Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.223
Filter
1.
Nat Commun ; 15(1): 8551, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39362850

ABSTRACT

The potent neurotoxic venom of the black widow spider contains a cocktail of seven phylum-specific latrotoxins (LTXs), but only one, α-LTX, targets vertebrates. This 130 kDa toxin binds to receptors at presynaptic nerve terminals and triggers a massive release of neurotransmitters. It is widely accepted that LTXs tetramerize and insert into the presynaptic membrane, thereby forming Ca2+-conductive pores, but the underlying mechanism remains poorly understood. LTXs are homologous and consist of an N-terminal region with three distinct domains, along with a C-terminal domain containing up to 22 consecutive ankyrin repeats. Here we report cryoEM structures of the vertebrate-specific α-LTX tetramer in its prepore and pore state. Our structures, in combination with AlphaFold2-based structural modeling and molecular dynamics simulations, reveal dramatic conformational changes in the N-terminal region of the complex. Four distinct helical bundles rearrange and together form a highly stable, 15 nm long, cation-impermeable coiled-coil stalk. This stalk, in turn, positions an N-terminal pair of helices within the membrane, thereby enabling the assembly of a cation-permeable channel. Taken together, these data give insight into a unique mechanism for membrane insertion and channel formation, characteristic of the LTX family, and provide the necessary framework for advancing novel therapeutics and biotechnological applications.


Subject(s)
Cryoelectron Microscopy , Molecular Dynamics Simulation , Spider Venoms , Spider Venoms/chemistry , Spider Venoms/metabolism , Animals , Cations/metabolism , Cations/chemistry , Calcium/metabolism , Calcium/chemistry , Black Widow Spider/chemistry , Black Widow Spider/metabolism , Amino Acid Sequence
2.
Commun Biol ; 7(1): 1148, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39278937

ABSTRACT

The formation of nuclear biomolecular condensates is often associated with local accumulation of proteins at a site of DNA damage. The key role in the formation of DNA repair foci belongs to PARP1, which is a sensor of DNA damage and catalyzes the synthesis of poly(ADP-ribose) attracting repair factors. We show here that biogenic cations such as Mg2+, Ca2+, Mn2+, spermidine3+, or spermine4+ can induce liquid-like assembly of poly(ADP-ribosyl)ated [PARylated] PARP1 into multimolecular associates (hereafter: self-assembly). The self-assembly of PARylated PARP1 affects the level of its automodification and hydrolysis of poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase (PARG). Furthermore, association of PARylated PARP1 with repair proteins strongly stimulates strand displacement DNA synthesis by DNA polymerase ß (Pol ß) but has no noticeable effect on DNA ligase III activity. Thus, liquid-like self-assembly of PARylated PARP1 may play a critical part in the regulation of i) its own activity, ii) PARG-dependent hydrolysis of poly(ADP-ribose), and iii) Pol ß-mediated DNA synthesis. The latter can be considered an additional factor influencing the choice between long-patch and short-patch DNA synthesis during repair.


Subject(s)
Poly (ADP-Ribose) Polymerase-1 , Poly ADP Ribosylation , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Humans , Poly Adenosine Diphosphate Ribose/metabolism , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Cations, Divalent/metabolism , DNA Repair , DNA Polymerase beta/metabolism , Cations/metabolism , DNA Damage
3.
Vision Res ; 224: 108487, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39303640

ABSTRACT

A quintessential sentinel of cell health, the membrane potential in nonexcitable cells integrates biochemical and biomechanical inputs, determines the driving force for ionic currents activated by input signals and plays critical functions in cellular differentiation, signaling, and pathology. The identity and properties of ion channels that subserve the resting potential in trabecular meshwork (TM) cells is poorly understood, which impairs our understanding of intraocular pressure regulation in healthy and diseased eyes. Here, we identified a powerful cationic conductance that subserves the TM resting potential. It disappears following Na+ removal or substitution with choline or NMDG+, is insensitive to TTX, verapamil, phenamil methanesulfonate, amiloride and GsMTx4, is substituted by Li+ and Cs+, and inhibited by Gd3+ and Ruthenium Red. Constitutive cation influx is thus not mediated by voltage-operated Na+, Ca2+, epithelial Na+ (ENaC) channels, Piezo channels or Na+/H+ exchange but may involve TRP-like channels. Transcriptional analysis detected expression of many TRP genes, with the transcriptome pool dominated by TRPC1 followed by expression of TRPV1, TRPC3, TRPV4 and TRPC5. Pyr3 and Pico1,4,5 did not affect the standing current whereas SKF96365 promoted rather than suppressed, Na+ influx. SEA-0400 induced a modest hyperpolarization, indicating residual contribution from Na+/Ca2+ exchange. The resting membrane potential in human TM cells is thus maintained by a constitutive monovalent cation leak current with properties not unlike those of TRP channels. This conductance is likely to influence conventional outflow by setting the homeostatic steady-state and by regulating the magnitude of pressure-induced currents in normotensive and hypertensive eyes.


