Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.174
Filter
1.
Food Res Int ; 192: 114818, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147513

ABSTRACT

Boiled lotus rhizome discs (BLRDs), as common processed products of lotus rhizome, have gained increasing attention from consumers and food manufacturers. However, the blue pigment formed during boiling affects its appearance and reduces the appetite of BLRDs. In this study, the effects of polyphenols and iron contents on blue pigment formation in BLRDs in different regions and months were investigated. Results revealed that blue variation was more serious in March and April of the second year in Wuhan, and polyphenols and iron contents in these two months were significantly higher than those in other months. Then, UPLC and UV-Vis analysis showed that polyphenols causing the formation of blue pigment in BLRDs were L-dopa, gallocatechin, catechin, epigallocatechin, chlorogenic acid and epicatechin, among which L-dopa (52.450 mg/100 g in fresh lotus rhizome (FLR)) and gallocatechin (36.210 mg/100 g in FLR) possessed the greatest effect. Moreover, the ESI-Q-TOF-MS analysis of L-dopa-iron chelate and gallocatechin-iron chelate suggested that the blue pigment of BLRDs was mainly in the form of bis-complexes under boiling conditions. The study on formation mechanism of blue pigment in BLRDs can provide a reference for lotus rhizome processing.


Subject(s)
Iron , Polyphenols , Rhizome , Rhizome/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Iron/chemistry , Iron Chelating Agents/chemistry , Pigments, Biological/chemistry , Catechin/chemistry , Catechin/analogs & derivatives , Catechin/analysis , Levodopa/chemistry , Lotus/chemistry , Chromatography, High Pressure Liquid , Cooking , Hot Temperature , Chlorogenic Acid/chemistry , Spectrometry, Mass, Electrospray Ionization
2.
Food Res Int ; 192: 114833, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147522

ABSTRACT

This study examined the suppressive effects of 16 selected plant-based foods on α-glucosidase and pancreatic lipase and their antioxidant properties. Among these, the bark of Cinnamomum cassia (Cinnamon, WLN-FM 15) showed the highest inhibitory activity against α-glucosidase and the highest antioxidant activity. Additionally, WLN-FM 15 showed promising results in the other tests. To further identify the bioactive constituents of WLN-FM 15, a multi-bioactivity-labeled molecular networking approach was used through a combination of GNPS-based molecular networking, DPPH-HPLC, and affinity-based ultrafiltration-HPLC. A total of nine procyanidins were identified as antioxidants and inhibitors of α-glucosidase and pancreatic lipase in WLN-FM 15. Subsequently, procyanidins A1, A2, B1, and C1 were isolated, and their efficacy was confirmed through functional assays. In summary, WLN-FM 15 has the potential to serve as a functional food ingredient with the procyanidins as its bioactive constituents. These results also suggest that the multi-bioactivity-labeled molecular networking approach is reliable for identifying bioactive constituents in plant-based foods.


Subject(s)
Antioxidants , Biflavonoids , Catechin , Cinnamomum aromaticum , Glycoside Hydrolase Inhibitors , Lipase , Plant Bark , Proanthocyanidins , Proanthocyanidins/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/analysis , Lipase/antagonists & inhibitors , Lipase/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/analysis , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Plant Bark/chemistry , Cinnamomum aromaticum/chemistry , Biflavonoids/pharmacology , Biflavonoids/analysis , Biflavonoids/chemistry , Catechin/analysis , Catechin/chemistry , Catechin/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Chromatography, High Pressure Liquid , Pancreas/enzymology , alpha-Glucosidases/metabolism , Network Pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
3.
Food Res Int ; 191: 114740, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059930

