Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
J Neuroimmunol ; 382: 578101, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37536050

ABSTRACT

Ginkgo biloba extract (EGb-761) is well-recognized to have neuroprotective properties. Meanwhile, autophagy machinery is extensively involved in the pathophysiological processes of ischemic stroke. The EGb-761 is widely used in the clinical treatment of stroke patients. However, its neuroprotective mechanisms against ischemic stroke are still not fully understood. The present study was conducted to uncover whether the pharmacological effects of EGb-761 can be executed by modulation of the autophagic/lysosomal signaling axis. A Sprague-Dawley rat model of ischemic stroke was established by middle cerebral artery occlusion (MCAO) for 90 min, followed by reperfusion. The EGb-761 was then administered to the MCAO rats once daily for a total of 7 days. Thereafter, the penumbral tissues were acquired to detect proteins involved in the autophagic/lysosomal pathway including Beclin1, LC-3, SQSTM1/p62, ubiquitin, cathepsin B, and cathepsin D by western blot and immunofluorescence, respectively. Subsequently, the therapeutic outcomes were evaluated by measuring the infarct volume, neurological deficits, and neuron survival. The results showed that the autophagic activities of Beclin1 and LC3-II in neurons were markedly promoted by 7 days of EGb-761 therapy. Meanwhile, the autophagic cargoes of insoluble p62 and ubiquitinated proteins were effectively degraded by EGb-761-augmented lysosomal activity of cathepsin B and cathepsin D. Moreover, the infarction size, neurological deficiencies, and neuron death were also substantially attenuated by EGb-761 therapy. Taken together, our study suggests that EGb-761 exerts a neuroprotective effect against ischemic stroke by promoting autophagic/lysosomal signaling in neurons at the penumbra. Thus, it might be a new therapeutic target for treating ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Neuroprotective Agents , Stroke , Rats , Animals , Neuroprotection , Cathepsin B/metabolism , Cathepsin B/pharmacology , Cathepsin D/metabolism , Cathepsin D/pharmacology , Cathepsin D/therapeutic use , Beclin-1/pharmacology , Rats, Sprague-Dawley , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Stroke/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Signal Transduction , Autophagy , Lysosomes/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism
2.
Eur J Neurol ; 29(7): 2084-2096, 2022 07.
Article in English | MEDLINE | ID: mdl-35318785

ABSTRACT

BACKGROUND AND PURPOSE: The therapeutic landscape of spinal muscular atrophy (SMA) has changed dramatically during the past 4 years, but treatment responses differ remarkably between individuals, and therapeutic decision-making remains challenging, underlining the persistent need for validated biomarkers. METHODS: We applied untargeted proteomic analyses to determine biomarkers in cerebrospinal fluid (CSF) samples of SMA patients under treatment with nusinersen. Identified candidate proteins were validated in CSF samples of SMA patients by Western blot and enzyme-linked immunosorbent assay. Furthermore, levels of peripheral neurofilament heavy and light chain were determined. RESULTS: Untargeted proteomic analysis of CSF samples of three SMA type 1 patients revealed the lysosomal protease cathepsin D as a candidate biomarker. Subsequent validation analysis in a larger cohort of 31 pediatric SMA patients (type 1, n = 12; type 2, n = 9; type 3, n = 6; presymptomatically treated, n = 4; age = 0-16 years) revealed a significant decline of cathepsin D levels in SMA patients aged ≥2 months at the start of treatment. Although evident in all older age categories, this decline was only significant in the group of patients who showed a positive motor response. Moreover, downregulation of cathepsin D was evident in muscle biopsies of SMA patients. CONCLUSIONS: We identified a decline of cathepsin D levels in CSF samples of SMA patients under nusinersen treatment that was more pronounced in the group of "treatment responders" than in "nonresponders." We believe that our results indicate a suitability of cathepsin D levels as a possible biomarker in SMA also in older patients, in combination with analysis of peripheral neurofilament light chain in adolescents or alone in adult patients.


