Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.221
Filter
1.
PeerJ ; 12: e17962, 2024.
Article in English | MEDLINE | ID: mdl-39301059

ABSTRACT

To develop effective technology that employs electric fields to simultaneously guide valued freshwater fish whilst limiting the range expansion of undesirable invasive species, there is a need to quantify the electrosensitivity of multiple families. This experimental study quantified the electrosensitivity of two carp species that, in UK, are invasive (grass carp, Ctenopharyngodon idella, and common carp, Cyprinus carpio) and compared the values with those previously obtained for adult European eel (Anguilla anguilla), a species of conservation concern in Europe. Electric field strengths (V/cm) required to elicit physiological responses (twitch, loss of orientation and tetany) were identified across four pulsed direct current (PDC) electric waveforms (single pulse-2 Hz, double pulse-2 Hz, single pulse-3 Hz and double pulse-3 Hz). Grass carp were sensitive to differences in waveform with tetany exhibited at lower field strengths in the single pulse-2 Hz treatment. Both cyprinid species responded similarly and were less sensitive to PDC than adult European eel, although loss of orientation occurred at lower field strengths for grass than common carp in the single pulse-3 Hz waveform treatment. This variation in electrosensitivity, likely due to differences in body length, indicates potential for electric fields to selectively guide fish in areas where invasive and native species occur in sympatry.


Subject(s)
Carps , Animals , Carps/physiology , Introduced Species , Species Specificity , Electricity , Anguilla/physiology , Conservation of Natural Resources/methods
2.
Sci Rep ; 14(1): 20609, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232067

ABSTRACT

Dams commonly restrict fish movements in large rivers but can also help curtail the spread of invasive species, such as invasive bigheaded carps (Hypophthalmichthys spp). To determine how dams in the upper Mississippi River (UMR) affect large-scale invasive and native fish migrations, we tracked American paddlefish (Polyodon spathula) and bigheaded carp across > 600 river km (rkm) and 16 navigation locks and dams (LD) of the UMR during 2 years with contrasting water levels. In 2022, a low-water year, both native paddlefish and invasive bigheaded carp had low passage rates (4% and 0.6% respectively) through LD15, a movement bottleneck being studied for invasive carp control. In contrast, flooding in 2023 led to open-river conditions across multiple dams simultaneously, allowing 53% of paddlefish and 46% of bigheaded carp detected in Pool 16 to move upstream through LD15. Bigheaded carp passed upstream through LD15 rapidly (µ = 32 rkm per day) a maximum of 381 rkm, whereas paddlefish moved an average of 9 upstream rkm per day (maximum of 337 rkm). Our results can inform managers examining trade-offs between actions that enhance native fish passage or deter movements of invasive species. This understanding is critical because current climate change models project increases in flooding events like that observed during 2023.


Subject(s)
Animal Migration , Floods , Introduced Species , Rivers , Animals , Animal Migration/physiology , Fishes/physiology , Carps/physiology
3.
Sci Rep ; 14(1): 19484, 2024 08 22.
Article in English | MEDLINE | ID: mdl-39174601

ABSTRACT

The aim of this work is to examine the effects of vitamin E addition to water on the structure of the gill tissue and energy metabolism of crucian carp (Carassius auratus) under cooling stress. The crucian carp were chilled using a cold acclimation intelligent chilling equipment from 20 °C to 5 °C. They were divided into three groups: the control group (E1), the negative control group (E2), and the 100 mg/L vitamin E (E3) solution. Three different temperature points (20 °C, 10 °C, and 5 °C) were used to collect, test, and analyze the samples. The findings demonstrated that in the E3 treatment group, phosphoenolpyruvate carboxykinase, acetyl coenzyme A carboxylase, total cholesterol, urea nitrogen, triglyceride, and fatty acid synthase contents were significantly lower under cooling stress than those in the E1 and E2 treatment groups (P < 0.05). The E3 therapy group had significantly greater blood glucose, glycogen, and glycogen synthase levels than the E1 and E2 treatment groups (P < 0.05). The levels of pyruvate kinase in the E1, E2, and E3 treatment groups did not differ significantly. Crucian carp's gill tissue changed under cooling stress, including capillary dilatation, and the E3 treatment group experienced less damage overall than the E1 and E2 treatment groups. In conclusion, supplementing water with vitamin E to treat crucian carp can decrease damage, improve the body's ability to withstand cold, and slow down the stress response brought on by cooling stress. This provides a theoretical basis for supplementing water with vitamin E to fish stress relief.