Subject(s)
Membrane Potentials , Trabecular Meshwork , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Trabecular Meshwork/physiology , Humans , Membrane Potentials/physiology , Cations/metabolism , Ion Channels/metabolism , Ion Channels/physiology , Intraocular Pressure/physiology , Sodium/metabolism
4.
J Biol Chem ; 300(9): 107629, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098524

ABSTRACT

Organic cations comprise a significant part of medically relevant drugs and endogenous substances. Such substances need organic cation transporters for efficient transfer via cell membranes. However, the membrane transporters of most natural or synthetic organic cations are still unknown. To identify these transporters, genes of 10 known OCTs and 18 orphan solute carriers (SLC) were overexpressed in HEK293 cells and characterized concerning their transport activities with a broad spectrum of low molecular weight substances emphasizing organic cations. Several SLC35 transporters and SLC38A10 significantly enhanced the transport of numerous relatively hydrophobic organic cations. Significant organic cation transport activities have been found in gene families classified as transporters of other substance classes. For instance, SLC35G3 and SLC38A10 significantly accelerated the uptake of several cations, such as clonidine, 3,4-methylenedioxymethamphetamine, and nicotine, which are known as substrates of a thus far genetically unidentified proton/organic cation antiporter. The transporters SLC35G4 and SLC35F5 stood out by their significantly increased choline uptake, and several other SLC transported choline together with a broader spectrum of organic cations. Overall, there are many more polyspecific organic cation transporters than previously estimated. Several transporters had one predominant substrate but accepted some other cationic substrates, and others showed no particular preference for one substrate but transported several organic cations. The role of these transporters in biology and drug therapy remains to be elucidated.


Subject(s)
Organic Cation Transport Proteins , Humans , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/chemistry , HEK293 Cells , Substrate Specificity , Cations/metabolism , Biological Transport
5.
mBio ; 15(9): e0057824, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39133006

ABSTRACT

Lugdunin is a microbiome-derived antibacterial agent with good activity against Gram-positive pathogens in vitro and in animal models of nose colonization and skin infection. We have previously shown that lugdunin depletes bacterial energy resources by dissipating the membrane potential of Staphylococcus aureus. Here, we explored the mechanism of action of lugdunin in more detail and show that lugdunin quickly depolarizes cytoplasmic membranes of different bacterial species and acidifies the cytoplasm of S. aureus within minutes due to protonophore activity. Varying the salt species and concentrations in buffers revealed that not only protons are transported, and we demonstrate the binding of the monovalent cations K+, Na+, and Li+ to lugdunin. By comparing known ionophores with various ion transport mechanisms, we conclude that the ion selectivity of lugdunin largely resembles that of 15-mer linear peptide gramicidin A. Direct interference with the main bacterial metabolic pathways including DNA, RNA, protein, and cell wall biosyntheses can be excluded. The previously observed synergism of lugdunin with dermcidin-derived peptides such as DCD-1 in killing S. aureus is mechanistically based on potentiated membrane depolarization. We also found that lugdunin was active against certain eukaryotic cells, however strongly depending on the cell line and growth conditions. While adherent lung epithelial cell lines were almost unaffected, more sensitive cells showed dissipation of the mitochondrial membrane potential. Lugdunin seems specifically adapted to its natural environment in the respiratory tract. The ionophore mechanism is refractory to resistance development and benefits from synergy with host-derived antimicrobial peptides. IMPORTANCE: The vast majority of antimicrobial peptides produced by members of the microbiome target the bacterial cell envelope by many different mechanisms. These compounds and their producers have evolved side-by-side with their host and were constantly challenged by the host's immune system. These molecules are optimized to be well tolerated at their physiological site of production, and their modes of action have proven efficient in vivo. Imbalancing the cellular ion homeostasis is a prominent mechanism among antibacterial natural products. For instance, over 120 naturally occurring polyether ionophores are known to date, and antimicrobial peptides with ionophore activity have also been detected in microbiomes. In this study, we elucidated the mechanism underlying the membrane potential-dissipating activity of the thiazolidine-containing cycloheptapeptide lugdunin, the first member of the fibupeptides discovered in a commensal bacterium from the human nose, which is a promising future probiotic candidate that is not prone to resistance development.