ABSTRACT

To explore the influence of tea trichomes on the quality of white tea, liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS), and headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to identify non-volatile and volatile compounds white tea without trichomes (WTwt) and pure trichomes (PT). It was found that the bitter and astringent compounds, caffeine (CAF), epigallocatechin gallate (EGCG), epicatechin gallate (ECG) and flavonol glycosides, were mainly enriched in the WTwt, with 16.3-fold, 47.1-fold and 28.7-fold decrease in CAF and EGCG and ECG, respectively, and the content of these compounds in PT were lower than the taste thresholds. In PT, kaempferol-3-O-(p-coumaroyl)-glucoside and kaempferol-3-O-(di-p-coumaroyl)-glucoside were non-volatile marker compounds, and decanal was significant aroma contributor with rOAV = 250.86. Moreover, the compounds in trichomes mainly contributed to the fruity and floral aroma of white tea, among which benzyl alcohol, (E)-geranylacetone, decanal, dodecanal and 6-methyl-5-hepten-2-one were the crucial aroma components, which were 2.1, 1.7, 1.8, 1.4 and 2.2 times as much as the WTwt in the PT, respectively. In conclusion, trichomes can improve the quality of white tea by reducing the bitterness and astringency, increasing the umami, as well as enhancing the fruity and floral aromas.


Subject(s)
Camellia sinensis , Catechin , Gas Chromatography-Mass Spectrometry , Metabolomics , Taste , Tea , Trichomes , Gas Chromatography-Mass Spectrometry/methods , Tea/chemistry , Metabolomics/methods , Trichomes/chemistry , Catechin/analysis , Catechin/analogs & derivatives , Camellia sinensis/chemistry , Solid Phase Microextraction , Humans , Volatile Organic Compounds/analysis , Caffeine/analysis , Chromatography, Liquid/methods , Odorants/analysis , Male , Adult , Liquid Chromatography-Mass Spectrometry
4.
J Agric Food Chem ; 72(31): 17524-17535, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39074251

ABSTRACT

A recently published untargeted metabolomics approach toward marker compounds of cocoa germination revealed and identified 12-hydroxyjasmonic acid sulfate, (+)-catechin, and (-)-epicatechin as the most downregulated compounds and two hydroxymethylglutaryl glucosides (HMG gluc) A and B, among others, as the decisive upregulated compounds in the germinated material. These findings were quantitatively evaluated using ultrahigh-performance liquid chromatography-tandem mass spectrometry not only in previously examined sample material but also in a vastly expanded array of cocoa samples of different provenience and process and in cocoa products such as cocoa liquor and chocolate. Hereby, yields of newly identified HMG gluc derivatives could be determined in raw, fermented, germinated, and alternatively processed cocoa, and isomers of HMG gluc A and B could be established as key process indicators. Based on unsupervised clustering and supervised classification, models could identify germinated samples in testing sets consisting of raw, fermented, and germinated samples.


Subject(s)
Cacao , Germination , Seeds , Cacao/chemistry , Cacao/metabolism , Cacao/growth & development , Cacao/genetics , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Catechin/metabolism , Catechin/analysis , Catechin/analogs & derivatives , Metabolomics
5.
Sensors (Basel) ; 24(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38894153

ABSTRACT

As a non-destructive, fast, and cost-effective technique, near-infrared (NIR) spectroscopy has been widely used to determine the content of bioactive components in tea. However, due to the similar chemical structures of various catechins in black tea, the NIR spectra of black tea severely overlap in certain bands, causing nonlinear relationships and reducing analytical accuracy. In addition, the number of NIR spectral wavelengths is much larger than that of the modeled samples, and the small-sample learning problem is rather typical. These issues make the use of NIRS to simultaneously determine black tea catechins challenging. To address the above problems, this study innovatively proposed a wavelength selection algorithm based on feature interval combination sensitivity segmentation (FIC-SS). This algorithm extracts wavelengths at both coarse-grained and fine-grained levels, achieving higher accuracy and stability in feature wavelength extraction. On this basis, the study built four simultaneous prediction models for catechins based on extreme learning machines (ELMs), utilizing their powerful nonlinear learning ability and simple model structure to achieve simultaneous and accurate prediction of catechins. The experimental results showed that for the full spectrum, the ELM model has better prediction performance than the partial least squares model for epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and epigallocatechin gallate (EGCG). For the feature wavelengths, our proposed FIC-SS-ELM model enjoys higher prediction performance than ELM models based on other wavelength selection algorithms; it can simultaneously and accurately predict the content of EC (Rp2 = 0.91, RMSEP = 0.019), ECG (Rp2 = 0.96, RMSEP = 0.11), EGC (Rp2 = 0.97, RMSEP = 0.15), and EGCG (Rp2 = 0.97, RMSEP = 0.35) in black tea. The results of this study provide a new method for the quantitative determination of the bioactive components of black tea.