Subject(s)
Carps , Energy Metabolism , Gills , Vitamin E , Animals , Gills/metabolism , Gills/drug effects , Vitamin E/pharmacology , Vitamin E/metabolism , Energy Metabolism/drug effects , Carps/metabolism , Carps/physiology , Cold Temperature , Stress, Physiological/drug effects , Goldfish/metabolism , Goldfish/physiology , Glycogen/metabolism , Cold-Shock Response/drug effects , Blood Glucose/metabolism
4.
Sci Total Environ ; 951: 175519, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39168342

ABSTRACT

The antiepileptic drug carbamazepine (CBZ) has been widely detected in freshwater, yet its toxic actions in fish at multiple endpoints and the subsequent recovery patterns of the impacted are less discussed. This study investigated the bioaccumulation, physiological and behavioral changes of crucian carp (Carassius carassius) following CBZ exposure (G1 = 6.15 µg/L, G2 = 61.5 µg/L, G3 = 615 µg/L, G4 = 6150 µg/L) and subsequent recovery. Our results showed that CBZ was more likely to accumulate in the liver and brain than in the gills. A concentration-dependent phenomenon was observed; however, the residual CBZ decreased to similar levels after recovery. The behavioral indicators (i.e. feeding, social and spontaneous swimming) were significantly inhibited after 7-days of CBZ exposure, and only recovered at low concentration treatment (G1) after 7-days recovery in CBZ-free water. The acetylcholinesterase (AChE) activity in the brain and superoxide dismutase (SOD) activity in the liver and gills were induced after CBZ exposure and returned to normal levels after 7-days of recovery. In contrast, the inhibition of catalase (CAT) activity caused by CBZ exposure persisted in the high concentration treatment (G4) after recovery. Furthermore, correlation analysis indicated that changes in feeding behavior were closely related to the variation of CBZ concentrations in tissues, and the persistence of abnormal swimming and social behavior was closely related to gill CAT activity. These findings contribute to explore the toxic mechanisms of CBZ and highlight the recovery process and connections between various endpoints.


Subject(s)
Bioaccumulation , Carbamazepine , Carps , Water Pollutants, Chemical , Animals , Carps/metabolism , Carps/physiology , Water Pollutants, Chemical/toxicity , Carbamazepine/toxicity , Behavior, Animal/drug effects , Gills/metabolism , Gills/drug effects , Anticonvulsants , Liver/metabolism , Liver/drug effects , Brain/metabolism , Brain/drug effects
5.
PeerJ ; 12: e17834, 2024.
Article in English | MEDLINE | ID: mdl-39131606

ABSTRACT

Understanding the movement patterns of an invasive species can be a powerful tool in designing effective management and control strategies. Here, we used a Bayesian multistate model to investigate the movement of two invasive carp species, silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis), using acoustic telemetry. The invaded portions of the Illinois and Des Plaines Rivers, USA, are a high priority management zone in the broader efforts to combat the spread of invasive carps from reaching the Laurentian Great Lakes. Our main objective was to characterize the rates of upstream and downstream movements by carps between river pools that are maintained by navigation lock and dam structures. However, we also aimed to evaluate the efficacy of the available telemetry infrastructure to monitor carp movements through this system. We found that, on a monthly basis, most individuals of both species remained within their current river pools: averaging 76.2% of silver carp and 75.5% of bighead carp. Conversely, a smaller proportion of silver carp, averaging 14.2%, and bighead carp, averaging 13.9%, moved to downstream river pools. Movements towards upstream pools were the least likely for both species, with silver carp at an average of 6.7% and bighead carp at 7.9%. The highest probabilities for upstream movements were for fish originating from the three most downstream river pools, where most of the population recruitment occurs. However, our evaluation of the telemetry array's effectiveness indicated low probability to detect fish in this portion of the river. We provide insights to enhance the placement and use of these monitoring tools, aiming to deepen our comprehension of these species' movement patterns in the system.


Subject(s)
Bayes Theorem , Carps , Introduced Species , Rivers , Telemetry , Animals , Telemetry/methods , Telemetry/instrumentation , Telemetry/veterinary , Carps/physiology , Illinois , Animal Migration/physiology
6.
J Anim Ecol ; 93(8): 1135-1146, 2024 08.
Article in English | MEDLINE | ID: mdl-38898692

ABSTRACT

Fish fins are remarkable devices of propulsion. Fin morphology is intimately linked to locomotor performance, and hence to behaviours that influence fitness, such as foraging and predator avoidance. This foreshadows a connection between fin morphology and variation in predation risk. Yet, whether prey can adjust fin morphology according to changes in perceived risk within their lifetime (a.k.a. predator-induced plasticity) remains elusive. Here, we quantify the structural size of five focal fins in crucian carp (Carassius carassius) following controlled manipulations to perceived predation risk (presence/absence of pike Esox lucius). We also assess if crucian carp respond to increased predation risk by shifts in dorsal fin colouration, and test for differences in how fish actively use their dorsal fins by quantifying the area of the fin displayed in behavioural trials. We find that crucian carp show phenotypic plasticity with regards to fin size as predator-exposed fish consistently have larger fins. Individuals exposed to perceived predation risk also increased dorsal fin darkness and actively displayed a larger area of the fin to potential predators. Our results thus provide compelling evidence for predator-induced fin enlargement, which should result in enhanced escape swimming performance. Moreover, fin-size plasticity may evolve synergistically with fin colouration and display behaviour, and we suggest that the adaptive value of this synergy is to enhance the silhouette of deep-bodied and hard-to-capture prey to deter gape-limited predators prior to attack. Together, our results provide new perspectives on the role of predation risk in development and evolution of fins.