Subject(s)
Anti-Bacterial Agents , Ionophores , Microbiota , Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Cations/pharmacology , Cations/metabolism , Drug Synergism , Ionophores/pharmacology , Lipopeptides/pharmacology , Lipopeptides/metabolism , Microbial Sensitivity Tests , Microbiota/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism
6.
New Phytol ; 243(5): 1966-1979, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970455

ABSTRACT

The primary mechanisms contributing to nitrogen (N) addition induced grassland biodiversity loss, namely light competition and soil cation toxicity, are often examined separately in various studies. However, their relative significance in governing biodiversity loss along N addition gradient remains unclear. We conducted a 4-yr field experiment with five N addition rates (0, 2, 10, 20, and 50 g N m-2 yr-1) and performed a meta-analysis using global data from 239 observations in N-fertilized grassland ecosystems. Results from our field experiment and meta-analysis indicate that both light competition and soil cation (e.g. Mn2+ and Al3+) toxicity contribute to plant diversity loss under N enrichment. The relative importance of these mechanisms varied with N enrichment intensity. Light competition played a more significant role in influencing species richness under low N addition (≤ 10 g m-2 yr-1), while cation toxicity became increasingly dominant in reducing biodiversity under high N addition (>10 g m-2 yr-1). Therefore, a transition from light competition to cation toxicity occurs with increasing N availability. These findings imply that the biodiversity loss along the N gradient is regulated by distinct mechanisms, necessitating the adoption of differential management strategies to mitigate diversity loss under varying intensities of N enrichment.


Subject(s)
Biodiversity , Cations , Light , Nitrogen , Nitrogen/metabolism , Cations/metabolism , Soil/chemistry , Grassland , Plants/metabolism , Plants/radiation effects , Plants/drug effects
7.
J Biol Chem ; 300(7): 107427, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823641

ABSTRACT

Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the major facilitator superfamily (MFS) transporters, which play important roles in human health and diseases. MelBSt catalyzed the symport of galactosides with Na+, Li+, or H+ but prefers the coupling with Na+. Previously, we determined the structures of the inward- and outward-facing conformation of MelBSt and the molecular recognition for galactoside and Na+. However, the molecular mechanisms for H+- and Na+-coupled symport remain poorly understood. In this study, we solved two x-ray crystal structures of MelBSt, the cation-binding site mutants D59C at an unliganded apo-state and D55C at a ligand-bound state, and both structures display the outward-facing conformations virtually identical as published. We determined the energetic contributions of three major Na+-binding residues for the selection of Na+ and H+ by free energy simulations. Transport assays showed that the D55C mutant converted MelBSt to a solely H+-coupled symporter, and together with the free-energy perturbation calculation, Asp59 is affirmed to be the sole protonation site of MelBSt. Unexpectedly, the H+-coupled melibiose transport exhibited poor activities at greater bulky ΔpH and better activities at reversal ΔpH, supporting the novel theory of transmembrane-electrostatically localized protons and the associated membrane potential as the primary driving force for the H+-coupled symport mediated by MelBSt. This integrated study of crystal structure, bioenergetics, and free energy simulations, demonstrated the distinct roles of the major binding residues in the cation-binding pocket of MelBSt.


Subject(s)
Sodium , Symporters , Symporters/chemistry , Symporters/metabolism , Symporters/genetics , Binding Sites , Crystallography, X-Ray , Sodium/metabolism , Sodium/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Salmonella typhimurium/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/chemistry , Melibiose/metabolism , Melibiose/chemistry , Cations/metabolism , Cations/chemistry , Protein Conformation
8.
J Immunol ; 213(3): 347-361, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38847616