Subject(s)
Algorithms , Catechin , Spectroscopy, Near-Infrared , Tea , Catechin/analysis , Catechin/chemistry , Catechin/analogs & derivatives , Spectroscopy, Near-Infrared/methods , Tea/chemistry , Least-Squares Analysis , Machine Learning
6.
Nutrients ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38892535

ABSTRACT

Rice bean [Vigna umbellata (Thunb.) Ohwi and Ohashi], an annual legume in the genus Vigna, is a promising crop suitable for cultivation in a changing climate to ensure food security. It is also a medicinal plant widely used in traditional Chinese medicine; however, little is known about the medicinal compounds in rice bean. In this study, we assessed the diuretic effect of rice bean extracts on mice as well as its relationship with the contents of eight secondary metabolites in seeds. Mice gavaged with rice bean extracts from yellow and black seeds had higher urinary output (5.44-5.47 g) and water intake (5.8-6.3 g) values than mice gavaged with rice bean extracts from red seeds. Correlation analyses revealed significant negative correlations between urine output and gallic acid (R = -0.70) and genistein (R = -0.75) concentrations, suggesting that these two polyphenols negatively regulate diuresis. There were no obvious relationships between mice diuresis-related indices (urine output, water intake, and weight loss) and rutin or catechin contents, although the concentrations of both of these polyphenols in rice bean seeds were higher than the concentrations of the other six secondary metabolites. Our study findings may be useful for future research on the diuretic effects of rice bean, but they should be confirmed on the basis of systematic medical trials.


Subject(s)
Diuretics , Polyphenols , Seeds , Animals , Mice , Diuretics/pharmacology , Seeds/chemistry , Polyphenols/pharmacology , Polyphenols/analysis , Male , Plant Extracts/pharmacology , Vigna/chemistry , Gallic Acid/pharmacology , Genistein/pharmacology , Catechin/pharmacology , Catechin/analysis , Rutin/pharmacology , Rutin/analysis , Diuresis/drug effects
7.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930808

ABSTRACT

In this study, a beverage made from a combination of Agave sap (AS) and prickly pear juice (PPJ) was analyzed for its nutrients and bioactive and potentially health-promoting compounds. The beverage was evaluated for its ability to act as an antioxidant, regulate glycemic properties, and undergo gut bacterial fermentation in vitro. The major mono- and oligosaccharides present in the beverage were galacturonic acid (217.74 ± 13.46 mg/100 mL), rhamnose (227.00 ± 1.58 mg/100 mL), and fructose (158.16 ± 8.86 mg/mL). The main phenolic compounds identified were protocatechuic acid (440.31 ± 3.06 mg/100 mL) and catechin (359.72 ± 7.56 mg/100 mL). It was observed that the beverage had a low glycemic index (<40) and could inhibit digestive carbohydrases. The combination of ingredients also helped to reduce gas production during AS fermentation from 56.77 cm3 to 15.67 cm3. The major SCFAs produced during fermentation were butyrate, acetate, and propionate, with valerate being produced only during the late fermentation of the AS. This beverage is rich in bioactive compounds, such as polyphenols and dietary fiber, which will bring health benefits when consumed.


Subject(s)
Agave , Antioxidants , Fruit and Vegetable Juices , Agave/chemistry , Fruit and Vegetable Juices/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Fermentation , Hydroxybenzoates/analysis , Polyphenols/analysis , Polyphenols/chemistry , Pyrus/chemistry , Phenols/analysis , Phenols/chemistry , Rhamnose/analysis , Rhamnose/chemistry , Catechin/analysis , Catechin/chemistry , Catechin/analogs & derivatives , Hexuronic Acids
8.
Food Res Int ; 190: 114638, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945627

