bioactive substances, as a dietary supplement in aquaculture, especially for herbivorous fish like grass carp. In a detailed 120-day feeding trial, the impacts of varying LBR levels on juvenile grass carp were assessed, focusing on growth performance, survival rate, biochemical markers, and liver health. The study identified a 6% inclusion rate of LBR as optimal for enhancing survival and growth while mitigating hepatic lipid accumulation. Composition analysis of this diet revealed high concentrations of polysaccharides and flavonoids. Notably, the intake of LBR was found to enhance the antioxidant and immune-related enzymatic activities in the liver. Furthermore, it contributed to a reduction in hepatic fat deposition by decreasing the levels of triglycerides (TG) and total cholesterol (T-CHO) both in the liver and serum. Transcriptomic analysis of the liver highlighted LBR's substantial influence on lipid metabolism pathways, including the PPAR signaling pathway, primary bile acid biosynthesis, cholesterol metabolism, bile secretion, fat digestion and absorption, fatty acid degradation and fatty acid biosynthesis. Further, the expression level of genes pinpointed significant downregulation of fasn and dgat2, alongside upregulation of genes like pparda, cpt1b, cpt1ab and abca1b, in response to LBR supplementation. Overall, the findings present LBR as a promising enhancer of growth and survival in grass carp, with significant benefits in promoting fat metabolism and liver health, offering valuable insights for aquacultural nutrition strategies.


Subject(s)
Animal Feed , Carps , Diet , Dietary Supplements , Liver , Animals , Carps/growth & development , Carps/immunology , Animal Feed/analysis , Liver/metabolism , Dietary Supplements/analysis , Diet/veterinary , Lipid Metabolism/drug effects , Lycium/chemistry
11.
Fish Physiol Biochem ; 50(4): 1375-1389, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38635145

ABSTRACT

Formulation and preparation of larval feed according to the requirement of Indian major carp is a prerequisite for improving the survival (%) and growth during early developmental stages. A feeding trial of 50 days in a replicate of five was conducted to determine the optimal inclusion levels of fish oil (lipid) in the larval diet of Labeo rohita. Four isonitrogenous (50% CP) nanoparticulate diets with four lipid inclusion levels, L5 (5%), L7 (7%), L9 (9%), and L11 (11%) were prepared and fed to four groups of rohu (Labeo rohita) larvae. At the end of feeding trial, survival (%), growth performance, digestive enzyme activity, gut morphology, and expression of growth and feed intake genes were evaluated. All pairwise comparisons among groups indicated higher growth performance (weight gain, specific growth rate, and daily weight gain), survival (%), and IGF-1 gene expression of the L9 group followed by the L7 while the L11 showed poor performance even less than L5. All studied intestinal enzymes except amylase showed a similar trend. Amylase showed comparable results among L7, L9, and L5, while L11 showed the lowest value. The intestinal villi length also showed higher values in L9 followed by L7, and lowest in the L11 group. Feed intake regulating genes, leptin showed lipid inclusion level upregulation, while ghrelin showed the highest expression in the L9 group. Based on growth performance, gut morphology, intestinal enzyme activity, and gene expression analysis, 9% dietary lipid could be recommended to ensure the optimum growth and survival of L. rohita larvae.


Subject(s)
Animal Feed , Cyprinidae , Diet , Larva , Animals , Larva/growth & development , Diet/veterinary , Animal Feed/analysis , Cyprinidae/growth & development , Animal Nutritional Physiological Phenomena , Carps/growth & development , Carps/metabolism
12.
Food Chem ; 450: 139280, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631209

ABSTRACT

To enhance market demand and fish utilization, cutting processing is essential for fish. Bighead carp were cut into four primary cuts: head, dorsal, belly, and tail, collectively accounting for 77.03% of the fish's total weight. These cuts were refrigerated at 4 °C for 10 days, during which the muscle from each cut was analyzed. Pseudomonas.fragi proliferated most rapidly and was most abundant in eye muscle (EM), while Aeromonas.sobria showed similar growth patterns in tail muscle (TM). Notably, EM exhibited the highest rate of fat oxidation. TM experienced the most rapid protein degradation. Furthermore, to facilitate the cutting applied in mechanical processing, a machine vision-based algorithm was developed. This algorithm utilized color threshold and morphological parameters to segment image background and divide bighead carp region. Consequently, each cut of bighead carp had a different storage quality and the machine vision-based algorithm proved effective for processing bighead carp.


