Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
1.
Commun Biol ; 7(1): 1006, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152200

ABSTRACT

Antibiotic-induced dysbiosis in the fish gut causes significant adverse effects. We use fecal microbiota transplantation (FMT) to accelerate the restoration of florfenicol-perturbed intestinal microbiota in koi carp, identifying key bacterial populations and metabolites involved in the recovery process through microbiome and metabolome analyses. We demonstrate that florfenicol disrupts intestinal microbiota, reducing beneficial genera such as Lactobacillus, Bifidobacterium, Bacteroides, Romboutsia, and Faecalibacterium, and causing mucosal injuries. Key metabolites, including aromatic amino acids and glutathione-related compounds, are diminished. We show that FMT effectively restores microbial populations, repairs intestinal damage, and normalizes critical metabolites, while natural recovery is less effective. Spearman correlation analyses reveal strong associations between the identified bacterial genera and the levels of aromatic amino acids and glutathione-related metabolites. This study underscores the potential of FMT to counteract antibiotic-induced dysbiosis and maintain fish intestinal health. The restored microbiota and normalized metabolites provide a basis for developing personalized probiotic therapies for fish.


Subject(s)
Anti-Bacterial Agents , Dysbiosis , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Thiamphenicol , Animals , Gastrointestinal Microbiome/drug effects , Thiamphenicol/analogs & derivatives , Thiamphenicol/pharmacology , Dysbiosis/therapy , Dysbiosis/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/adverse effects , Carps/microbiology , Bacteria/metabolism , Bacteria/drug effects
2.
Int J Biol Macromol ; 277(Pt 2): 134346, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094883

ABSTRACT

To date, although the high-carbohydrate (HC) feed has been extensively adopted in the aquaculture industry, its effects on the intestinal function and development of aquatic animals still remain unclear. In addition, the corresponding nutritional intervention is still barely reported. This study aimed to evaluate the influence of xylooligosaccharides (XOS) on the intestinal health of Megalobrama amblycephala subjected to a HC feeding. Fish (average weight: 44.55 ± 0.15 g) were randomly offered 3 diets, including a control one (29 % carbohydrate), a HC one (41 % carbohydrate), and a XOS supplemented one (HC + 1.0 % XOS, HCX) respectively for 12 weeks. The HC feeding caused morphological abnormalities of intestine, an increased intestinal permeability, and the intestinal immunosuppression, all of which were markedly reversed by XOS administration. In addition, compared with the HC group, HCX feeding remarkably promoted the intestinal activities of digestive and brush border enzymes, and the expressions of cell proliferation-related proteins (Wnt10b and Cyclin D1). The 16s rDNA sequencing also revealed that XOS administration increased the abundance of beneficial bacteria, and decreased that of pathogenic ones. In conclusion, dietary supplementation of XOS improved the intestinal histomorphology, barrier function, cell proliferation and bacterial communities of carbohydrate-overloaded fish Megalobrama amblycephala.


Subject(s)
Carps , Gastrointestinal Microbiome , Glucuronates , Intestines , Oligosaccharides , Animals , Gastrointestinal Microbiome/drug effects , Oligosaccharides/pharmacology , Glucuronates/pharmacology , Carps/microbiology , Carps/growth & development , Intestines/drug effects , Intestines/pathology , Intestines/microbiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Animal Feed , Dietary Carbohydrates/pharmacology , Dietary Carbohydrates/adverse effects , Dietary Supplements
3.
Gene ; 928: 148811, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39094713

ABSTRACT

The gut microbiome plays a key role in regulating the gut-skin axis, and host genetics partially influence this regulation. The study investigated the role of gut microbiota and host genetics in the gut-skin axis, focusing on the unusual "coffee-like" color phenotype observed in TYRP1 mutant Oujiang Color Common Carp. We employed comparative high-throughput omics data from wild-type and mutant fish to quantify the influence of both genetics and gut microbes on skin transcriptomic expression and blood metabolites. We found 525 differential metabolites (DMs) and 45 distinct gut microbial genera in TYRP1 mutant fish compared to wild type. Interaction and causal mediation analyses revealed a complex interplay. The TYRP1 mutation likely triggers an inflammatory pathway involving Acinetobacter bacteria, Leukotrience-C4 and Spermine. This inflammatory response appears to be counterbalanced by an anti-inflammatory cardiovascular genetic network. The net effect is the upregulation of COMT, PLG, C2, C3, F10, TDO2, MHC1, and SERPINF2, leading to unusual coffee-like coloration. This study highlights the intricate interplay between gut microbiota, host genetics, and metabolic pathways in shaping complex phenotypes.