ABSTRACT

Tea trichomes were regarded as an essential evaluation index for reflecting tea flavor quality in terms of aroma and influence on infusion color. This study reveals the impact of golden oxidized trichomes on the color, volatile and non-volatile metabolites of black teas through comparative metabolomics combined quantitative analysis on hongbiluo (trichomes-deficiency black teas), hongjinluo (trichomes-rich black teas), and trichomes (from hongjinluo). Forty-six volatile components were detected using headspace solid-phase microextraction gas chromatography-mass spectrometry, while the results suggested that the contribution of trichomes to black teas is limited. A total of 60 marker non-volatile compounds were identified, including catechins, catechin oxidation products, flavonoid glycosides, organic acids, hydrolysable tannins and amino acids. Notably, p-coumaroyl-kaempferol glucosides, and catechin dimers demonstrated high levels in independent trichomes and showed a positive correlation with the brightness and yellow hue of black tea infusions, specifically kaempferol 3-O-di-(p-coumaroyl)-hexoside. Furthermore, results from fractional extraction analysis of separated trichomes provided that N-ethyl-2-pyrrolidinone-substituted epicatechin gallates, acylated kaempferol glycosides, and chromogenic catechins dimers, such as theaflavins, were primary color contributors in oxidized trichomes. Especially, we found that epicatechin gallate (ECG) and its derivates, 3'-O-methyl-ECG and N-ethyl-2-pyrrolidinone-substituted ECG, highly accumulated in trichomes, which may be associated with the varieties of hongbiluo and hongjinluo black teas. Eventually, addition tests were applied to verify the color contribution of trichome mixtures. Our findings employed comprehensive information revealing that golden oxidized trichomes contributed significantly to the brightness and yellow hue of black tea infusion, but their contribution to the aroma and metabolic profile is limited. These findings may contribute to the effective modulation of the infusion color during black tea production by regulating the proportion of tea trichomes or screening trichomes-rich or deficiency varieties.


Subject(s)
Camellia sinensis , Color , Gas Chromatography-Mass Spectrometry , Metabolomics , Oxidation-Reduction , Tea , Trichomes , Volatile Organic Compounds , Metabolomics/methods , Tea/chemistry , Camellia sinensis/chemistry , Volatile Organic Compounds/analysis , Trichomes/chemistry , Trichomes/metabolism , Catechin/analysis , Catechin/analogs & derivatives , Catechin/metabolism , Solid Phase Microextraction , Plant Leaves/chemistry , Metabolome , Flavonoids/analysis
9.
Elife ; 132024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896457

ABSTRACT

The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (-)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.


Studies about the health benefits of foods or nutrients are often inconsistent. One study may find a health benefit of a particular food and may recommend that people increase their consumption of this food to reduce their disease risk. Yet another study may find the opposite. Inconsistent study results fuel confusion and frustration, and reduce trust in research. Limitations in the studies' designs are likely to be blamed for the inconsistent findings. For example, many studies rely on participants to self-report their food intake and on databases of the nutritional content of food. But people may not accurately report their food intake. Foods vary in their nutritional content, even between two items of the same food such as two apples. And how individuals metabolize foods can further affect the nutrients they receive. Nutritional biomarkers are a potential alternative to measuring dietary intake of specific nutrients. Biomarkers are compounds the body produces when it metabolizes a specific nutrient. Measuring biomarkers therefore give scientists a more accurate and unbiased assessment of nutrient intake. Ottaviani et al. conducted a study to test the differences when estimating nutrient intake using nutritional biomarkers compared with more conventional tools. They analyzed data from a nutrition study that involved over 18,000 participants. The experiments used computer modelling to assess study results using self-reported food intake in combination with food composition database information, or measures of three biomarkers estimating the intake of flavan-3-ols, epicatechin, and nitrates. The models showed that self-reported intake and food database information often led to inaccurate results that did not align well with biomarker measurements. Measuring nutritional biomarkers provides a more accurate and unbiased assessment of nutritional intake. Using these measurements instead of traditional methods for measuring nutrient intake may help increase the reliability of nutrition research. Scientists must work to identify and confirm biomarkers of nutrients to facilitate this work. Using these more precise nutrient measurements in studies may result in more consistent results. It may also lead to more trustworthy recommendations for consumers.