Subject(s)
Algorithms , Carps , Food Storage , Seafood , Carps/growth & development , Animals , Seafood/analysis , Pseudomonas/growth & development , Aeromonas/growth & development
13.
Genomics ; 116(3): 110832, 2024 05.
Article in English | MEDLINE | ID: mdl-38518898

ABSTRACT

GCN2-eIF2α signaling pathway plays crucial roles in cell growth,development, and protein synthesis. However, in polyploid fish, the function of this pathway is rarely understood. In this study, genes associated with the GCN2-eIF2α pathway (pkr, pek, gcn2, eif2α) are founded lower expression levels in the triploid crucian carp (3nCC) muscle compared to that of the red crucian carp (RCC). In muscle effect stage embryos of the 3nCC, the mRNA levels of this pathway genes are generally lower than those of RCC, excluding hri and fgf21. Inhibiting gcn2 in 3nCC embryos downregulates downstream gene expression (eif2α, atf4, fgf21), accelerating embryonic development. In contrast, overexpressing of eif2α can alter the expression levels of downstream genes (atf4 and fgf21), and decelerates the embryonic development. These results demonstrate the GCN2-eIF2α pathway's regulatory impact on 3nCC growth, advancing understanding of fish rapid growth genetics and offering useful molecular markers for breeding of excellent strains.


Subject(s)
Carps , Eukaryotic Initiation Factor-2 , Fish Proteins , Signal Transduction , Animals , Carps/genetics , Carps/metabolism , Carps/growth & development , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Triploidy , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Gene Expression Regulation, Developmental , Embryonic Development/genetics
14.
Fish Physiol Biochem ; 50(3): 1189-1203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427282

ABSTRACT

Vitamin D3 (VD3) is an essential nutrient for fish and participates in a variety of physiological activities. Notably, both insufficient and excessive supplementation of VD3 severely impede fish growth, and the requirements of VD3 for fish vary considerably in different species and growth periods. The present study aimed to evaluate the appropriate requirements of VD3 for juvenile grass carp (Ctenopharyngodon idella) according to growth performance and disease prevention capacity. In this study, diets containing six supplemental levels of VD3 (0, 300, 600, 1200, 2400, and 4800 IU/kg diet) were formulated to investigate the effect(s) of VD3 on the growth performance, antioxidant enzyme activities, and antimicrobial ability in juvenile grass carp. Compared with the VD3 deficiency group (0 IU/kg), the supplementation of 300-2400 IU/kg VD3 significantly enhanced growth performance and increased antioxidant enzyme activities in the fish liver. Moreover, dietary supplementation of VD3 significantly improved the intestinal health by manipulating the composition of intestinal microbiota in juvenile grass carp. In agreement with this notion, the mortality of juvenile grass carp fed with dietary VD3 was much lower than that in VD3 deficient group upon infection with Aeromonas hydrophila. Meanwhile, dietary supplementation of 300-2400 IU/kg VD3 reduced bacterial load in the spleen and head kidney of the infected fish, and 1200 IU/kg VD3 supplementation could decrease enteritis morbidity and increase lysozyme activities in the intestine. These findings strengthened the essential role of dietary VD3 in managing fish growth and antimicrobial capacity. Additionally, based on weight gain ratio and lysozyme activities, the appropriate VD3 requirements for juvenile grass carp were estimated to be 1994.80 and 2321.80 IU/kg diet, respectively.


Subject(s)
Aeromonas hydrophila , Animal Feed , Carps , Diet , Dietary Supplements , Disease Resistance , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Carps/growth & development , Fish Diseases/prevention & control , Diet/veterinary , Disease Resistance/drug effects , Gram-Negative Bacterial Infections/veterinary , Animal Feed/analysis , Vitamin D/administration & dosage , Vitamin D/pharmacology , Gastrointestinal Microbiome/drug effects , Liver/metabolism , Liver/drug effects
15.
Braz. j. biol ; 83: 1-8, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468836