ABSTRACT

The cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway is instrumental to antitumor immunity, yet the underlying molecular and cellular mechanisms are complex and still unfolding. A new paradigm suggests that cancer cells' cGAS-synthesized cGAMP can be transferred to tumor-infiltrating immune cells, eliciting STING-dependent IFN-ß response for antitumor immunity. Nevertheless, how the tumor microenvironment may shape this process remains unclear. In this study, we found that extracellular ATP, an immune regulatory molecule widely present in the tumor microenvironment, can potentiate cGAMP transfer, thereby boosting the STING signaling and IFN-ß response in murine macrophages and fibroblasts. Notably, genetic ablation or chemical inhibition of murine volume-regulation anion channel LRRC8/volume-regulated anion channel (VRAC), a recently identified cGAMP transporter, abolished ATP-potentiated cGAMP transfer and STING-dependent IFN-ß response, revealing a crucial role of LRRC8/VRAC in the cross-talk of extracellular ATP and cGAMP. Mechanistically, ATP activation of the P2X family receptors triggered Ca2+ influx and K+ efflux, promoting reactive oxygen species production. Moreover, ATP-evoked K+ efflux alleviated the phosphorylation of VRAC's obligate subunit LRRC8A/SWELL1 on S174. Mutagenesis studies indicated that the phosphorylation of S174 on LRRC8A could act as a checkpoint for VRAC in the steady state and a rheostat of ATP responsiveness. In an MC38-transplanted tumor model, systemically blocking CD39 and ENPP1, hydroxylases of extracellular ATP and cGAMP, respectively, elevated antitumor NK, NKT, and CD8+ T cell responses and restrained tumor growth in mice. Altogether, this study establishes a crucial role of ATP in facilitating LRRC8/VRAC transport cGAMP in the tumor microenvironment and provides new insight into harnessing cGAMP transfer for antitumor immunity.


Subject(s)
Adenosine Triphosphate , Membrane Proteins , Nucleotides, Cyclic , Tumor Microenvironment , Animals , Nucleotides, Cyclic/metabolism , Mice , Adenosine Triphosphate/metabolism , Membrane Proteins/metabolism , Membrane Proteins/immunology , Tumor Microenvironment/immunology , Interferon-beta/metabolism , Interferon-beta/immunology , Mice, Inbred C57BL , Humans , Signal Transduction/immunology , Mice, Knockout , Cell Line, Tumor , Cations/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Nucleotidyltransferases/metabolism , Macrophages/immunology , Macrophages/metabolism
9.
Plant Cell Rep ; 43(7): 171, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874819

ABSTRACT

KEY MESSAGE: A lipofectamine-mediated transfection protocol for DNA-free genome editing of citrus protoplast cells using a Cas9/gRNA ribonucleoprotein (RNP) complex resulted in the production of transgene free genome edited citrus.


Subject(s)
Citrus , Gene Editing , Genome, Plant , Lipids , Nanoparticles , Ribonucleoproteins , Gene Editing/methods , Citrus/genetics , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Lipids/chemistry , Nanoparticles/chemistry , CRISPR-Cas Systems , CRISPR-Associated Protein 9/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , Protoplasts/metabolism , Transgenes , Cations/metabolism , Liposomes
10.
Cells ; 13(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38920639

ABSTRACT

The polarised expression of specific transporters in proximal tubular epithelial cells is important for the renal clearance of many endogenous and exogenous compounds. Thus, ideally, the in vitro tools utilised for predictions would have a similar expression of apical and basolateral xenobiotic transporters as in vivo. Here, we assessed the functionality of organic cation and anion transporters in proximal tubular-like cells (PTL) differentiated from human induced pluripotent stem cells (iPSC), primary human proximal tubular epithelial cells (PTEC), and telomerase-immortalised human renal proximal tubular epithelial cells (RPTEC/TERT1). Organic cation and anion transport were studied using the fluorescent substrates 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) and 6-carboxyfluorescein (6-CF), respectively. The level and rate of intracellular ASP accumulation in PTL following basolateral application were slightly lower but within a 3-fold range compared to primary PTEC and RPTEC/TERT1 cells. The basolateral uptake of ASP and its subsequent apical efflux could be inhibited by basolateral exposure to quinidine in all models. Of the three models, only PTL showed a modest preferential basolateral-to-apical 6-CF transfer. These results show that organic cation transport could be demonstrated in all three models, but more research is needed to improve and optimise organic anion transporter expression and functionality.