Subject(s)
Biomarkers , Self Report , Humans , Catechin/analysis , Bias , Nutritional Sciences , Nutrition Assessment , Diet , Food Analysis
10.
Food Chem ; 454: 139834, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38815322

ABSTRACT

Modern science often overlooks to reveal the scientific essence of traditional crafts to promote their inheritance and development. In this work, five different types of tea products were prepared using the same variety of tea leaves referring to traditional methods. The analysis of their components and activities indicated that the processing reduced total catechin contents (from 172.8 mg/g to 48.2 mg/g) and promoted the synthesis of theaflavins (from 17.9 mg/g to 43.4 mg/g), reducing antioxidant and antimicrobial abilities of the resulting tea products. On this basis, the tea products were applied to "tea flavored beef" to reveal long-term effects. Within 15 days of storage, tea treatment showed remarkable antimicrobial and antioxidant activities on the beef. Also, the declines of sensory scores and texture of the treated beef were significantly suppressed. Meanwhile, protein degradation in the beef was inhibited, limiting the contents of various biogenic amines within relatively low levels.


Subject(s)
Antioxidants , Camellia sinensis , Flavoring Agents , Tea , Animals , Cattle , Camellia sinensis/chemistry , Flavoring Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Tea/chemistry , Taste , Catechin/chemistry , Catechin/analysis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , China , Biflavonoids/chemistry , Biflavonoids/analysis , Biflavonoids/pharmacology
11.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792205

ABSTRACT

This research presents a new, eco-friendly, and swift method combining solid-phase extraction and hydrophobic deep eutectic solvents (DES) with high-performance liquid chromatography (SPE-DES-HPLC) for extracting and quantifying catechin and epicatechin in Shanxi aged vinegar (SAV). The parameters, such as the elution solvent type, the XAD-2 macroporous resin dosage, the DES ratio, the DES volume, the adsorption time, and the desorption time, were optimized via a one-way experiment. A central composite design using the Box-Behnken methodology was employed to investigate the effects of various factors, including 17 experimental runs and the construction of three-dimensional response surface plots to identify the optimal conditions. The results show that the optimal conditions were an HDES (tetraethylammonium chloride and octanoic acid) ratio of 1:3, an XAD-2 macroporous resin dosage of 188 mg, and an adsorption time of 11 min. Under these optimal conditions, the coefficients of determination of the method were greater than or equal to 0.9917, the precision was less than 5%, and the recoveries ranged from 98.8% to 118.8%. The environmentally friendly nature of the analytical process and sample preparation was assessed via the Analytical Eco-Scale and AGREE, demonstrating that this method is a practical and eco-friendly alternative to conventional determination techniques. In summary, this innovative approach offers a solid foundation for the assessment of flavanol compounds present in SAV samples.


Subject(s)
Acetic Acid , Catechin , Deep Eutectic Solvents , Hydrophobic and Hydrophilic Interactions , Solid Phase Extraction , Chromatography, High Pressure Liquid/methods , Solid Phase Extraction/methods , Acetic Acid/chemistry , Catechin/chemistry , Catechin/analysis , Deep Eutectic Solvents/chemistry , Adsorption
12.
J Sep Sci ; 47(9-10): e2400142, 2024 May.
Article in English | MEDLINE | ID: mdl-38726732

ABSTRACT

Catechins, renowned for their antioxidant properties and health benefits, are commonly present in beverages, particularly tea and wine. An efficient and cost-effective salting-out assisted liquid-liquid extraction (SALLE) method has been developed and validated for the simultaneous determination of six catechins and caffeine in tea and wine samples using high-performance liquid chromatography-ultraviolet (HPLC-UV). This method demonstrates outstanding performance: linearity (1-120 µg/mL, r2 > 0.999), accuracy (96.5%-103.4% recovery), and precision (≤14.7% relative standard deviation), meeting validation requirements set by the US Food and Drug Administration. The reduced sample size (0.1 g) minimizes matrix interferences and costs without compromising sensitivity. All analytes were detected in Camellia sinensis teas, with green tea displaying the highest total catechin content (47.5-100.1 mg/mL), followed by white and black teas. Analysis of wine samples reveals the presence of catechin in all red and white wines, and epigallocatechin gallate in all red wine samples, highlighting the impact of winemaking processes on catechin content. The SALLE-HPLC-UV approach represents a green alternative by eliminating organic waste, surpassing conventional dilution methods in specificity and sensitivity for catechin determination. AGREEprep assessment emphasizes the strengths of the SALLE procedure, including material reusability, throughput efficiency, minimal sample requirements, low energy consumption, and the absence of organic waste generation.