ABSTRACT

Fishmeal; being a limited and costly feed ingredient is continuously been substituted with locally available plant proteins. However, the occurrence of anti-nutritional factors in plant meal suppresses its potential to be fully replaced. Therefore, in this study we aimed to study the synergistic effects of dietary additives like citric acid and phytase enzyme supplementation on growth performance and nutrient digestibility of Cirrhinus mrigala fingerlings. Canola meal (CM) was used as a test ingredient to replace fishmeal (FM) as; 0%, 25%, 50% and 75%. These four diets were further supplemented by varying levels of phytase (0 and 750 FTU kg-1) and citric acid (0% and 2.5%) to formulate total sixteen test diets as T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15 and T16. Each treatment contained three replicates; applied to fish groups having 15 fingerlings each; following 3×3 factorial arrangement. 1% of chromic oxide was added as an inert marker. Maximum weight gain% (288%) and the lowest value of FCR (1.07) were recorded when fish was fed on diet T12 as compared to fish fed control diet (T1). Similarly, optimum nutrient digestibility values such as crude protein (77%), crude fat (84%) and gross energy (70%) were noted on same level. It was concluded that 50% canola meal can optimally replace fishmeal when supplemented with phytase and citric acid at the levels of 750 FTU kg-¹ and 2.5%, respectively.


A farinha de peixe, por ser um ingrediente alimentar limitado e caro, é continuamente substituída por proteínas vegetais disponíveis localmente. No entanto, a ocorrência de fatores antinutricionais na farinha de plantas suprime seu potencial de ser totalmente substituída. Portanto, neste estudo objetivamos estudar os efeitos sinérgicos de aditivos dietéticos como ácido cítrico e suplementação com enzima fitase sobre o desempenho de crescimento e digestibilidade de nutrientes de alevinos de Cirrhinus mrigala. A farinha de canola (CM) foi usada como ingrediente de teste para substituir a farinha de peixe (FM) como: 0%, 25%, 50% e 75%. Essas quatro dietas foram suplementadas por níveis variados de fitase (0 e 750 FTU kg-1) e ácido cítrico (0% e 2,5%) para formular um total de 16 dietas de teste como T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15 e T16. Cada tratamento continha três repetições; aplicado a grupos de peixes com 15 alevinos cada; seguindo o arranjo fatorial 3 × 3. 1% de óxido crômico foi adicionado como um marcador inerte. % de ganho de peso máximo (288%) e o valor mais baixo de FCR (1,07) foram registrados quando os peixes foram alimentados com dieta T12 em comparação com peixes alimentados com dieta controle (T1). Da mesma forma, valores ótimos de digestibilidade de nutrientes, como proteína bruta (77%), gordura bruta (84%) e energia bruta (70%) foram anotados no mesmo nível. Concluiu-se que 50% da farinha de canola pode substituir de forma ideal a farinha de peixe quando suplementada com fitase e ácido cítrico nos níveis de 750 FTU kg-¹ e 2,5%, respectivamente.


Subject(s)
Animals , Brassica rapa , Carps/growth & development , Carps/metabolism , Diet/veterinary , Phosphoric Monoester Hydrolases/administration & dosage , Citric Acid/administration & dosage
16.
Braz. j. biol ; 83: 1-7, 2023. tab
Article in English | LILACS, VETINDEX | ID: biblio-1468899

ABSTRACT

Biofloc technology is much highlighted these days because of its tremendous effects on aquaculture. Microbes were enriched on cheapest organic carbon source i. e., powdered banana peels and were incorporated in different aquaria rearing grass carp fingerlings under different C/N treatments (10:1, 15:1 and 20:1) and 10% water daily water exchange. The initial growth of fingerlings was recorded. The experiment was settled in triplicates for 60 days and run parallel to control group provided with commercial feed and daily water exchange. Its effect was evaluated by measuring the growth of fingerlings and water parameters of each aquarium. The average % gain in weight and length of fingerlings was obtained significantly highest (28.12 ± 0.30g and 17.29 ± 0.46cm respectively) in aquaria containing pure powdered banana peels with 10% water exchange and C/N ratio was adjusted at 20: 1 (T3) than other treatments and control. Ammonia and other water parameters were also under control in T3 than other experimental and control groups. By all counts, it was concluded that the highest C/N ratio in biofloc system had the potential to increment C. idella growth rate by reducing toxicity and could be used as fish meal substitute.