Subject(s)
Carps , Gastrointestinal Microbiome , Mutation , Skin Pigmentation , Animals , Carps/genetics , Carps/microbiology , Carps/metabolism , Skin Pigmentation/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Transcriptome , Skin/metabolism , Skin/microbiology
4.
Mar Biotechnol (NY) ; 26(4): 790-809, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39042324

ABSTRACT

Aeromonas veronii is one of the predominant pathogenic species that can imperil the survival of farmed fish. However, the interactive networks of immune regulation and metabolic response in A. veronii-infected fish are still unclear. In this investigation, we aimed to explore immunometabolic interplay in white crucian carp (WCC) after the A. veronii challenge. Elevated levels of immune-related genes were observed in various tissues after A. veronii infection, along with the sharp alteration of disease-related enzymatic activities. Besides, decreased levels of antioxidant status were observed in the liver, but most metabolic gene expressions increased dramatically. Multiomics analyses revealed that metabolic products of amino acids, such as formiminoglutamic acid (FIGLU), L-glutamate (L-Glu), and 4-hydroxyhippuric acid, were considered the crucial liver biomarkers in A. veronii-infected WCC. In addition, A. veronii infection may dysregulate endoplasmic reticulum (ER) function to affect the metabolic process of lipids, carbohydrates, and amino acids in the liver of WCC. These results may have a comprehensive implication for understanding immunometabolic response in WCC upon A. veronii infection.


Subject(s)
Aeromonas veronii , Carps , Fish Diseases , Gram-Negative Bacterial Infections , Liver , Animals , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Carps/microbiology , Carps/immunology , Carps/metabolism , Carps/genetics , Liver/metabolism , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/metabolism , Amino Acids/metabolism , Transcriptome , Multiomics
5.
Front Immunol ; 15: 1407237, 2024.
Article in English | MEDLINE | ID: mdl-38947329

ABSTRACT

Introduction: Red blood cells (RBCs), also known as erythrocytes, are underestimated in their role in the immune system. In mammals, erythrocytes undergo maturation that involves the loss of nuclei, resulting in limited transcription and protein synthesis capabilities. However, the nucleated nature of non-mammalian RBCs is challenging this conventional understanding of RBCs. Notably, in bony fishes, research indicates that RBCs are not only susceptible to pathogen attacks but express immune receptors and effector molecules. However, given the abundance of RBCs and their interaction with every physiological system, we postulate that they act in surveillance as sentinels, rapid responders, and messengers. Methods: We performed a series of in vitro experiments with Cyprinus carpio RBCs exposed to Aeromonas hydrophila, as well as in vivo laboratory infections using different concentrations of bacteria. Results: qPCR revealed that RBCs express genes of several inflammatory cytokines. Using cyprinid-specific antibodies, we confirmed that RBCs secreted tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). In contrast to these indirect immune mechanisms, we observed that RBCs produce reactive oxygen species and, through transmission electron and confocal microscopy, that RBCs can engulf particles. Finally, RBCs expressed and upregulated several putative toll-like receptors, including tlr4 and tlr9, in response to A. hydrophila infection in vivo. Discussion: Overall, the RBC repertoire of pattern recognition receptors, their secretion of effector molecules, and their swift response make them immune sentinels capable of rapidly detecting and signaling the presence of foreign pathogens. By studying the interaction between a bacterium and erythrocytes, we provide novel insights into how the latter may contribute to overall innate and adaptive immune responses of teleost fishes.


Subject(s)
Aeromonas hydrophila , Carps , Cytokines , Erythrocytes , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Carps/immunology , Carps/microbiology , Erythrocytes/immunology , Erythrocytes/metabolism , Cytokines/metabolism , Cytokines/immunology , Aeromonas hydrophila/immunology , Gram-Negative Bacterial Infections/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Phagocytosis/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Immunity, Innate
6.
Int J Biol Macromol ; 275(Pt 2): 133711, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977043