Subject(s)
Epithelial Cells , Kidney Tubules, Proximal , Humans , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/cytology , Epithelial Cells/metabolism , Models, Biological , Pyridinium Compounds/metabolism , Anions/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Biological Transport , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Cell Line , Cations/metabolism , Fluoresceins/metabolism , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics
11.
Viruses ; 16(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38932164

ABSTRACT

The HIV-1 nucleocapsid protein (NC) is a multifunctional viral protein necessary for HIV-1 replication. Recent studies have demonstrated that reverse transcription (RT) completes in the intact viral capsid, and the timing of RT and uncoating are correlated. How the small viral core stably contains the ~10 kbp double stranded (ds) DNA product of RT, and the role of NC in this process, are not well understood. We showed previously that NC binds and saturates dsDNA in a non-specific electrostatic binding mode that triggers uniform DNA self-attraction, condensing dsDNA into a tight globule against extending forces up to 10 pN. In this study, we use optical tweezers and atomic force microscopy to characterize the role of NC's basic residues in dsDNA condensation. Basic residue mutations of NC lead to defective interaction with the dsDNA substrate, with the constant force plateau condensation observed with wild-type (WT) NC missing or diminished. These results suggest that NC's high positive charge is essential to its dsDNA condensing activity, and electrostatic interactions involving NC's basic residues are responsible in large part for the conformation, size, and stability of the dsDNA-protein complex inside the viral core. We observe DNA re-solubilization and charge reversal in the presence of excess NC, consistent with the electrostatic nature of NC-induced DNA condensation. Previous studies of HIV-1 replication in the presence of the same cationic residue mutations in NC showed significant defects in both single- and multiple-round viral infectivity. Although NC participates in many stages of viral replication, our results are consistent with the hypothesis that cationic residue mutations inhibit genomic DNA condensation, resulting in increased premature capsid uncoating and contributing to viral replication defects.


Subject(s)
DNA, Viral , HIV-1 , Reverse Transcription , HIV-1/genetics , HIV-1/physiology , HIV-1/chemistry , HIV-1/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/chemistry , Humans , Cations/metabolism , Virus Replication , Microscopy, Atomic Force , Virion/metabolism , Virion/genetics , Virion/chemistry , Mutation
12.
Nature ; 630(8016): 501-508, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778100

ABSTRACT

Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome2-7. Earlier studies concluded that FLVCR1 may function as a haem exporter8-12, whereas FLVCR2 was suggested to act as a haem importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14-16. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation-π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.


Subject(s)
Choline , Ethanolamine , Membrane Transport Proteins , Humans , Binding Sites , Biological Transport , Cations/chemistry , Cations/metabolism , Cell Membrane/metabolism , Cell Membrane/chemistry , Choline/metabolism , Choline/chemistry , Ethanolamine/metabolism , Ethanolamine/chemistry , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Models, Molecular , Protein Conformation , Receptors, Virus/metabolism , Receptors, Virus/chemistry , Substrate Specificity , Tryptophan/metabolism , Tryptophan/chemistry , Tyrosine/metabolism , Tyrosine/chemistry , Mutation
13.
Nature ; 630(8015): 230-236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811725

ABSTRACT

Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the global nitrogen cycle1,2. A critical step for nitrogen oxidation is the entrapment of ammonium ions from a dilute marine environment at the cell surface and their subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the structure of the molecular machinery responsible for this process, comprising the surface layer (S-layer), using electron cryotomography and subtomogram averaging from cells. We supplemented our in situ structure of the ammonium-binding S-layer array with a single-particle electron cryomicroscopy structure, revealing detailed features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical analyses showed strong ammonium binding by the cell surface, which was lost after S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers in many ammonia-oxidizing archaea, with conserved sequence and structural characteristics. Moreover, molecular simulations and structure determination of ammonium-enriched specimens enabled us to examine the cation-binding properties of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, effectively acting as a multichannel sieve on the cell membrane. This in situ structural study illuminates the biogeochemically essential process of ammonium binding and channelling, common to many marine microorganisms that are fundamental to the nitrogen cycle.


Subject(s)
Ammonia , Aquatic Organisms , Archaea , Cell Membrane , Ammonia/chemistry , Ammonia/metabolism , Aquatic Organisms/chemistry , Aquatic Organisms/metabolism , Aquatic Organisms/ultrastructure , Archaea/chemistry , Archaea/metabolism , Archaea/ultrastructure , Cations/chemistry , Cations/metabolism , Cryoelectron Microscopy , Models, Molecular , Oxidation-Reduction , Polysaccharides/metabolism , Polysaccharides/chemistry
14.
Biochem Pharmacol ; 223: 116188, 2024 05.
Article in English | MEDLINE | ID: mdl-38580166