Subject(s)
Caffeine , Catechin , Liquid-Liquid Extraction , Tea , Wine , Chromatography, High Pressure Liquid/methods , Wine/analysis , Caffeine/analysis , Catechin/analysis , Tea/chemistry , Liquid-Liquid Extraction/methods , Spectrophotometry, Ultraviolet , Ultraviolet Rays
13.
Sci Rep ; 14(1): 10424, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710752

ABSTRACT

The storage process has a significant impact on tea quality. Few is known about effect of storage on quality of oolong tea. This study aimed to assess the effect of different storage times on the key chemical components of oolong tea by measuring changes in catechin, free amino acid, and alkaloid content. Variation in the main substances was determined by principal component analysis and heat map analysis. The results revealed notable effects of the storage process on the levels of theanine, epigallocatechin gallate (EGCG), and glutamine. These findings suggest that these compounds could serve as indicators for monitoring changes in oolong tea quality during storage. Additionally, the study observed an increase in the antibacterial ability of tea over time. Correlation analysis indicated that the antibacterial ability against Micrococcus tetragenus and Escherichia coli was influenced by metabolites such as aspartic acid, threonine, serine, gamma-aminobutyric acid, ornithine, alanine, arginine, and EGCG. Overall, this study presents an approach for identifying key metabolites to monitor tea quality effectively with relatively limited data.


Subject(s)
Alkaloids , Amino Acids , Anti-Bacterial Agents , Catechin , Tea , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Catechin/analysis , Tea/chemistry , Amino Acids/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Alkaloids/pharmacology , Alkaloids/analysis , Alkaloids/chemistry , Food Storage/methods , Escherichia coli/drug effects , Camellia sinensis/chemistry
14.
J Food Sci ; 89(6): 3554-3568, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660920

ABSTRACT

Lotus rhizome is an important aquatic vegetable, but the blackening of lotus rhizome epidermis (LRE) seriously affects its appearance and quality, which makes lotus rhizome products unmarketable. In this study, the effects of polyphenols and iron on the LRE color were studied to explore the possible mechanism of LRE blackening. Results indicated that the measurable total phenols contents in the mud treatment (MT) group were significantly reduced, and the total iron contents were significantly increased compared with the bruised treatment group (p < 0.05). The high-performance liquid chromatography results showed that the main polyphenols in LRE were dopa, gallocatechin, and catechin, as well as a small amount of catechol, epicatechin, proanthocyanidin B2, and proanthocyanidin C1. Moreover, the results of color difference and ultraviolet adsorption spectroscopy showed that there were obviously black or brown-gray of dopa (525 nm), gallocatechin (504.5 nm), and catechin (550 and 504.5 nm) with FeCl2. The simulated system treatment of LRE further confirmed that the chromaticity effect of dopa and iron in bruised LRE was similar to that of the MT group, whereas 1% (w/w) ascorbic acid, 2% (w/w) EDTA-2Na, or 3% (w/w) citric acid could solely prohibit the blackening. This suggested that the dopa in LRE and FeCl2 in mud may mainly combine into [2(DOPA-2H+)+Fe3+]- through non-covalent interaction, which leads to the blackening of bruised LRE under neutral conditions. These results can guide the storage of lotus rhizomes and improve the development of the lotus rhizome industry.


Subject(s)
Catechin , Color , Iron , Lotus , Polyphenols , Rhizome , Rhizome/chemistry , Polyphenols/pharmacology , Polyphenols/analysis , Iron/analysis , Catechin/pharmacology , Catechin/analysis , Lotus/chemistry , Chromatography, High Pressure Liquid , Plant Epidermis/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Catechols/pharmacology , Dihydroxyphenylalanine/chemistry , Biflavonoids
15.
Food Chem ; 449: 139173, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38593722

ABSTRACT

Most teas, including white tea, are produced from tender shoots containing both leaf and stem. However, the effect of the stem on white tea quality remains unclear, especially during withering, an essential process. Therefore, this study investigated the withering-induced changes in the leaves and stems of Camellia sinensis cv. 'Fudingdabai' by multi-group analysis. During withering, the levels of catechin and theobromine (i.e., major flavor-related compounds) decreased slightly, mainly in the leaves. The abundance of some proteinaceous amino acids related to fresh taste increased in stems due to increased protein hydrolysis. In addition, changes in biosynthetic pathways caused a decrease in theanine (a major non-proteinaceous amino acid) and an increase in gamma-aminobutyric acid in stems. Terpenes, mainly in the stems, were partially affected by withering. Phenylacetaldehyde, a major contributor to white tea aroma, increased mainly in the stems. These findings reflect the positive contribution of the stem to white tea quality.