ABSTRACT

Ginger polysaccharides (GP) promote growth and development in fish. However, the effects of GP on crucian carp remain unclear. The present study investigated the effects of GP on the growth performance, immunity, intestinal microbiota, and disease resistance in crucian carp. Four treatment groups were established with different concentrations of GP (0.1 %, 0.2 %, 0.4 %, and 0.8 %). GP was not added as the control group, and the feeding period lasted for 56 d, followed by a 96-h anti-infection treatment using Aeromonas hydrophila. The results showed that dietary GP significantly improved growth performance, especially in the 0.4 % GP group. Furthermore, GP administration notably increased serum lysozyme (LMZ) activity, digestive enzyme performance, and antioxidant capacity of crucian carp. Moreover, dietary inclusion of GP up-regulated the expression of tumour necrosis factor-α (TNF-α), interleukin-8 (IL-8), interferon-γ (IFN-γ), and nuclear factor kappa-B (NF-κB) genes while down-regulating IL-10 and transforming growth factor-ß (TGF-ß) gene expressions, thus promoting liver health in crucian carp. Additionally, incorporating GP into the diet regulated both the diversity and composition of the intestinal microbiota in crucian carp, explicitly enhancing the relative abundance of beneficial bacteria, such as Fusobacteriota and Firmicutes. Therefore, GP reduces the mortality of crucian carp infected with A. hydrophila. In conclusion, this study provides novel insights into the application of dietary GP in cultured fish and evaluates the value of traditional Chinese medicinal polysaccharides against pathogenic bacteria.


Subject(s)
Aeromonas hydrophila , Antioxidants , Carps , Disease Resistance , Fish Diseases , Gastrointestinal Microbiome , Polysaccharides , Zingiber officinale , Animals , Aeromonas hydrophila/drug effects , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Disease Resistance/drug effects , Antioxidants/pharmacology , Fish Diseases/microbiology , Fish Diseases/immunology , Zingiber officinale/chemistry , Carps/growth & development , Carps/immunology , Carps/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/drug therapy , Dietary Supplements , Animal Feed
7.
J Hazard Mater ; 475: 134817, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38878444

ABSTRACT

Microplastics and antibiotics coexist in aquatic environments, especially in freshwater aquaculture areas. However, as the second largest production of polyvinyl chloride (PVC) in the world, the effects of co-exposure to microplastics particles and antibiotics on changes in antibiotic resistance gene (ARG) profiles and the microbial community structure of aquatic organism gut microorganisms are poorly understood. Therefore, in this study, carp (Cyprinus carpio) were exposed to single or combined PVC microplastic contamination and oxytetracycline (OTC) or sulfamethazine (SMZ) for 8 weeks. PVC microplastics can enrich potential pathogenic bacteria, such as Enterobacter and Acinetobacter, among intestinal microorganisms. The presence of PVC microplastics enhanced the selective enrichment and dissemination risk of ARGs. PVC microplastics combined with OTC (OPVC) treatment significantly increased the abundance of tetracycline resistance genes (1.40-fold) compared with that in the OTC exposure treatment, revealing an obvious co-selection effect. However, compared with those in the control group, the total abundance of ARGs and MGEs in the OPVC treatment groups were significantly lower, which was correlated with the reduced abundances of the potential host Enterobacter. Overall, our results emphasized the diffusion and spread of ARGs are more influenced by PVC microplastics than by antibiotics, which may lead to antibiotic resistance in aquaculture.


Subject(s)
Anti-Bacterial Agents , Carps , Microplastics , Oxytetracycline , Polyvinyl Chloride , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Oxytetracycline/toxicity , Carps/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Gastrointestinal Microbiome/drug effects , Bacteria/drug effects , Bacteria/genetics , Sulfamethazine/toxicity , Genes, Bacterial/drug effects , Drug Resistance, Microbial/genetics , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/drug effects
8.
Dev Comp Immunol ; 158: 105210, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38844187

ABSTRACT

Interleukin (IL) 20 is a multifunctional cytokine and plays a vital role in regulating autoimmune diseases, inflammation, and immune responses. IL-20 homologs have been described in fish. However, due to the lack of antibodies, cellular sources and immunological functions of fish IL-20 in response to infections have not been fully characterized. In this study, a monoclonal antibody (mAb) was generated against the recombinant grass carp (Ctenopharyngodon idella) IL-20 protein and characterized by immunoblotting, immunofluorescent microscopy and flow cytometry. It was shown that the IL-20 mAb specifically recognized recombinant IL-20 proteins expressed in the E. coli cells and HEK293 cells. Using confocal microscopy, the IL-20+ cells were identified in the head kidney, gills and intestine of grass carp, and induced after infection with Aeromonas hydrophila. Moreover, the IL-20 protein was found to be secreted mainly by CD3γδ T cells which were located predominantly in the gill filaments and intestinal mucosa. Taken together, our results suggest that IL-20 producing T cells are required for the mucosal immunity against bacterial infection in fish.