Subject(s)
Animal Fins , Carps , Esocidae , Predatory Behavior , Animals , Animal Fins/physiology , Animal Fins/anatomy & histology , Carps/physiology , Carps/anatomy & histology , Esocidae/physiology , Esocidae/anatomy & histology , Darkness , Swimming
7.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894411

ABSTRACT

This study aimed to investigate near-infrared spectroscopy (NIRS) in combination with classification methods for the discrimination of fresh and once- or twice-freeze-thawed fish. An experiment was carried out with common carp (Cyprinus carpio). From each fish, test pieces were cut from the dorsal and ventral regions and measured from the skin side as fresh, after single freezing at minus 18 °C for 15 ÷ 28 days and 15 ÷ 21 days for the second freezing after the freeze-thawing cycle. NIRS measurements were performed via a NIRQuest 512 spectrometer at the region of 900-1700 nm in Reflection mode. The Pirouette 4.5 software was used for data processing. SIMCA and PLS-DA models were developed for classification, and their performance was estimated using the F1 score and total accuracy. The predictive power of each model was evaluated for fish samples in the fresh, single-freezing, and second-freezing classes. Additionally, aquagrams were calculated. Differences in the spectra between fresh and frozen samples were observed. They might be assigned mainly to the O-H and N-H bands. The aquagrams confirmed changes in water organization in the fish samples due to freezing-thawing. The total accuracy of the SIMCA models for the dorsal samples was 98.23% for the calibration set and 90.55% for the validation set. For the ventral samples, respective values were 99.28 and 79.70%. Similar accuracy was found for the PLS-PA models. The NIR spectroscopy and tested classification methods have a potential for nondestructively discriminating fresh from frozen-thawed fish in as methods to protect against fish meat food fraud.


Subject(s)
Carps , Freezing , Spectroscopy, Near-Infrared , Carps/physiology , Animals , Spectroscopy, Near-Infrared/methods
8.
Sci Total Environ ; 940: 173575, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38823712

ABSTRACT

Decabromodiphenyl ethane (DBDPE) and polystyrene nanoplastics (PS-NPs) are emerging pollutants that seriously threaten the ecological safety of the aquatic environment. However, the hepatotoxicity effect of their combined exposure on aquatic organisms has not been reported to date. In, this study, the effects of single or co-exposure of DBDPE and PS-NPs on grass carp hepatocytes were explored and biomarkers related to oxidative stress, ferroptosis, and inflammatory cytokines were evaluated. The results show that both single and co-exposure to DBDPE and PS-NPs caused oxidative stress. Oxidative stress was induced by increasing the contents of pro-oxidation factors (ROS, MDA, and LPO), inhibiting the activity of antioxidant enzymes (CAT, GPX, T-SOD, GSH, and T-AOC), and downregulating the mRNA expressions of antioxidant genes (GPX1, GSTO1, SOD1, and CAT); the effects of combined exposure were stronger overall. Both single and co-exposure to DBDPE and PS-NPs also elevated Fe2+ content, promoted the expressions of TFR1, STEAP3, and NCOA4, and inhibited the expressions of FTH1, SLC7A11, GCLC, GSS, and GPX4; these effects resulted in iron overload-induced ferroptosis, where co-exposure had stronger adverse effects on ferroptosis-related biomarkers than single exposure. Moreover, single or co-exposure enhanced inflammatory cytokine levels, as evidenced by increased mRNA expressions of IL-6, IL-12, IL-17, IL-18, IL-1ß, TNF-α, IFN-γ, and MPO. Co-exposure exhibited higher expression of pro-inflammatory cytokines compared to single exposure. Interestingly, the ferroptosis inhibitor ferrostatin-1 intervention diminished the above changes. In brief, the results suggest that DBDPE and PS-NPs trigger elevated levels of inflammatory cytokines in grass crap hepatocytes. This elevation is achieved via oxidative stress and iron overload-mediated ferroptosis, where cytotoxicity was stronger under co-exposure compared to single exposure. Overall, the findings contribute to elucidating the potential hepatotoxicity mechanisms in aquatic organisms caused by co-exposure to DBDPE and PS-NPs.


Subject(s)
Bromobenzenes , Carps , Ferroptosis , Hepatocytes , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Animals , Oxidative Stress/drug effects , Ferroptosis/drug effects , Carps/physiology , Water Pollutants, Chemical/toxicity , Hepatocytes/drug effects , Polystyrenes/toxicity , Bromobenzenes/toxicity , Inflammation/chemically induced , Flame Retardants/toxicity
9.
BMC Genomics ; 25(1): 548, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824502

ABSTRACT

Gibel carp (Carassius gibelio) is a cyprinid fish that originated in eastern Eurasia and is considered as invasive in European freshwater ecosystems. The populations of gibel carp in Europe are mostly composed of asexually reproducing triploid females (i.e., reproducing by gynogenesis) and sexually reproducing diploid females and males. Although some cases of coexisting sexual and asexual reproductive forms are known in vertebrates, the molecular mechanisms maintaining such coexistence are still in question. Both reproduction modes are supposed to exhibit evolutionary and ecological advantages and disadvantages. To better understand the coexistence of these two reproduction strategies, we performed transcriptome profile analysis of gonad tissues (ovaries) and studied the differentially expressed reproduction-associated genes in sexual and asexual females. We used high-throughput RNA sequencing to generate transcriptomic profiles of gonadal tissues of triploid asexual females and males, diploid sexual males and females of gibel carp, as well as diploid individuals from two closely-related species, C. auratus and Cyprinus carpio. Using SNP clustering, we showed the close similarity of C. gibelio and C. auratus with a basal position of C. carpio to both Carassius species. Using transcriptome profile analyses, we showed that many genes and pathways are involved in both gynogenetic and sexual reproduction in C. gibelio; however, we also found that 1500 genes, including 100 genes involved in cell cycle control, meiosis, oogenesis, embryogenesis, fertilization, steroid hormone signaling, and biosynthesis were differently expressed in the ovaries of asexual and sexual females. We suggest that the overall downregulation of reproduction-associated pathways in asexual females, and their maintenance in sexual ones, allows the populations of C. gibelio to combine the evolutionary and ecological advantages of the two reproductive strategies. However, we showed that many sexual-reproduction-related genes are maintained and expressed in asexual females, suggesting that gynogenetic gibel carp retains the genetic toolkits for meiosis and sexual reproduction. These findings shed new light on the evolution of this asexual and sexual complex.


Subject(s)
Carps , Reproduction, Asexual , Reproduction , Animals , Female , Reproduction, Asexual/genetics , Reproduction/genetics , Carps/genetics , Carps/physiology , Male , Transcriptome , Gene Expression Profiling , Ovary/metabolism , Polymorphism, Single Nucleotide
10.
Aquat Toxicol ; 273: 107009, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909584

ABSTRACT

Microplastics (MPs) are a heterogeneous class of pollutants fouling aquatic environments and they are hazardous to aquatic organisms. This study investigated the size-dependent effects of polystyrene microspheres (PSMPs) on the swimming ability, metabolism, and oxidative stress of juvenile grass carp (Ctenopharyngodon idella). Test fish were exposed to four sizes of PSMPs (0.07, 0.5, 5, and 20-µm), and swimming ability was tested after different exposure times (2, 7, and 15 days). To measure the effect on swimming ability, critical swimming speed (Ucrit) was determined, and to assess metabolic effects, oxygen consumption (MO2), routine metabolic rate (RMR), maximum oxygen consumption (MMR), and excess post-exercise oxygen consumption (EPOC) were determined. To assess the effects on oxidative stress, the activities of two antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) were determined in the liver and gills of test fish. After exposure to 20 µm PSMPs, there was a significant drop in Ucrit compared to the control group (P<0.05), with decreases of 22 % on Day 2 and Day 7, and 21 % on Day 15. The RMR and MMR increased significantly (P<0.05), the RMR by 23.9 % on Day 2 and the MMR by 17.2 % on Day 2 and on Day 15, 44.7 % and 20.0 % respectively. The EPOC decreased with exposure time, by 31 % (0.07-µm), 45 %-(0.5-µm), 49 % (5-µm), and 57 % (20-µm) after 15 days. Exposure to the larger PSMPs increased CAT and SOD activity more than the smaller PSMPs and the increases began with SOD activity in the gills. The larger PSMPs were consistently more harmful to juvenile grass carp than the smaller PSMPs. Our results clearly show that PSMPs have detrimental effects on juvenile grass carp and provide additional scientific evidence that environmental monitoring and regulation of microplastic pollution is necessary.


Subject(s)
Carps , Microspheres , Polystyrenes , Swimming , Water Pollutants, Chemical , Animals , Carps/physiology , Carps/metabolism , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Catalase/metabolism , Superoxide Dismutase/metabolism , Microplastics/toxicity , Liver/drug effects , Liver/metabolism , Oxygen Consumption/drug effects , Gills/drug effects , Gills/metabolism
11.
J Exp Biol ; 227(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38779846

ABSTRACT

Very few vertebrates survive without oxygen (anoxia) for more than a few minutes. Crucian carp (Carassius carassius) are one example, surviving months of anoxia at low temperatures, and we hypothesised that they maintain mitochondrial membrane potential and function. Isolated crucian carp cardiomyocytes indeed maintained mitochondrial membrane potential after blocking complex IV of the electron transport system with cyanide, while those of anoxia-intolerant trout depolarised. When complexes I-III were inhibited, crucian carp mitochondria depolarised, indicating that these complexes need to function during anoxia. Mitochondrial membrane potential depended on reversal of ATP synthase in chemical anoxia, as blocking with cyanide combined with oligomycin to inhibit ATP synthase led to depolarisation. ATP synthase activity was reduced in the heart after 1 week of anoxia in crucian carp, together with a downregulation of ATP synthase subunit gene expression. However, the morphology of cardiac mitochondria was not affected by 1 week of anoxia, even with a large increase in mitofusin 2 mRNA expression. Cardiac citrate synthase activity was not affected by anoxia, while cytochrome c oxidase activity was increased. We show how mitochondria respond to anoxia. A mechanistic understanding of how mitochondrial function can be maintained in anoxia may provide new perspectives to reduce mitochondrial damage in anoxia-sensitive organisms.


Subject(s)
Carps , Membrane Potential, Mitochondrial , Animals , Carps/metabolism , Carps/physiology , Membrane Potential, Mitochondrial/drug effects , Oxygen/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Hypoxia/metabolism , Mitochondria, Heart/metabolism , Mitochondria/metabolism
12.
Fish Shellfish Immunol ; 150: 109624, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740228

ABSTRACT

Avermectin is one of the widely used anthelmintics in aquaculture and exhibits substantial toxicity to aquatic organisms. Silybin is extensively used for its anti-inflammatory, antioxidant and anti-apoptotic biological properties. Heart is essential for the survival of fish and plays a vital role in pumping blood oxygen and nutrients. Residual avermectin in water poses harm to carp. However, there is still insufficient research on whether silybin can mitigate the toxicity of avermectin to carp heart tissues. In this research, we established a model involving carp subjected to acute avermectin exposure and administered diets containing silybin to explore the potential protective effects of silybin against avermectin-induced cardiotoxicity. The results revealed that avermectin induced oxidative stress, inflammation, endoplasmic reticulum (ER) stress, mitochondrial pathway apoptosis and autophagy in the cardiac tissues of carp. Compared with the avermectin group, silybin significantly reduced ROS accumulation in cardiac tissues, restored antioxidant enzyme activity, inhibited mRNA transcript levels of pro-inflammatory-related factors, and attenuated ER stress, mitochondrial pathway apoptosis and autophagy. Protein-protein interaction (PPI) analysis demonstrated that silybin mitigated avermectin-induced cardiac oxidative stress, inflammation, ER stress, mitochondrial pathway apoptosis and autophagy. Silybin exerted anti-inflammatory effects through the Nuclear Factor kappa B (NF-κB) pathway, antioxidant effects through the Nuclear factor erythroid 2-related factor 2 (Nrf2) - Kelch-like ECH-associated protein 1 (Keap1) pathway, alleviated cardiac ER stress through the Glucose-regulated protein 78 (GRP78)/Activating Transcription Factor 6 (ATF6)/C/EBP homologous protein (CHOP) axis, suppressed apoptosis through the mitochondrial pathway, and inhibited excessive autophagy initiation through the PTEN-induced putative kinase 1 (PINK1)/Parkin RBR E3 ubiquitin protein ligase (PARKIN) signaling pathway. This study provided evidence supporting the protective effect of silybin against avermectin-induced cardiotoxicity in carp, highlighting its potential as a dietary additive to protect fish from adverse effects caused by avermectin exposure.


Subject(s)
Anthelmintics , Carps , Ivermectin , Protective Agents , Silybin , Silybin/pharmacology , Silybin/therapeutic use , Endoplasmic Reticulum Stress , Cardiotoxicity/drug therapy , Carps/physiology , Animals , Ivermectin/toxicity , Protective Agents/pharmacology , Protective Agents/therapeutic use , Apoptosis/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism , Activating Transcription Factor 6/metabolism , Transcription Factor CHOP/metabolism , Reactive Oxygen Species/metabolism , Inflammation/drug therapy , NF-E2-Related Factor 2/metabolism , Biomarkers/blood , Heart/drug effects , Heart/physiology , Myocardium/pathology
13.
Mol Reprod Dev ; 91(5): e23744, 2024 May.
Article in English | MEDLINE | ID: mdl-38800960

ABSTRACT

This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role. This hormonal symphony was further amplified by increased activity of key transcriptional regulators (gata1, gata2, cdx1, sp1, n-myc, hoxc8, plc, tac3, tacr3) and decreased expression of delayed puberty genes (mkrn1, dlk1). In contrast, short days (SD) muted this hormonal chorus, with decreased gnrh gene and regulator expression, elevated mtnr1a, and suppressed gonadal development. In in-vitro, estradiol mimicked the LD effect, boosting gnrh and regulator genes while dampening mtnr1a and melatonin-responsive genes. Conversely, melatonin acted as a conductor, downregulating gnrh and regulator genes and amplifying mtnr1a. Our findings illuminate the crucial roles of melatonin and kisspeptin as opposing forces in regulating pubertal timing. LD-induced melatonin suppression allows the kisspeptin symphony to flourish, triggering GnRH release and, ultimately, gonadal maturation. This delicate dance between photoperiod, melatonin, and kisspeptin orchestrates common carp's transition from juvenile to reproductive life.


Subject(s)
Carps , Kisspeptins , Melatonin , Photoperiod , Sexual Maturation , Animals , Melatonin/metabolism , Kisspeptins/metabolism , Kisspeptins/genetics , Female , Carps/metabolism , Carps/genetics , Carps/growth & development , Carps/physiology , Sexual Maturation/physiology , Fish Proteins/metabolism , Fish Proteins/genetics
14.
Sci Total Environ ; 931: 172947, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703837

ABSTRACT

This study delves into the eco-endocrinological dynamics concerning the impact of dexamethasone (DXE) on the interrenal axis in juvenile carp, Cyprinus carpio. Through a comprehensive analysis, we investigated the effects of DXE exposure on oxidative stress, biochemical biomarkers, gene expression, and bioaccumulation within the interrenal axis. Results revealed a concentration-dependent escalation of cellular oxidation biomarkers, including 1) hydroperoxides content (HPC), 2) lipid peroxidation level (LPX), and 3) protein carbonyl content (PCC), indicative of heightened oxidative stress. Concurrently, the activity of critical antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT), significantly increased, underscoring the organism's response to oxidative insult. Notable alterations were observed in biochemical biomarkers, particularly Gamma-glutamyl-transpeptidase (GGT) and alkaline phosphatase (ALP) activity, with GGT displaying a significant decrease with increasing DXE concentrations. Gene expression analysis revealed a significant upregulation of stress and inflammation response genes, as well as those associated with sensitivity to superoxide ion presence and calcium signaling, in response to DXE exposure. Furthermore, DXE demonstrated a concentration-dependent presence in interrenal tissue, with consistent bioconcentration factors observed across all concentrations tested. These findings shed light on the physiological and molecular responses of juvenile carp to DXE exposure, emphasizing the potential ecological implications of DXE contamination in aquatic environments. Understanding these dynamics is crucial for assessing the environmental impact of glucocorticoid pollutants and developing effective management strategies to mitigate their adverse effects on aquatic ecosystems.


Subject(s)
Carps , Dexamethasone , Oxidative Stress , Water Pollutants, Chemical , Animals , Carps/metabolism , Carps/physiology , Water Pollutants, Chemical/toxicity , Biomarkers/metabolism , Lipid Peroxidation/drug effects , Kidney/metabolism , Kidney/drug effects
15.
Article in English | MEDLINE | ID: mdl-38759883

ABSTRACT

In this study, grass carp (33.28 ± 0.05 g) were fed three diets for 8 weeks: control (crude protein [CP] 30%, crude lipid [CL] 6%), low protein (LP; CP16%, CL6%), and low protein with high-fat (LPHF; CP16%, CL10%). The final body weight decreased in the LP and LPHF groups compared to the Control (P < 0.05). Liver triglycerides, total cholesterol, and nonesterified fatty acids were higher in the LP group than the Control, whereas these indexes in the LPHF group were higher than those in the LP group (P < 0.05). The LP group had intestinal barrier damage, while the LPHF group had a slight recovery. TNF-α, IL-8, and IL-1ß content were lower in the LP group than in the Control (P < 0.05), and even higher in the LPHF group (P < 0.05). The expressions of endoplasmic reticulum stress-related genes Activating transcription factor 6 (ATF-6) and Glucose-regulated protein (GRP78) were higher in the LPHF group against the LP group (P < 0.05). The IL-1ß and TNF-α content negatively correlated with intestinal Actinomycetes and Mycobacterium abundance (P < 0.05). The muscle fiber diameter was smaller in both the LP and LPHF groups than the control (P < 0.05), with the LP group showing metabolites related to protein digestion and absorption, and LPHF group exhibiting metabolites related to taste transmission. The results demonstrate reducing dietary protein affects growth, causing liver lipid accumulation, reduced enteritis response, and increased muscle tightness, while increasing fat content accelerates fat accumulation and inflammation.


Subject(s)
Animal Feed , Carps , Liver , Animals , Carps/metabolism , Carps/growth & development , Carps/physiology , Animal Feed/analysis , Liver/metabolism , Liver/drug effects , Dietary Proteins/pharmacology , Fish Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Intestines/drug effects , Intestines/physiology
16.
Sci Total Environ ; 930: 172679, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38677436

ABSTRACT

Procypris merus, a local fish species found in Guangxi, China is often exposed to both microplastics (MPs) and Cd. However, it remains unclear how these two pollutants affect P. merus. Therefore, we investigated the effects of MPs on Cd accumulation in P. merus. To this end, P. merus was separately exposed to Cd and MPs (500 µg/L) or their combination for 14 days. We found that MPs enhanced Cd accumulation in liver and gills of P. merus. Further, both the single-contaminant (MP and Cd) and combined treatments resulted in lesions in these two tissues, with more severe damage associated with the combined treatment. Even though the effect of MP on the antioxidant defense system of P. merus was limited, the Cd-only and combined treatments considerably affected the antioxidant parameters of P. merus, with the combined treatment showing a stronger effect. GO and KEGG analyses revealed that the differentially expressed genes (DEGs; TNF-related apoptosis-inducing ligand receptor, trail-r) in the Cd-only treatment group were enriched for immune-related GO terms and cell growth and death related pathways, indicating that Cd toxicity affected immune defense in P. merus. The MP-only treatment downregulated DEGs (acyl-CoA synthetase long chain family member 1a, acsl1a) related to lipid metabolism, possibly leading to lipid accumulation in the liver. The combined treatment also upregulated DEGs (aspartate aminotransferase 1, ast 1) associated with immune-related GO terms and amino acid metabolism pathways, suggesting that it affected immune function in P. merus, thereby negatively impacting its health. Results indicated that MPs have additive effects on Cd accumulation and toxicity in rice flower carp. Consequently, MPs ingested by P. merus can promote Cd accumulation, more adverse effects on the health may occur after combined exposure, which can eventually reach humans through the food chain and pose potential risks to human health.


Subject(s)
Cadmium , Carps , Microplastics , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Cadmium/toxicity , Carps/physiology , Microplastics/toxicity , China , Liver/drug effects , Liver/metabolism
17.
Sci Rep ; 14(1): 9556, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664465

ABSTRACT

Bighead carp (Hypophthalmichthys nobilis), silver carp (H. molitrix), black carp (Mylopharyngodon piceus), and grass carp (Ctenopharyngodon idella), are invasive species in North America. However, they hold significant economic importance as food sources in China. The drifting stage of carp eggs has received great attention because egg survival rate is strongly affected by river hydrodynamics. In this study, we explored egg-drift dynamics using computational fluid dynamics (CFD) models to infer potential egg settling zones based on mechanistic criteria from simulated turbulence in the Lower Missouri River. Using an 8-km reach, we simulated flow characteristics with four different discharges, representing 45-3% daily flow exceedance. The CFD results elucidate the highly heterogeneous spatial distribution of flow velocity, flow depth, turbulence kinetic energy (TKE), and the dissipation rate of TKE. The river hydrodynamics were used to determine potential egg settling zones using criteria based on shear velocity, vertical turbulence intensity, and Rouse number. Importantly, we examined the difference between hydrodynamic-inferred settling zones and settling zones predicted using an egg-drift transport model. The results indicate that hydrodynamic inference is useful in determining the 'potential' of egg settling, however, egg drifting paths should be taken into account to improve prediction. Our simulation results also indicate that the river turbulence does not surpass the laboratory-identified threshold to pose a threat to carp eggs.


Subject(s)
Carps , Hydrodynamics , Rivers , Animals , Carps/physiology , Introduced Species , Ovum/physiology , Models, Biological , Models, Theoretical
18.
Environ Pollut ; 349: 123966, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38621451

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are widely present in water ecosystems where they pose a significant threat to aquatic life, but our knowledge about how PBDEs affect feeding is limited. Therefore, this study explored the effects of continuous dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (40 and 4000 ng/g) on the feeding in common carp (Cyprinus carpio) and the underlying mechanism. BDE-47 significantly decreased the food intake of carp. Transcriptome analysis of brain tissue showed that BDE-47 mainly affected the nervous, immune, and endocrine systems. Further examination of the expression levels of appetite factors in the brain revealed that BDE-47 caused dysregulation of appetite factors expressions such as agrp, pomc, cart, etc. In addition, the JAK-STAT signaling pathway was activated under BDE-47 exposure. It can be concluded from these findings that BDE-47 activated the JAK-STAT signaling pathway, causing imbalanced expression of appetite factors, leading to disordered feeding behavior and decreased food intake in carp. These results provide an important reference for a more comprehensive understanding of the hazards posed by BDE-47 on animal feeding and the associated mechanisms.


Subject(s)
Carps , Dietary Exposure , Halogenated Diphenyl Ethers , Janus Kinases , Signal Transduction , Water Pollutants, Chemical , Animals , Halogenated Diphenyl Ethers/toxicity , Carps/metabolism , Carps/physiology , Signal Transduction/drug effects , Water Pollutants, Chemical/toxicity , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Feeding Behavior/drug effects
19.
Ecotoxicol Environ Saf ; 277: 116370, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663198

ABSTRACT

Total dissolved gas (TDG) supersaturation caused by flood discharge water poses a threat to vital activities such as migration, foraging, and evasion in fish species upstream of the Yangtze River, which may impair the ability of fish to pass through fishways during the migration period, causing poor utilization of fishways. Previous studies have shown that TDG supersaturation reduces the critical and burst swimming abilities of fish, suggesting potential adverse effects on swimming performance. However, studies focusing on the impact of TDG on fish swimming behavior in experimental vertical-slot fishways remain scarce. Therefore, in this study, silver carp (Hypophthalmichthys molitrix) and ya-fish (Schizothorax prenanti) were used as the study species, and comparative passage experiments were carried out in an experimental vertical slot fishway to systematically analyze the effects of TDG supersaturation on their passage behavior. The passage success of the silver carp was 57%, 39%, 26%, and 27% at TDG levels of 100%, 110%, 120%, and 130%, respectively. Passage success of ya-fish was 73%, 37%, 31%, and 35% at TDG concentrations of 100%, 110%, 120%, and 130%, respectively. The passage time for both species increased significantly with increasing TDG levels. Furthermore, the passage routes of silver carp changed significantly compared to the control group, whereas the passage routes of ya-fish changed insignificantly. High levels of TDG supersaturation (≥120%) also contributed to a higher mortality rate of ya-fish passing through the vertical slot fishway. The research results provide valuable data on the influence of TDG supersaturation on fish movement behavior responses in experimental vertical slot fishways, offering a reference for the design of fishways and the formulation of reservoir operation schemes.


Subject(s)
Carps , Swimming , Animals , Carps/physiology , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Gases , China , Behavior, Animal/drug effects , Animal Migration/drug effects , Cyprinidae/physiology
20.
Sci Total Environ ; 927: 172105, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38556011

ABSTRACT

A digestibility enhancing effect of natural food on stomachless fish model (Cyprinus carpio) was verified by fluorogenic substrate assays of enzymatic activities in experimental pond carp gut flush and planktonic food over a full vegetative season. Then compared with size-matched conspecific grown artificially (tank carp) and an advanced omnivore species possessing true stomach (tilapia, Oreochromis niloticus). Results suggested activities of digestive enzymes (except amylolytic) were significantly higher in pond carp (p ≤ 0.05) than in the size-matched tank carp. Even compared to tilapia, pond carp appeared superior (p < 0.05; proteolytic or chitinolytic activities) or comparable (p > 0.05; phosphatase or cellulolytic activities). Amylolytic, chitinolytic, and phosphatases activities in pond carp gut significantly increased (p ≤ 0.01) over season. Several orders-of-magnitude higher enzymatic activities were detected in planktonic natural food than expressed in carp gut. Amino acid markers in planktonic food revealed a higher share of zooplankton (microcrustaceans), but not phytoplankton, synchronized with higher activities of complex polysaccharide-splitting enzymes (cellulolytic and chitinolytic) in fish gut. Periods of clear water phase low in chlorophyll-a and nutrients, but high in certain zooplankton (preferably cladocerans), may create a synergistic digestibility effect in pond carp. We conclude aquatic ecosystem components (natural food, water, microbiota) enhance fishes' hydrolyzing capabilities of C/N/P macromolecules and even their complex polymers such as cellulose, chitin, and maybe phytate (to be validated), to the extent that being stomachless is not an issue. Aquatic nutritional ecologists may consider that laboratory-based understandings of digestibility may underestimate digestion efficiency of free-ranging fish in ponds or lakes.


Subject(s)
Carps , Ecosystem , Animals , Carps/physiology , Carps/metabolism , Digestion/physiology , Plankton/physiology , Zooplankton/physiology , Phytoplankton/physiology
SELECTION OF CITATIONS
SEARCH DETAIL