Subject(s)
Camellia sinensis , Plant Leaves , Plant Stems , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Camellia sinensis/growth & development , Plant Stems/chemistry , Plant Stems/metabolism , Plant Stems/growth & development , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/growth & development , Tea/chemistry , Tea/metabolism , Catechin/analysis , Catechin/metabolism , Taste
16.
Luminescence ; 39(3): e4727, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38527806

ABSTRACT

Green tea extract (GTE) contains antioxidants that are present in green tea. The active constituents of green tea extract are catechins. This study demonstrates a spectrofluorimetric method for measuring GTE's catechin concentration based on its native fluorescence. To design a quick, sensitive, and ecological spectrofluorimetric approach, all features were investigated and adjusted. This method relies on determining the GTE ethanolic solution's native fluorescence at 312 nm after excitation at 227 nm. The calibration graph displayed a linear regression for values between 0.05 and 1.0 µg mL-1. The detection and quantification limits of the proposed technique were 0.008 and 0.026 µg mL-1, respectively. Two pure catechins present in GTE, (-)-epicatechin and (-)-epigallocatechin gallate, were examined by the proposed method. The analytical estimation of GTE in the pharmaceutical tablet was achieved effectively using this approach. An adequate degree of agreement was found when the findings were compared to those obtained by the comparative technique. Therefore, the novel strategy may be used in the GTE quality control study with minimal risks to people or the environment. The quantum yields of catechins were estimated. The validated technique was accepted by the International Council of Harmonization criteria.


Subject(s)
Camellia sinensis , Catechin , Humans , Catechin/analysis , Spectrometry, Fluorescence , Plant Extracts , Tea , Antioxidants/analysis
17.
J Food Sci ; 89(5): 2730-2746, 2024 May.
Article in English | MEDLINE | ID: mdl-38534189

ABSTRACT

Walnuts undergo rigorous grading before being sold to customers. There are multiple parameters used for the grading, including skin lightness. Walnuts with light skin receive superior grades while walnuts with dark skin are given poor grades or even rejected. However, information on the quality and physicochemical properties of walnuts with varying skin lightness levels is minimal. Therefore, we studied the quality of kernels of varying skin lightness from three common cultivars grown in California, USA (Chandler, Howard, and Tulare). The samples were subjected to size and weight, fat content, free fatty acid, peroxide value, oxidative stability, volatiles, tocopherols, fatty acid profile, and phenol measurements. The dark kernels had significantly lower weight and fat content, higher oxidative stability, and more volatiles than their light counterparts. The dark kernels had higher concentrations of some phenolics but low procyanidin B1 and non-existent epicatechin gallate, compared to the light kernels, indicating that these two phenolics were likely involved in an antioxidant mechanism. Oxidation and depletion of epicatechin gallate likely contributed to the darkening of walnut color.


Subject(s)
Antioxidants , Juglans , Nuts , Phenols , Juglans/chemistry , Phenols/analysis , Nuts/chemistry , Antioxidants/analysis , Color , Tocopherols/analysis , Oxidation-Reduction , Fatty Acids/analysis , Seeds/chemistry , Volatile Organic Compounds/analysis , Catechin/analysis , Fatty Acids, Nonesterified/analysis
18.
Acta Pharm ; 74(1): 81-99, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38554388