Subject(s)
Aeromonas hydrophila , Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Immunity, Mucosal , Interleukins , Animals , Carps/immunology , Carps/microbiology , Aeromonas hydrophila/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/immunology , Fish Proteins/metabolism , Fish Proteins/genetics , Humans , Interleukins/metabolism , Interleukins/immunology , HEK293 Cells , Gills/immunology , Gills/metabolism , CD3 Complex/immunology , CD3 Complex/metabolism , Antibodies, Monoclonal/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , T-Lymphocytes/immunology , Mucous Membrane/immunology
9.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928143

ABSTRACT

Grass Carp Reovirus (GCRV) and Aeromonas hydrophila (Ah) are the causative agents of haemorrhagic disease in grass carp. This study aimed to investigate the molecular mechanisms and immune responses at the miRNA, mRNA, and protein levels in grass carp kidney cells (CIK) infected by Grass Carp Reovirus (GCRV, NV) and Aeromonas hydrophilus (Bacteria, NB) to gain insight into their pathogenesis. Within 48 h of infection with Grass Carp Reovirus (GCRV), 99 differentially expressed microRNA (DEMs), 2132 differentially expressed genes (DEGs), and 627 differentially expressed proteins (DEPs) were identified by sequencing; a total of 92 DEMs, 3162 DEGs, and 712 DEPs were identified within 48 h of infection with Aeromonas hydrophila. It is worth noting that most of the DEGs in the NV group were primarily involved in cellular processes, while most of the DEGs in the NB group were associated with metabolic pathways based on KEGG enrichment analysis. This study revealed that the mechanism of a grass carp haemorrhage caused by GCRV infection differs from that caused by the Aeromonas hydrophila infection. An important miRNA-mRNA-protein regulatory network was established based on comprehensive transcriptome and proteome analysis. Furthermore, 14 DEGs and 6 DEMs were randomly selected for the verification of RNA/small RNA-seq data by RT-qPCR. Our study not only contributes to the understanding of the pathogenesis of grass carp CIK cells infected with GCRV and Aeromonas hydrophila, but also serves as a significant reference value for other aquatic animal haemorrhagic diseases.


Subject(s)
Aeromonas hydrophila , Carps , MicroRNAs , RNA, Messenger , Reoviridae , Transcriptome , Animals , Carps/genetics , Carps/microbiology , Carps/virology , Carps/immunology , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reoviridae/physiology , Proteomics/methods , Fish Diseases/microbiology , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/genetics , Gene Expression Profiling , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/genetics , Cell Line , Reoviridae Infections/veterinary , Reoviridae Infections/immunology , Reoviridae Infections/genetics , Gene Regulatory Networks
10.
Environ Microbiol Rep ; 16(3): e13262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725141

ABSTRACT

Common carp (Cyprinus carpio) were fed food with different protein concentrations following different feeding regimes, which were previously shown to affect growth, nitrogen excretion and amino acid catabolism. 16S rRNA gene amplicon sequencing was performed to investigate the gut microbiota of these fish. Lower dietary protein content increased microbial richness, while the combination of demand feeding and dietary protein content affected the composition of the gut microbiota. Hepatic glutamate dehydrogenase (GDH) activity was correlated to the composition of the gut microbiota in all dietary treatments. We found that demand-fed carp fed a diet containing 39% protein had a significantly higher abundance of Beijerinckiaceae compared to other dietary groups. Network analysis identified this family and two Rhizobiales families as hubs in the microbial association network. In demand-fed carp, the microbial association network had significantly fewer connections than in batch-fed carp. In contrast to the large effects of the feeding regime and protein content of the food on growth and nitrogen metabolism, it had only limited effects on gut microbiota composition. However, correlations between gut microbiota composition and liver GDH activity showed that host physiology and gut microbiota are connected, which warrants functional studies into the role of the gut microbiota in fish physiology.


Subject(s)
Animal Feed , Bacteria , Carps , Dietary Proteins , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Carps/microbiology , Carps/growth & development , Animal Feed/analysis , RNA, Ribosomal, 16S/genetics , Dietary Proteins/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/genetics , Nitrogen/metabolism , Liver/metabolism , Phylogeny , Diet/veterinary
11.
Food Chem ; 450: 139472, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38705103

ABSTRACT

In this study, the electrospinning technique was used to co-encapsulate Quercetin (Qu) and Lactiplantibacillus plantarum 1-24-LJ in PVA-based nanofibers, and the effect of bioactive films on fish preservation was evaluated at the first time. The findings indicated that both Lpb. plantarum 1-24-LJ and Qu were successfully in the fibers, and co-loaded fibers considerably outperformed single-loaded fiber in terms of bacterial survival and antioxidant activity. Following fish preservation using the loaded fibers, significant reductions were observed in TVB-N, TBARS, and microbial complexity compared to the control group. Additionally, the co-loaded fibers more effectively reduced the counts of H2S-producing bacteria and Pseudomonas. In the future, fibers with both active substances and LAB hold promise as a novel approach for fish preservation.


Subject(s)
Carps , Food Preservation , Quercetin , Quercetin/pharmacology , Quercetin/chemistry , Animals , Carps/microbiology , Food Preservation/methods , Food Preservation/instrumentation , Lactobacillus plantarum/chemistry , Lactobacillus plantarum/metabolism , Bacteria/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology
12.
Fish Physiol Biochem ; 50(4): 1495-1512, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38696022

ABSTRACT

This study investigated whether adding Herba Houttuyniae to feed can improve intestinal function and prevent diseases for koi carp (Cyprinus carpio) infected with Aeromonas veronii. There was a total of 168 koi carp with an average body length of (9.43 ± 0.99) cm and an average body weight of (26.00 ± 11.40) g. The K group was the control group fed with basal feed, while the C group was fed with feed with a H. houttuyniae content of six per thousand. After 14 days of feeding, the fish were fasted for a day and then intraperitoneally injected with A. veronii for artificial infection, injection dose is 0.2 mL, and the concentration is 1 × 107 CFU/mL. Samples were collected from the two groups on days 0, 1, 2, and 4. The fold height, intestinal villus width, and muscle layer thickness in the gut of the koi carp were measured. In addition, on day 4, the activities of trypsin, α-amylase, and lipase in the gut were determined, and the intestinal flora of the carp in both groups was tested. The results showed that on the second and fourth days of sampling, the fold height and muscle layer thickness in the C group were significantly higher than those in the K group (P < 0.05). The villus width in the C group was slightly higher than that in the K group, but the difference was not significant (P > 0.05). Microscopic observation revealed that the intestinal structure of the carp in the C4 (day 4 in C group) group was more intact than that in the K4 (day 4 in K group) group. Moreover, the activities of trypsin, α-amylase, and lipase in the foregut and midgut in the C4 group were higher than those in the K4 group (P < 0.05). The activities of trypsin and α-amylase in the hindgut in the C4 group were higher than those in the K4 group (P < 0.05). Furthermore, beneficial bacteria, especially those in the genus Cetobacterium, were more abundant in the intestinal tract of the carp in the C4 group compared to the K group. In addition, comparisons and tests of IL-4 and IL-10 in the intestines of the fish in both groups demonstrated that the H. houttuyniae added to feed enhanced the immune function of the fish intestines after bacterial attack. In conclusion, for koi carp infected with A.veronii, adding H. houttuyniae to their feed not only improves the activity of digestive enzymes and the morphological structure of the intestine but also optimizes the beneficial intestinal microbiota, thereby protecting the intestinal tract.


Subject(s)
Aeromonas veronii , Animal Feed , Carps , Fish Diseases , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections , Intestines , Animals , Carps/microbiology , Fish Diseases/microbiology , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Animal Feed/analysis , Houttuynia , Lipase/metabolism , Diet/veterinary , alpha-Amylases/metabolism
13.
Article in English | MEDLINE | ID: mdl-38809248

ABSTRACT

A rapidly growing nontuberculous mycobacterium was isolated from diseased koi carp in Niigata, Japan, which was identified as representing a novel Mycolicibacterium species through whole genome sequence analysis. The bacterial isolates (NGTWS0302, NGTWS1803T and NGTWSNA01) were found to belong to the genus Mycolicibacterium through phylogenetic analysis using whole genome sequences of mycobacteria species. The bacterial colony was smooth, moist and non-chromogenic on 1% Ogawa medium at 30 °C. In biochemical characteristic tests, the bacterial isolates showed positive reactions for catalase activity, Tween 80 hydrolysis and tellurite reduction. The isolates were sensitive to 2-4 µg ml-1 ampicillin, kanamycin and rifampicin. Based on these results, we propose a novel Mycolicibacterium species, Mycolicibacterium cyprinidarum sp. nov. The type strain is NGTWS1803T (=JCM 35117T=ATCC TSD-289T).


Subject(s)
Bacterial Typing Techniques , Carps , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Animals , Carps/microbiology , Japan , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Fish Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Fatty Acids , Microbial Sensitivity Tests , Whole Genome Sequencing , Base Composition
14.
Food Chem ; 451: 139465, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38677132

ABSTRACT

This work aimed to synthesize oregano essential oil/ß-cyclodextrin microcapsules (OEO/ß-CDs) and then prepare gelatin-based controlled-release antibacterial films with different OEO/ß-CDs contents (0%-2%) for chilling preservation of grass carp fillets. The results of FTIR, XRD, DSC and accelerated release ratio showed that OEO was successfully encapsulated in OEO/ß-CDs and its thermal stability was effectively improved. Moreover, at 2% of addition amount of OEO/ß-CDs, the tensile strength of the films increased from 14.43 MPa to 18.72 MPa. In addition, the films showed significant antibacterial activity against Pseudomonas (61.52%), Aeromonas (62.87%), and Shewanella putrefaciens (66.67%). Preservation experiments showed that the films effectively prevented the increase of TVB-N, and TBA value of the refrigerated fillets and significantly suppressed the growth of spoilage organisms, thus extending the shelf life by 2-3 days. Therefore, the synthesized film has promising potential as an active packaging material for the preservation of grass carp.


Subject(s)
Anti-Bacterial Agents , Capsules , Carps , Delayed-Action Preparations , Food Preservation , Gelatin , Oils, Volatile , Origanum , beta-Cyclodextrins , Animals , Carps/microbiology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Gelatin/chemistry , Food Preservation/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Origanum/chemistry , Capsules/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , beta-Cyclodextrins/chemistry , Food Packaging/instrumentation , Bacteria/drug effects , Bacteria/growth & development , Cold Temperature
15.
Microb Pathog ; 190: 106614, 2024 May.
Article in English | MEDLINE | ID: mdl-38492825

ABSTRACT

Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.


Subject(s)
Aeromonas hydrophila , Antioxidants , Carps , Eleutherococcus , Fermentation , Fish Diseases , Lacticaseibacillus rhamnosus , Probiotics , Animals , Lacticaseibacillus rhamnosus/metabolism , Carps/microbiology , Probiotics/pharmacology , Probiotics/administration & dosage , Antioxidants/metabolism , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/immunology , Animal Feed , Inflammation/prevention & control , Cytokines/metabolism , Aquaculture
16.
J Microbiol ; 62(6): 473-487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38421547

ABSTRACT

Due to the ever-increasing demand for meat, it has become necessary to identify cheap and sustainable sources of protein for animal feed. Feathers are the major byproduct of poultry industry, which are rich in hard-to-degrade keratin protein. Previously we found that intact feathers can be digested into free amino acids, short peptides, and nano-/micro-keratin particles by the strain Bacillus licheniformis WHU in water, and the resulting feather hydrolysates exhibit prebiotic effects on mice. To explore the potential utilization of feather hydrolysate in the feed industry, we investigated its effects on the gut microbiota of broilers and fish. Our results suggest that feather hydrolysates significantly decrease and increase the diversity of gut microbial communities in broilers and fish, respectively. The composition of the gut microbiota was markedly altered in both of the animals. The abundance of bacteria with potentially pathogenic phenotypes in the gut microbial community of the fish significantly decreased. Staphylococcus spp., Pseudomonas spp., Neisseria spp., Achromobacter spp. were significantly inhibited by the feather hydrolysates. In addition, feather hydrolysates significantly improved proteolytic activity in the guts of broilers and fish. In fish, the expression levels of ZO-1 and TGF-α significantly improved after administration of feather hydrolysates. The results presented here suggest that feather hydrolysates generated by B. licheniformis WHU could be an alternative protein source in aquaculture and could exert beneficial effects on fish.


Subject(s)
Bacillus licheniformis , Carps , Chickens , Feathers , Gastrointestinal Microbiome , Probiotics , Animals , Gastrointestinal Microbiome/drug effects , Chickens/microbiology , Feathers/metabolism , Feathers/microbiology , Feathers/chemistry , Probiotics/administration & dosage , Bacillus licheniformis/metabolism , Carps/microbiology , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Animal Feed/analysis , Protein Hydrolysates/pharmacology
17.
Biomed Res Int ; 2022: 8437926, 2022.
Article in English | MEDLINE | ID: mdl-36457342

ABSTRACT

The aim of this work was the screening of bacteriocin-producing LABs isolated from fish, the selection of promising/prominent strain(s), the characterization of the bacteriocin produced, and the evaluation of its potential to be used as biopreservative(s). Amplification and sequencing of the 16S rRNA gene of the bacteriocin-producing strain was performed. Then a partial purification of the produced bacteriocin, using a combination of ammonium sulfate and chloroform-methanol precipitation, was done. Its molecular weight was determined by SDS-PAGE. In addition, the action spectrum, the hemolysis test, and its ability to inhibit biofilm formation were analyzed. A total of 88 isolates of lactic acid bacteria (LAB) including one bacteriocin producer, which was identified as Lactococcus lactis F01, were collected. The bacteriocin was partially purified with an estimated yield of 40%. Regarding the SDS-PAGE profile, the secreted bacteriocin has molecular weight of about 3.5 kDa and was identified as class I bacteriocin. The antimicrobial test showed that the bacteriocin inhibits pathogenic and/or spoilage bacteria, 10 Gram-positive and 16 Gram-negative bacterial species. Moreover, it can inhibit biofilm formation from 1.3% (Escherichia coli) to 63.92% (Pseudomonas aeruginosa ATCC15692) depending on the strain. The hemolytic activity of novel bacteriocin was observed at the concentration of 10 µg/ml of bacteriocin crude extract, which was 0.7 ± 0.0029%. In addition, it exhibited good thermal and pH stability with retained antibacterial activity of 85.25% after treatment at 121°C for 20 min, as well as at a pH range between 2.0 and 10.0. Moreover, this bacteriocin showed the ability to inhibit the growth of bacterial culture load in fish sausage stored at 8°C for 28 days. Considering the results obtained, bacteriocin could be potentially exploited as an alternative to chemical preservatives or as a substitute for antibiotics.


Subject(s)
Bacteriocins , Carps , Food Preservation , Lactococcus lactis , Meat Products , Animals , Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Biofilms , Carps/microbiology , Escherichia coli , RNA, Ribosomal, 16S/genetics , Meat Products/microbiology
18.
Microb Pathog ; 172: 105783, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36150558

ABSTRACT

The goal of this study was to determine the unique characteristics of Enterococcus faecium MC-5, a probiotic bacteria isolated from the intestine of a fish, Cyprinus carpio specularis, collected from Dal Lake in Srinagar, Kashmir, India. For this, the important valuable probiotic attributes, some functional properties, and safety assessments were analyzed in-vitro for the strain MC-5. The strain E. faecium MC-5 exhibited high resistance to low pH, high bile salt, lysozyme, and phenol. The strain MC-5 showed excellent auto- and co-aggregation properties and displayed remarkable hydrophobicity towards various tested hydrocarbons which suggested that the strain possesses venerable adhesion properties. Apart from these, the cell-free supernatant (CFS) of strain MC-5 exhibited phenomenal antimicrobial activity against the tested pathogens. A scanning electron microscope (SEM) image revealed strain MC-5 finely adhered to human colon adenocarcinoma cells (HCT-15 cells). The strain MC-5 showed high bile salt hydrolase activity and excellent cholesterol removal ability of 70.27%. The intact cells of strain MC-5 also showed strong DPPH scavenging activity. The EPS produced by E. faecium MC-5 inhibited the adhesion of Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica on HCT-15 cells with maximum inhibition rates of 41.82, 40.34, and 55.51%, respectively for displacement assay, which was higher as compared to exclusion (26.06, 26.11, and 39.23%) and competition assays (30.06, 26.7, and 41.20%). Strain MC-5 did not exhibit hemolysis and was also found susceptible to vancomycin and other clinically important antibiotics. When evaluating all the results from the present study, it is propounded that strain MC-5 has enviable probiotic characteristics and thus can be used as bio-protective cultures and/or bio-shield in food and pharmaceutical industries.


Subject(s)
Adenocarcinoma , Carps , Colonic Neoplasms , Enterococcus faecium , Probiotics , Animals , Humans , Anti-Bacterial Agents/pharmacology , Bile Acids and Salts/pharmacology , Carps/microbiology , Cholesterol , Muramidase , Phenols , Probiotics/pharmacology , Vancomycin/pharmacology , Cell Line, Tumor
19.
Mar Biotechnol (NY) ; 24(2): 366-379, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35303209

ABSTRACT

Microbiome plays key roles in the digestion, metabolism, and immunity of the grass carp (Ctenopharyngodon idella). Here, we characterized the normal microbiome of the intestinal contents (IC), skin mucus (SM), oral mucosa (OM), and gill mucosa (GM) of the grass carp, as well as the microbiome of the sidewall (SW) of the raising pool, using full-length 16S rRNA sequencing based on the PacBio platform in this specie for the first time. Twenty phyla, 38 classes, 130 families, 219 genera, and 291 species were classified. One hundred four common classified species might be core microbiota of grass carp. Proteobacteria, Bacteroides, and Cyanobacteria were the dominant phyla in the niche of grass carp. Proteobacteria and Bacteroides dominated the taxonomic composition in the SM, GM, and OM, while Proteobacteria, Planctomycetota, and Cyanobacteria preponderated in the IC and SW groups. Microbiota of IC exhibited higher alpha diversity indices. The microbial communities clustered either in SW or the niche from grass carp, significantly tighter in the SW, based on Bray-Curtis distances (P < 0.05). SM, GM, and OM were similar in microbial composition but were significantly different from IC and SW, while IC had similarity with SW due to their common Cyanobacteria (P < 0.05). Differences were also reflected by niche-specific and differentially abundant microorganisms such as Noviherbaspirillum in the SM and Rhodopseudomonas palustris, Mycobacterium fortuitum, and Acinetobacter schindleri in GM. Significantly raised gene expression was found in IC and SM associated with cell cycle control, cell division, chromosome, coenzyme transport and metabolism, replication, recombination and repair, cell motility, post-translational modification, signal transduction mechanisms, intracellular trafficking, secretion, and vesicles by PICRUSt. This work may be of great value for understanding of fish-microbial co-workshops, especially in different niche of grass carp.


Subject(s)
Carps , Microbiota , Mucous Membrane , Animals , Carps/microbiology , Mucous Membrane/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Fish Shellfish Immunol ; 121: 197-204, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35026409

ABSTRACT

In the aquaculture industry, an efficient and safe water purification system is important to prevent mass mortality by virulent pathogens. As extensive use of traditional methods (e.g.: povidone-iodine, ozone, ultraviolet irradiation, formalin, and chlorine dioxide) have adverse effects on cultured fish, an appropriate and alternative water purification method is vital for the sustainability of the industry. Non-thermal plasma technology has been successfully used for various biomedical purposes (e.g: food sterilization, medical device disinfection, wound healing, cancer therapy, etc.) and has great potential to be used as a sterilizing system. However, few studies have been conducted on its usefulness in the aquaculture industry. In this study, we investigated the bactericidal efficacy of plasma-activated water induced by non-thermal plasma and its histopathological as well as immunological adverse effects on koi. A highly virulent Aeromonas hydrophila SNU HS7, which caused massive mortality of koi, was used for this study. Non-thermal plasma was applied for 10 min to the fish tanks with 1.2 × 109 CFU/mL SNU HS7 using PLMB-20 system to confirm the sterilization efficacy and to observe the survival and immunological reaction of koi for 14 days. As a result, gross pathological, histopathological, and immunological investigations did not reveal any significant adverse effects in fish as compared to the control groups. To the best of our knowledge, this is the first study showing that non-thermal plasma can be used for sterilization of rearing water without giving significant physiological damage to the fish, even under the assumption of extreme situations. As plasma can effectively sterilize not only bacteria but also other unknown pathogens, the results of this study are showing a promising future in purifying water in aquaculture practice.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Aeromonas hydrophila , Animals , Anti-Bacterial Agents , Aquaculture , Carps/immunology , Carps/microbiology , Fish Diseases/immunology , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Plasma Gases , Water
SELECTION OF CITATIONS
SEARCH DETAIL