ABSTRACT

Recently published cryo-EM structures of human organic cation transporters of the SLC22 family revealed seven, sequentially arranged glutamic and aspartic acid residues, which may be relevant for interactions with positively charged substrates. We analyzed the functional consequences of removing those negative charges by creating D155N, E232Q, D382N, E390Q, E451Q, E459Q, and D478N mutants of OCT3. E232Q, E459Q, and D478N resulted in a lack of localization in the outer cell membrane and no relevant uptake activity. However, D155N and E451Q showed a substrate-specific loss of transport activity, whereas E390Q had no remaining activity despite correct membrane localization. In contrast, D382N showed almost wild-type-like uptake. D155 is located at the entrance to the substrate binding pocket and could, therefore be involved in guiding cationic substrates towards the inside of the binding pocket. For E390, we confirm its critical function for transporter function as it was recently shown for the corresponding position in OCT1. Interestingly, E451 seems to be located at the bottom of the binding pocket in the outward-open confirmation of the transporter. Substrate-specific loss of transport activity of the E451Q variant suggests an essential role in the transport cycle of specific substances as part of an opportunistic binding site. In general, our study highlights the impact of the cryo-EM structures in guiding mutagenesis studies to understand the molecular level of transporter-ligand interactions, and it also confirms the importance of testing multiple substrates in mutagenesis studies of polyspecific OCTs.


Subject(s)
Amino Acids , Organic Cation Transport Proteins , Humans , Cations/metabolism , Mutagenesis , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 1/metabolism , Organic Cation Transporter 2
15.
Sci Rep ; 14(1): 8642, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622172

ABSTRACT

Cation exchanger (CAX) genes play an important role in plant growth/development and response to biotic and abiotic stresses. Here, we tried to obtain important information on the functionalities and phenotypic effects of CAX gene family by systematic analyses of their expression patterns, genetic diversity (gene CDS haplotypes, structural variations, gene presence/absence variations) in 3010 rice genomes and nine parents of 496 Huanghuazhan introgression lines, the frequency shifts of the predominant gcHaps at these loci to artificial selection during modern breeding, and their association with tolerances to several abiotic stresses. Significant amounts of variation also exist in the cis-regulatory elements (CREs) of the OsCAX gene promoters in 50 high-quality rice genomes. The functional differentiation of OsCAX gene family were reflected primarily by their tissue and development specific expression patterns and in varied responses to different treatments, by unique sets of CREs in their promoters and their associations with specific agronomic traits/abiotic stress tolerances. Our results indicated that OsCAX1a and OsCAX2 as general signal transporters were in many processes of rice growth/development and responses to diverse environments, but they might be of less value in rice improvement. OsCAX1b, OsCAX1c, OsCAX3 and OsCAX4 was expected to be of potential value in rice improvement because of their associations with specific traits, responsiveness to specific abiotic stresses or phytohormones, and relatively high gcHap and CRE diversity. Our strategy was demonstrated to be highly efficient to obtain important genetic information on genes/alleles of specific gene family and can be used to systematically characterize the other rice gene families.


Subject(s)
Oryza , Plant Breeding , Regulatory Sequences, Nucleic Acid , Stress, Physiological/genetics , Cations/metabolism , Genetic Variation
16.
Cell Mol Biol Lett ; 29(1): 54, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627612

ABSTRACT

BACKGROUND: The trafficking of cargoes from endosomes to the trans-Golgi network requires numerous sequential and coordinated steps. Cargoes are sorted into endosomal-derived carriers that are transported, tethered, and fused to the trans-Golgi network. The tethering step requires several complexes, including the Golgi-associated retrograde protein complex, whose localization at the trans-Golgi network is determined by the activity of small GTPases of the Arl and Rab family. However, how the Golgi-associated retrograde protein complex recognizes the endosome-derived carriers that will fuse with the trans-Golgi network is still unknown. METHODS: We studied the retrograde trafficking to the trans-Golgi network by using fluorescent cargoes in cells overexpressing Rab4b or after Rab4b knocked-down by small interfering RNA in combination with the downregulation of subunits of the Golgi-associated retrograde protein complex. We used immunofluorescence and image processing (Super Resolution Radial Fluctuation and 3D reconstruction) as well as biochemical approaches to characterize the consequences of these interventions on cargo carriers trafficking. RESULTS: We reported that the VPS52 subunit of the Golgi-associated retrograde protein complex is an effector of Rab4b. We found that overexpression of wild type or active Rab4b increased early endosomal to trans-Golgi network retrograde trafficking of the cation-independent mannose-6-phosphate receptor in a Golgi-associated retrograde protein complex-dependent manner. Conversely, overexpression of an inactive Rab4b or Rab4b knockdown attenuated this trafficking. In the absence of Rab4b, the internalized cation-independent mannose 6 phosphate receptor did not have access to VPS52-labeled structures that look like endosomal subdomains and/or endosome-derived carriers, and whose subcellular distribution is Rab4b-independent. Consequently, the cation-independent mannose-6-phosphate receptor was blocked in early endosomes and no longer had access to the trans-Golgi network. CONCLUSION: Our results support that Rab4b, by controlling the sorting of the cation-independent mannose-6-phosphate receptor towards VPS52 microdomains, confers a directional specificity for cargo carriers en route to the trans-Golgi network. Given the importance of the endocytic recycling in cell homeostasis, disruption of the Rab4b/Golgi-associated retrograde protein complex-dependent step could have serious consequences in pathologies.


Subject(s)
Receptor, IGF Type 2 , trans-Golgi Network , Cations/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , Protein Transport/physiology , Receptor, IGF Type 2/metabolism , trans-Golgi Network/metabolism
17.
Cells ; 13(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38607089

ABSTRACT

In the filamentous ascomycete Aspergillus nidulans, at least three high hierarchy transcription factors are required for growth at extracellular alkaline pH: SltA, PacC and CrzA. Transcriptomic profiles depending on alkaline pH and SltA function showed that pacC expression might be under SltA regulation. Additional transcriptional studies of PacC and the only pH-regulated pal gene, palF, confirmed both the strong dependence on ambient pH and the function of SltA. The regulation of pacC expression is dependent on the activity of the zinc binuclear (C6) cluster transcription factor PacX. However, we found that the ablation of sltA in the pacX- mutant background specifically prevents the increase in pacC expression levels without affecting PacC protein levels, showing a novel specific function of the PacX factor. The loss of sltA function causes the anomalous proteolytic processing of PacC and a reduction in the post-translational modifications of PalF. At alkaline pH, in a null sltA background, PacC72kDa accumulates, detection of the intermediate PacC53kDa form is extremely low and the final processed form of 27 kDa shows altered electrophoretic mobility. Constitutive ubiquitination of PalF or the presence of alkalinity-mimicking mutations in pacC, such as pacCc14 and pacCc700, resembling PacC53kDa and PacC27kDa, respectively, allowed the normal processing of PacC but did not rescue the alkaline pH-sensitive phenotype caused by the null sltA allele. Overall, data show that Slt and PacC/Pal pathways are interconnected, but the transcription factor SltA is on a higher hierarchical level than PacC on regulating the tolerance to the ambient alkalinity in A. nidulans.


Subject(s)
Aspergillus nidulans , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcription Factors/metabolism , Cations/metabolism , Hydrogen-Ion Concentration
18.
mSystems ; 9(5): e0009324, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38606960

ABSTRACT

The increasing resistance of clinically relevant microbes against current commercially available antimicrobials underpins the urgent need for alternative and novel treatment strategies. Cationic lipidated oligomers (CLOs) are innovative alternatives to antimicrobial peptides and have reported antimicrobial potential. An understanding of their antimicrobial mechanism of action is required to rationally design future treatment strategies for CLOs, either in monotherapy or synergistic combinations. In the present study, metabolomics was used to investigate the potential metabolic pathways involved in the mechanisms of antibacterial activity of one CLO, C12-o-(BG-D)-10, which we have previously shown to be effective against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. The metabolomes of MRSA ATCC 43300 at 1, 3, and 6 h following treatment with C12-o-(BG-D)-10 (48 µg/mL, i.e., 3× MIC) were compared to those of the untreated controls. Our findings reveal that the studied CLO, C12-o-(BG-D)-10, disorganized the bacterial membrane as the first step toward its antimicrobial effect, as evidenced by marked perturbations in the bacterial membrane lipids and peptidoglycan biosynthesis observed at early time points, i.e., 1 and 3 h. Central carbon metabolism and the biosynthesis of DNA, RNA, and arginine were also vigorously perturbed, mainly at early time points. Moreover, bacterial cells were under osmotic and oxidative stress across all time points, as evident by perturbations of trehalose biosynthesis and pentose phosphate shunt. Overall, this metabolomics study has, for the first time, revealed that the antimicrobial action of C12-o-(BG-D)-10 may potentially stem from the dysregulation of multiple metabolic pathways.IMPORTANCEAntimicrobial resistance poses a significant challenge to healthcare systems worldwide. Novel anti-infective therapeutics are urgently needed to combat drug-resistant microorganisms. Cationic lipidated oligomers (CLOs) show promise as new antibacterial agents against Gram-positive pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Understanding their molecular mechanism(s) of antimicrobial action may help design synergistic CLO treatments along with monotherapy. Here, we describe the first metabolomics study to investigate the killing mechanism(s) of CLOs against MRSA. The results of our study indicate that the CLO, C12-o-(BG-D)-10, had a notable impact on the biosynthesis and organization of the bacterial cell envelope. C12-o-(BG-D)-10 also inhibits arginine, histidine, central carbon metabolism, and trehalose production, adding to its antibacterial characteristics. This work illuminates the unique mechanism of action of C12-o-(BG-D)-10 and opens an avenue to design innovative antibacterial oligomers/polymers for future clinical applications.


Subject(s)
Anti-Bacterial Agents , Metabolomics , Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/drug effects , Metabolomics/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Cations/chemistry , Cations/metabolism , Cations/pharmacology
19.
Biochemistry (Mosc) ; 89(3): 507-522, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648769

ABSTRACT

Some tricyclic antidepressants (TCAs), including amitriptyline (ATL), clomipramine (CLO), and desipramine (DES), are known to be effective for management of neuropathic pain. It was previously determined that ATL, CLO, and DES are capable of voltage-dependent blocking of NMDA receptors of glutamate (NMDAR), which play a key role in pathogenesis of neuropathic pain. Despite the similar structure of ATL, CLO, and DES, efficacy of their interaction with NMDAR varies significantly. In the study presented here, we applied molecular modeling methods to investigate the mechanism of binding of ATL, CLO, and DES to NMDAR and to identify structural features of the drugs that determine their inhibitory activity against NMDAR. Molecular docking of the studied TCAs into the NMDAR channel was performed. Conformational behavior of the obtained complexes in the lipid bilayer was simulated by the method of molecular dynamics (MD). A single binding site (upper) for the tertiary amines ATL and CLO and two binding sites (upper and lower) for the secondary amine DES were identified inside the NMDAR channel. The upper and lower binding sites are located along the channel axis at different distances from the extracellular side of the plasma membrane. MD simulation revealed that the position of DES in the lower site is stabilized only in the presence of sodium cation inside the NMDAR channel. DES binds more strongly to NMDAR compared to ATL and CLO due to simultaneous interaction of two hydrogen atoms of its cationic group with the asparagine residues of the ion pore of the receptor. This feature may be responsible for the stronger side effects of DES. It has been hypothesized that ATL binds to NMDAR less efficiently compared to DES and CLO due to its lower conformational mobility. The identified features of the structure- and cation-dependent mechanism of interaction between TCAs and NMDAR will help in the further development of effective and safe analgesic therapy.


Subject(s)
Antidepressive Agents, Tricyclic , Molecular Docking Simulation , Molecular Dynamics Simulation , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/chemistry , Antidepressive Agents, Tricyclic/pharmacology , Antidepressive Agents, Tricyclic/metabolism , Antidepressive Agents, Tricyclic/chemistry , Binding Sites , Amitriptyline/chemistry , Amitriptyline/metabolism , Amitriptyline/pharmacology , Humans , Clomipramine/pharmacology , Clomipramine/chemistry , Clomipramine/metabolism , Cations/metabolism , Cations/chemistry , Desipramine/pharmacology , Protein Binding
20.
Trends Biochem Sci ; 49(5): 417-430, 2024 May.
Article in English | MEDLINE | ID: mdl-38514273

ABSTRACT

Ion channels establish the voltage gradient across cellular membranes by providing aqueous pathways for ions to selectively diffuse down their concentration gradients. The selectivity of any given channel for its favored ions has conventionally been viewed as a stable property, and in many cation channels, it is determined by an ion-selectivity filter within the external end of the ion-permeation pathway. In several instances, including voltage-activated K+ (Kv) channels, ATP-activated P2X receptor channels, and transient receptor potential (TRP) channels, the ion-permeation pathways have been proposed to dilate in response to persistent activation, dynamically altering ion permeation. Here, we discuss evidence for dynamic ion selectivity, examples where ion selectivity filters exhibit structural plasticity, and opportunities to fill gaps in our current understanding.


Subject(s)
Ion Channels , Humans , Ion Channels/metabolism , Ion Channels/chemistry , Cations/metabolism , Cations/chemistry , Animals , Ion Channel Gating
SELECTION OF CITATIONS
SEARCH DETAIL