A tecnologia Biofloc é muito destacada hoje em dia por causa de seus tremendos efeitos na aquicultura. Os micróbios foram enriquecidos com a fonte de carbono orgânico mais barata, i. e., cascas de banana em pó, e foram incorporadas em diferentes aquários de criação de alevinos de carpa-capim sob diferentes tratamentos C/N (10: 1, 15: 1 e 20: 1) e 10% de troca diária de água. O crescimento inicial dos alevinos foi registrado. O experimento foi resolvido em triplicatas por 60 dias e executado paralelamente ao grupo controle fornecido com ração comercial e troca diária de água. Seu efeito foi avaliado medindo o crescimento dos alevinos e os parâmetros da água de cada aquário. O% de ganho médio em peso e comprimento dos alevinos foi obtido significativamente mais alto (28,12 ± 0,30g e 17,29 ± 0,46 cm respectivamente) em aquários contendo cascas de banana em pó puro com 10% de troca de água e a relação C/N foi ajustada em 20: 1 (T3) do que outros tratamentos e controle. A amônia e outros parâmetros da água também estavam sob controle no T3 mais do que nos outros grupos experimentais e de controle. Por todas as contagens, concluiu-se que a maior razão C/N no sistema de bioflocos tem o potencial de incrementar a taxa de crescimento de C. idella reduzindo a toxicidade e pode ser usada como substituto da farinha de peixe.


Subject(s)
Animals , Aquaculture/methods , Carps/growth & development
17.
Fish Physiol Biochem ; 48(6): 1427-1442, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36264384

ABSTRACT

Brewer's spent yeast (BSY) is among the most voluminous by-products generated in brewery industry that adds to the waste; however, smart utilization of BSY could lead to edible biomass production besides waste management. To utilize it for biomass production, it is being used in fish feeds; however, its effect on the fish physiology has been scantily studied. The present study investigated the proteomic changes in muscle tissues of carp Labeo rohita fed with BSY-based diet, to understand its impact on muscle physiology and biomass. Six feeds were prepared with different grades of BSY (0, 20, 30, 40, 50, 100% replacement of fishmeal with BSY) and fishes were fed for 90 days. Highest weight gain%, feed conversion efficiency, specific growth rate% were observed in 30% BSY-replaced group and this group was considered for the proteomic study. Comparative shotgun proteomic analysis was carried out by LC-MS/MS and data generated have been deposited in ProteomeXchange Consortium with dataset identifier PXD020093. A total of 62 proteins showed differential abundance; 29 increased and 33 decreased in the 30% BSY-replaced group. Pathway analysis using IPA and Panther tools revealed that the proteins tyrosine protein kinase, PDGFα, PKRCB and Collagen promote muscle growth by inducing the PI3K-AKT pathway. Conversely, the proteins Serine/threonine-protein phosphatase, Phosphatidylinositol 3,4,5-trisphosphate5-phosphatase 2A and Ras-specific guanine- nucleotide-releasing factor inhibit muscle growth indicating that 30% BSY-replaced feed promote muscle growth in a highly controlled manner. Findings suggest that BSY could be recycled for carp feed production in large scale thereby leading to resource conservation, reducing environmental effects.


Subject(s)
Animal Feed , Carps , Industrial Waste , Muscle Development , Muscles , Saccharomyces cerevisiae , Waste Management , Animals , Carps/growth & development , Carps/metabolism , Chromatography, Liquid , Muscles/metabolism , Phosphatidylinositol 3-Kinases , Proteomics , Tandem Mass Spectrometry , Waste Management/methods
18.
Toxins (Basel) ; 14(2)2022 02 19.
Article in English | MEDLINE | ID: mdl-35202180

ABSTRACT

Feeding experiments with juvenile grass carp (Ctenopharyngodon idella) fed with genetically modified maize MON 810 or DAS-59122 dried leaf biomass were carried out with 1-, 3- and 6-month exposures. Dosages of 3-7 µg/fish/day Cry1Ab or 18-55 µg/fish/day Cry34Ab1 toxin did not cause mortality. No difference occurred in body or abdominal sac weights. No differences appeared in levels of inorganic phosphate, calcium, fructosamine, bile acids, triglycerides, cholesterol, and alanine and aspartame aminotransferases. DAS-59122 did not alter blood parameters tested after 3 months of feeding. MON 810 slightly decreased serum albumin levels compared to the control, only in one group. Tapeworm (Bothriocephalus acheilognathi) infection changed the levels of inorganic phosphate and calcium. Cry34Ab1 toxin appeared in blood (12.6 ± 1.9 ng/mL), but not in the muscle. It was detected in B. acheilognathi. Cry1Ab was hardly detectable in certain samples near the limit of detection. Degradation of Cry toxins was extremely quick in the fish gastrointestinal tract. After 6 months of feeding, only mild indications in certain serum parameters were observed: MON 810 slightly increased the level of apoptotic cells in the blood and reduced the number of thrombocytes in one group; DAS-59122 mildly increased the number of granulocytes compared to the near-isogenic line.