Subject(s)
Muscular Atrophy, Spinal , Proteomics , Adolescent , Adult , Aged , Biomarkers/cerebrospinal fluid , Cathepsin D/therapeutic use , Child , Humans , Oligonucleotides , Proteomics/methods
3.
Autophagy ; 16(5): 811-825, 2020 05.
Article in English | MEDLINE | ID: mdl-31282275

ABSTRACT

CTSD (cathepsin D) is one of the major lysosomal proteases indispensable for the maintenance of cellular proteostasis by turning over substrates of endocytosis, phagocytosis and autophagy. Consequently, CTSD deficiency leads to a strong impairment of the lysosomal-autophagy machinery. In mice and humans CTSD dysfunction underlies the congenital variant (CLN10) of neuronal ceroid lipofuscinosis (NCL). NCLs are distinct lysosomal storage disorders (LSDs) sharing various hallmarks, namely accumulation of protein aggregates and ceroid lipofuscin leading to neurodegeneration and blindness. The most established and clinically approved approach to treat LSDs is enzyme replacement therapy (ERT) aiming to replace the defective hydrolase with an exogenously applied recombinant protein. Here we reveal that recombinant human pro-CTSD produced in a mammalian expression system can be efficiently taken up by a variety of cell models, is correctly targeted to lysosomes and processed to the active mature form of the protease. In proof-of-principle experiments we provide evidence that recombinant human CTSD (rhCTSD) can improve the biochemical phenotype of CTSD-deficient hippocampal slice cultures in vitro and retinal cells in vivo. Furthermore, we demonstrate that dosing of rhCTSD in the murine CLN10 model leads to a correction of lysosomal hypertrophy, storage accumulation and impaired autophagic flux in the viscera and central nervous system (CNS). We establish that direct delivery of the recombinant protease to the CNS is required for improvement of neuropathology and lifespan extension. Together these data support the continuation of the pre-clinical studies for the application of rhCTSD in the treatment of NCL.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; BBB: blood brain barrier; CNS: central nervous system; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; ERT: enzyme replacement therapy; GFAP: glial fibrillary acidic protein; INL: inner nuclear layer; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; LDL: low-density lipoprotein; LRP1: low density lipoprotein receptor-related protein 1; LSD: lysosomal storage disorder; MEFs: mouse embryonic fibroblasts; M6P: mannose 6-phosphate; mCTSD: mature CTSD; NCL: neuronal ceroid lipofuscinosis; ONL: outer nuclear layer; PB: phosphate buffer; proCTSD: pro-cathepsin D; LRPAP1: low density lipoprotein receptor-related protein associated protein 1; rhCTSD: human recombinant CTSD; SAPC: saposin C; SAPD: saposin D; ATP5G1: ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C1 (subunit 9); SQSTM1/p62: sequestosome 1; TPP1: tripeptidyl peptidase I.


Subject(s)
Autophagy/drug effects , Cathepsin D/therapeutic use , Enzyme Replacement Therapy , Neuronal Ceroid-Lipofuscinoses/drug therapy , Neuronal Ceroid-Lipofuscinoses/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cathepsin D/metabolism , Disease Models, Animal , Enzyme Replacement Therapy/methods , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Mice, Knockout , Tripeptidyl-Peptidase 1
4.
J Interferon Cytokine Res ; 27(3): 191-9, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17348817

ABSTRACT

Procathepsin D (pCD) is a major secreted protein in estrogen receptor-positive (ER+) breast cancer cell lines. Several independent studies have documented pronounced mitogenic effect of secreted pCD on cancer tissue-derived cell lines, including those from breast, lung, and prostate cancer. It has also been shown that the proliferative effect of pCD involves both autocrine and paracrine modes of action. Recent studies have suggested that pCD could act as a key paracrine communicator between cancer and stromal cells. We have shown earlier that the proliferative activity of pCD depends on the activation peptide sequence of pCD. The present study casts light on the mechanism by which pCD influences the proliferation of cancer cells expressing the ER. Results described in the current paper clearly show that pCD initiates secretion of cytokines interleukin-4 (IL-4), IL-8, IL-10, IL-13, macrophage inflammatory protein-1beta and (MIP-1beta) from such tumor cells. Secreted cytokines take part in the proliferation of the cancer cells, as proven by selective inhibition using antibodies. In addition, expression of cytokine receptors on tested cell lines corresponded to the effects of individual cytokines. An analogous pattern was also observed for fibroblasts, which, under physiologic conditions, are the cells in closest contact with the tumor tissue and play a role in tumor growth and invasion. Our observations were further supported by coculture experiments that are in agreement. Although very similar in response to addition of pCD, the invasive ER- cells do not secrete cytokines. Together with previous in vivo results, these data point to pCD as one of key molecules for therapeutic attack in breast cancer.


Subject(s)
Autocrine Communication , Breast Neoplasms/metabolism , Cathepsin D/metabolism , Cell Proliferation , Cytokines/metabolism , Enzyme Precursors/metabolism , Paracrine Communication , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cathepsin D/therapeutic use , Cell Line, Tumor , Enzyme Precursors/therapeutic use , Female , Humans , Receptors, Estrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...