ABSTRACT

This study aims to assess the chemical composition of the aqueous extract of Cistus albidus L. leaves, as well as the potential of aqueous and hydroethanol extracts of the leaves and seeds as analgesic, anti--inflammatory, and antioxidant agents. The contents of phenolics and inorganic constituents were determined in C. albidus seeds and leaves; antioxidant capacity was assessed by 3 complementary and diverse tests. The carrageenan-induced paw edema technique was used to investigate the anti-inflammatory effect in vivo, and albumin denaturation to evaluate the anti-inflammatory effect in vitro. The acetic acid-induced contortion test, the tail-flick test, and the plantar test were used to assess the analgesic effi cacy in vivo. Chemical analysis was performed by UPLC-MS/MS to quantify several phenolic compounds including catechin (1,627.6 mg kg-1), quercitrin (1,235.8 mg kg-1) and gallic acid (628. 2 mg kg-1). The ICP analysis revealed that potassium and calcium were the main inorganic components in the seeds and leaves of C. albidus. The hydroethanolic extract of the leaves showed the highest content of polyphenols/flavonoids, whereas the highest value of proantho cyanidins was detected in the aqueous extract of the seeds. All extracts showed potent antioxidant activity related to different phenolic compounds (quercetin, gallic acid, astragalin, catechin, and rutin). The aqueous extract of the leaves strongly inhibited paw edema (76.1 %) after 6 h of treatment and showed maximal inhibition of protein denaturation (191.0 µg mL-1 for 50 % inhibition) and analgesic activity in different nociceptive models. The presented data reveal that C. albidus extracts potentially show antioxidant, anti-inflammatory, and analgesic activities that could confirm the traditional use of this plant.


Subject(s)
Catechin , Cistus , Antioxidants/analysis , Cistus/chemistry , Chromatography, Liquid , Catechin/adverse effects , Catechin/analysis , Plant Extracts/chemistry , Pain/chemically induced , Pain/drug therapy , Tandem Mass Spectrometry , Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Phenols/pharmacology , Gallic Acid/adverse effects , Gallic Acid/analysis , Edema/chemically induced , Edema/drug therapy , Plant Leaves/chemistry
19.
Food Chem ; 447: 139080, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38520904

ABSTRACT

Targeted metabolomics combined with chemometrics were applied to investigate the flavor profiles of 4 white tea samples, which were produced from different maturity fresh tea leaves with different withering methods. Mature leaves that underwent novel withering process at higher temperature (28-30℃) and humidity (75 ± 3 %) (MN) were characterized by intense milky flavor. The content of free amino acids, catechins, and soluble sugars in MN were significantly lower than that in the other 3 tea samples, resulting in a sweet and mellow taste with low bitterness. Meanwhile, MN possessed the highest intensity of milky aroma, which could be mainly attributed to the existence of dihydro-5-pentyl-2(3H)-furanone and 2-pentyl-furan as the key volatile substances with coconut and creamy fragrance. These findings provide insight into the substance foundations of milky flavor, and identified leaf maturity and processing method as the determining factors of the milk-flavored white tea (MFWT).


Subject(s)
Camellia sinensis , Catechin , Camellia sinensis/chemistry , Tea/chemistry , Metabolomics/methods , Catechin/analysis , Odorants/analysis , Plant Leaves/chemistry
20.
Food Chem ; 448: 139088, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38547707

ABSTRACT

The duration of storage significantly influences the quality and market value of Qingzhuan tea (QZT). Herein, a high-resolution multiple reaction monitoring (MRMHR) quantitative method for markers of QZT storage year was developed. Quantitative data alongside multivariate analysis were employed to discriminate and predict the storage year of QZT. Furthermore, the content of the main biochemical ingredients, catechins and alkaloids, and free amino acids (FAA) were assessed for this purpose. The results show that targeted marker-based models exhibited superior discrimination and prediction performance among four datasets. The R2Xcum, R2Ycum and Q2cum of orthogonal projection to latent structure-discriminant analysis discrimination model were close to 1. The correlation coefficient (R2) and the root mean square error of prediction of the QZT storage year prediction model were 0.9906 and 0.63, respectively. This study provides valuable insights into tea storage quality and highlights the potential application of targeted markers in food quality evaluation.


Subject(s)
Camellia sinensis , Food Storage , Metabolomics , Tea , Tea/chemistry , Multivariate Analysis , Camellia sinensis/chemistry , Discriminant Analysis , Catechin/analysis , Catechin/chemistry , Amino Acids/analysis , Amino Acids/chemistry , Alkaloids/analysis , Alkaloids/chemistry , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Plant Extracts/analysis
SELECTION OF CITATIONS
SEARCH DETAIL