Subject(s)
Animal Feed/microbiology , Animal Feed/toxicity , Bacillus thuringiensis Toxins/toxicity , Carps/anatomy & histology , Carps/growth & development , Carps/immunology , Zea mays/genetics , Animals , Genetic Variation , Genotype , Herbivory , Plants, Genetically Modified/genetics , Zea mays/microbiology
19.
Gene ; 821: 146291, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35176426

ABSTRACT

Glutathione peroxidase (Gpx) is an important member of antioxidant enzymes, which can play a vital role in metabolizing reactive oxygen species (ROS) and in maintaining cell homeostasis. In order to study the evolutionary dynamics of gpx gene family in allotetraploid fish species, we identified a total of 14 gpx genes in common carp Cyprinus carpio, while 9 gpx genes were discovered in the diploid progenitor-like species Poropuntius huangchuchieni. Comparative genomic analysis and phylogenetic analysis revealed that the common carp gpx genes had significant expansion and were divided into five distinct subclades. Exon-intron distribution patterns and conserved motif analysis revealed highly conserved evolutionary patterns. Transcript profiles suggested that different gpx genes had specific patterns of regulation during early embryonic development. In adult tissues, gpx genes had a relatively broad expression distribution, most of which were highly expressed in the gills, intestines, and gonads. RT-qPCR studies showed that most gpx genes were downregulated during the initial cd2+ treatment stage. Dietary supplementation of Bacillus coagulans at different concentrations (Group 2 of 1.0 × 107 cfu/g, Group 3 of 1.0 × 108 cfu/g, and Group 4 of 1.0 × 109 cfu/g) induced different regulatory responses of gpx subclades. This result suggested that the appropriate concentration of B. coagulans can improve gpx gene expression when exposed to heavy metal cadmium treatment, which may play a vital role in the resistance to oxidative stress and immune responses. This study has expanded our understanding of the functional evolution of the gpx gene family in common carp.


Subject(s)
Bacillus coagulans/physiology , Cadmium/toxicity , Carps/growth & development , Gene Expression Profiling/methods , Glutathione Peroxidase/genetics , Animals , Carps/genetics , Data Mining , Dietary Supplements , Evolution, Molecular , Fish Proteins/genetics , Gene Expression Regulation, Enzymologic , Genomics , Oxidative Stress , Phylogeny , Stress, Physiological
20.
Fish Shellfish Immunol ; 120: 434-440, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34922019

ABSTRACT

Ficus carica polysaccharides (FCPS), one of the most effective and important compo-nents in Ficus carica L., had been considered to be a beneficial immunostimulant and may be used in immunotherapy for animals and human. However, studies were little about the effect of FCPS used as immunomodulatory and the suitable dosage in fish. The present study investigated the effect of four different dietary levels of FCPS (0.1%, 0.2%, 0.4%, 0.8%) on the growth performance, innate immune responses and survival of crucian carp against Aeromonas hydrophila infection. The results showed that compared with control group, dietary FCPS had positive effects the growth performance (final weight, feed conversion ratio and survival rate) of crucian carp. FCPS induced significant higher (p < 0.05) leukocyte phagocytosis activity, serum bactericidal activity, lysozyme activity, com-plement C3, SOD activity and total protein level in the serum of crucian carp. Moreover, innate immune response of fish in FCPS groups increased first and then decreased with increasing dietary FCPS from 0.1% to 0.8%, and reached up to the peak in 0.4% dietary FCPS groups. Besides, the cumulative mortalities in FCPS groups were remarkably lower than that of control group when challenged with A. hydrophila, the relative percent survivals were 22.67%, 55.56%, 62.22% and 17.78% in 0.1% group, 0.2% group, 0.4% group and 0.8% group, respectively. These results suggested that dietary FCPS could improve the growth performance, innate immune response and disease resistance against A. hydrophila in fish, and the suitable dietary dose of FCPS was 0.4% in crucian carp.


Subject(s)
Carps , Ficus , Fish Diseases , Gram-Negative Bacterial Infections , Polysaccharides , Aeromonas hydrophila , Animals , Carps/growth & development , Carps/immunology , Dietary Carbohydrates/administration & dosage , Dietary Supplements , Disease Resistance , Ficus/chemistry , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/veterinary , Immunity, Innate , Polysaccharides/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL