Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84.323
Filter
1.
Int J Nanomedicine ; 19: 8015-8027, 2024.
Article in English | MEDLINE | ID: mdl-39130690

ABSTRACT

Purpose: This study aimed to confirm the synergy effect of these two materials by evaluating osteoblast and antibacterial activity by applying a double-layered hydroxyapatite(HA) zirconium oxide(ZrO2) coating to titanium. Methods: The specimens used in this study were divided into four groups: a control group (polished titanium; group T) and three experimental groups: Group TH (RF magnetron sputtered HA deposited titanium), Group Z (ZrO2 ALD deposited titanium), and Group ZH (RF magnetron sputtered HA and ZrO2 ALD deposited titanium). The adhesion of Streptococcus mutans (S.mutans) to the surface was assessed using a crystal violet assay. The adhesion, proliferation, and differentiation of MC3T3-E1 cells, a mouse osteoblastic cell line, were assessed through a WST-8 assay and ALP assay. Results: Group Z showed a decrease in the adhesion of S. mutans (p < 0.05) and an improvement in osteoblastic viability (p < 0.0083). Group TH and ZH showed a decrease in adhesion of S. mutans (p < 0.05) and an increase in osteoblastic cell proliferation and cell differentiation (p < 0.0083). Group ZH exhibited the highest antibacterial and osteoblastic differentiation. Conclusion: In conclusion double-layered HA and ZrO2 deposited on titanium were shown to be more effective in inhibiting the adhesion of S. mutans, which induced biofilm formation, and increasing osteoblastic differentiation involved in osseointegration by the synergistic effect of the two materials.


Subject(s)
Bacterial Adhesion , Cell Differentiation , Cell Proliferation , Coated Materials, Biocompatible , Durapatite , Osteoblasts , Streptococcus mutans , Surface Properties , Titanium , Zirconium , Zirconium/chemistry , Zirconium/pharmacology , Titanium/chemistry , Titanium/pharmacology , Streptococcus mutans/drug effects , Animals , Mice , Durapatite/chemistry , Durapatite/pharmacology , Osteoblasts/drug effects , Osteoblasts/cytology , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Bacterial Adhesion/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cell Line , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Adhesion/drug effects , Cell Survival/drug effects
2.
J Parasitol ; 110(4): 360-374, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39134068

ABSTRACT

Naegleria fowleri is a protozoan that causes primary amebic meningoencephalitis (PAM). The infection occurs when the trophozoites enter the nasal cavity, adhere to the nasal mucosa, invade the epithelium, and migrate until they reach the olfactory bulb. Like other pathogens, there is evidence that the adhesion of N. fowleri to host cells is an important factor in the process of cytopathogenicity and disease progression. However, the factors involved in the adhesion of the pathogen to the cells of the nasal epithelium have not been characterized. The objective of this study was to identify a protein on the surface of N. fowleri, which could act as adhesin to the mouse nasal epithelium in the PAM model. The interaction between proteins of extracts of N. fowleri and cells of the nasal epithelium of BALB/c mice was analyzed using overlay and Western blot assays. A 72-kDa band of N. fowleri interacted directly with epithelial cell proteins, this polypeptide band was purified and analyzed by mass spectrometry. Analysis revealed that polypeptide bands of 72 kDa contained peptides that matched the membrane protein, actin 1 and 2, and Hsp70. Moreover, the N. fowleri extracts resolved in 2D-SDS-PAGE showed that 72-kDa spot interacted with proteins of mouse epithelial cells, which include characteristics of the theoretical data of molecular weight and pH obtained in the analysis by mass spectrometry. Immunofluorescence tests showed that this protein is located on the surface of trophozoites and plays an important role in the adhesion of amoeba either in vitro or in vivo assays, suggesting that this protein contributes during the N. fowleri invasion and migration to the brain, causing primary amoebic meningoencephalitis.


Subject(s)
Central Nervous System Protozoal Infections , Mice, Inbred BALB C , Naegleria fowleri , Nasal Mucosa , Protozoan Proteins , Trophozoites , Animals , Mice , Nasal Mucosa/parasitology , Protozoan Proteins/metabolism , Central Nervous System Protozoal Infections/parasitology , Blotting, Western , Cell Adhesion , Female , Amebiasis/parasitology
3.
Methods Mol Biol ; 2831: 251-264, 2024.
Article in English | MEDLINE | ID: mdl-39134855

ABSTRACT

Growth cone-dependent outgrowth of neuronal processes is essential for the development, plasticity, and regenerative capacity of the nervous system. This process involves the attachment of the growth cone to the substrate and the cyclical engagement/disengagement of the molecular clutch at the sites of adhesive contact. In this chapter, we describe protocols for traction force microscopy, measurement of F-actin retrograde flow velocities, and the assessment of adhesive point contacts by immunofluorescence. These complementary techniques collectively facilitate investigations into the regulation of the molecular clutch in neuronal growth cones.


Subject(s)
Actins , Growth Cones , Growth Cones/metabolism , Growth Cones/physiology , Actins/metabolism , Animals , Cell Adhesion , Neurons/metabolism , Neurons/physiology , Neurons/cytology , Cells, Cultured
4.
Proc Natl Acad Sci U S A ; 121(34): e2401251121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39136993

ABSTRACT

Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although integrin activation has been extensively studied in circulating cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent cells such as smooth muscle. Here, we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families, respectively, to enhance adhesion of airway smooth muscle. These cytokines also induce activation of ß1 integrins detected by the conformation-specific antibody HUTS-4. Moreover, HUTS-4 binding is increased in the smooth muscle of patients with asthma compared to nonsmokers without lung disease, suggesting a disease-relevant role for integrin activation in smooth muscle. Indeed, integrin activation induced by the ß1-activating antibody TS2/16, the divalent cation manganese, or the synthetic peptide ß1-CHAMP that forces an extended-open integrin conformation dramatically enhances force transmission in smooth muscle cells and airway rings even in the absence of cytokines. We demonstrate that cytokine-induced activation of ß1 integrins is regulated by a common pathway of NF-κB-mediated induction of RhoA and its effector Rho kinase, which in turn stimulates PIP5K1γ-mediated synthesis of PIP2 at focal adhesions, resulting in ß1 integrin activation. Taken together, these data identify a pathway by which type I and IL-17 cytokine receptor family stimulation induces functionally relevant ß1 integrin activation in adherent smooth muscle and help to explain the exaggerated force transmission that characterizes chronic airway diseases such as asthma.


Subject(s)
Asthma , Integrin beta1 , Interleukin-13 , Interleukin-17 , Muscle, Smooth , NF-kappa B , rho-Associated Kinases , Humans , Integrin beta1/metabolism , Interleukin-17/metabolism , Muscle, Smooth/metabolism , NF-kappa B/metabolism , rho-Associated Kinases/metabolism , Interleukin-13/metabolism , Asthma/metabolism , Signal Transduction , Cell Adhesion , Myocytes, Smooth Muscle/metabolism , Animals
5.
Sci Rep ; 14(1): 18189, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107343

ABSTRACT

Desmosomes are intercellular adhesion complexes providing mechanical coupling and tissue integrity. Previously, a correlation of desmosomal molecule expression with invasion and metastasis formation in several tumor entities was described together with a relevance for circulating tumor cell cluster formation. Here, we investigated the contribution of the desmosomal core adhesion molecule desmoglein-2 (DSG2) to the initial steps of liver metastasis formation by pancreatic cancer cells using a novel ex vivo liver perfusion mouse model. We applied the pancreatic ductal adenocarcinoma cell line AsPC-1 with and without a knockout (KO) of DSG2 and generated mouse lines with a hepatocyte-specific KO of the known interacting partners of DSG2 (DSG2 and desmocollin-2). Liver perfusion with DSG2 KO AsPC-1 cells led to smaller circulating cell clusters and a reduced number of cells adhering to murine livers compared to control cells. While this was independent of the expression levels of desmosomal adhesion molecules in hepatocytes, we show that increased cluster size of cancer cells, which correlates with stronger cell-cell adhesion and expression of desmosomal molecules, is a major factor contributing to the early phase of metastatic spreading. In conclusion, impaired desmosomal adhesion results in reduced circulating cell cluster size, which is relevant for seeding and attachment of metastatic cells to the liver.


Subject(s)
Cell Adhesion , Desmoglein 2 , Desmosomes , Liver Neoplasms , Pancreatic Neoplasms , Animals , Desmosomes/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Mice , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Line, Tumor , Humans , Desmoglein 2/metabolism , Desmoglein 2/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Mice, Knockout , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology
6.
Sci Rep ; 14(1): 18862, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39143171

ABSTRACT

Cell adhesion to the extracellular matrix and its natural outcome of cell spreading, along with the maintenance of barrier activity, are essential behaviors of epithelial cells, including retinal pigment epithelium (RPE). Disruptions in these characteristics can result in severe vision-threatening diseases such as diabetic macular edema and age-related macular degeneration. However, the precise mechanisms underlying how RPE cells regulate their barrier integrity and cell spreading are not fully understood. This study aims to elucidate the relative importance of upper glycolytic components in governing these cellular behaviors of RPE cells. Electric Cell-Substrate Impedance Sensing (ECIS) technology was utilized to assess in real-time the effects of targeting various upper glycolytic enzymes on RPE barrier function and cell spreading by measuring cell resistance and capacitance, respectively. Specific inhibitors used included WZB117 for Glut1 inhibition, Lonidamine for Hexokinase inhibition, PFK158 for PFKFB3/PFK axis inhibition, and TDZD-8 for Aldolase inhibition. Additionally, the viability of RPE cells was evaluated using a lactate dehydrogenase (LDH) cytotoxicity assay. The most significant decrease in electrical resistance and increase in capacitance of RPE cells were observed due to dose-dependent inhibition of Glut1 using WZB117, as well as Aldolase inhibition with TDZD-8. LDH level analysis at 24-72 h post-treatment with WZB117 (1 and 10 µM) or TDZD-8 (1 µM) showed no significant difference compared to the control, indicating that the disruption of RPE functionality was not attributed to cell death. Lastly, inhibition of other upper glycolytic components, including PFKFB3/PFK with PFK158 or Hexokinase with Lonidamine, did not significantly affect RPE cell behavior. This study provides insights into the varied roles of upper glycolytic components in regulating the functionality of RPE cells. Specifically, it highlights the critical roles of Glut1 and Aldolase in preserving barrier integrity and promoting RPE cell adhesion and spreading. Such understanding will guide the development of safe interventions to treat RPE cell dysfunction in various retinal disorders.


Subject(s)
Glycolysis , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/cytology , Glycolysis/drug effects , Humans , Glucose Transporter Type 1/metabolism , Hexokinase/metabolism , Cell Line , Cell Survival/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Adhesion/drug effects , Electric Impedance , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/antagonists & inhibitors
7.
Nat Commun ; 15(1): 7058, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152149

ABSTRACT

Imaging and characterizing the dynamics of cellular adhesion in blood samples is of fundamental importance in understanding biological function. In vitro microscopy methods are widely used for this task but typically require diluting the blood with a buffer to allow for transmission of light. However, whole blood provides crucial signaling cues that influence adhesion dynamics, which means that conventional approaches lack the full physiological complexity of living microvasculature. We can reliably image cell interactions in microfluidic channels during whole blood flow by motion blur microscopy (MBM) in vitro and automate image analysis using machine learning. MBM provides a low cost, easy to implement alternative to intravital microscopy, for rapid data generation where understanding cell interactions, adhesion, and motility is crucial. MBM is generalizable to studies of various diseases, including cancer, blood disorders, thrombosis, inflammatory and autoimmune diseases, as well as providing rich datasets for theoretical modeling of adhesion dynamics.


Subject(s)
Cell Adhesion , Cell Adhesion/physiology , Humans , Microscopy/methods , Animals , Machine Learning , Image Processing, Computer-Assisted/methods , Intravital Microscopy/methods , Human Umbilical Vein Endothelial Cells
8.
ACS Nano ; 18(32): 21144-21155, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39088555

ABSTRACT

Cells can sense the physical properties of the extracellular matrices (ECMs), such as stiffness and ligand density, through cell adhesions to actively regulate their behaviors. Recent studies have shown that varying ligand spacing of ECMs can influence adhesion size, cell spreading, and even stem cell differentiation, indicating that cells have the spatial sensing ability of ECM ligands. However, the mechanism of the cells' spatial sensing remains unclear. In this study, we have developed a lattice-spring motor-clutch model by integrating cell membrane deformation, the talin unfolding mechanism, and the lattice spring for substrate ligand distribution to explore how the spatial distribution of integrin ligands and substrate stiffness influence cell spreading and adhesion dynamics. By applying the Gillespie algorithm, we found that large ligand spacing reduces the superposition effect of the substrate's displacement fields generated by pulling force from motor-clutch units, increasing the effective stiffness probed by the force-sensitive receptors; this finding explains a series of previous experiments. Furthermore, using the mean-field theory, we obtain the effective stiffness sensed by bound clutches analytically; our analysis shows that the bound clutch number and ligand spacing are the two key factors that affect the superposition effects of deformation fields and, hence, the effective stiffness. Overall, our study reveals the mechanism of cells' spatial sensing, i.e., ligand spacing changes the effective stiffness sensed by cells due to the superposition effect of deformation fields, which provides a physical clue for designing and developing biological materials that effectively control cell behavior and function.


Subject(s)
Cell Adhesion , Extracellular Matrix , Ligands , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Models, Biological , Integrins/metabolism , Integrins/chemistry , Cell Membrane/metabolism , Cell Membrane/chemistry , Talin/metabolism , Talin/chemistry
9.
Sci Rep ; 14(1): 18323, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112634

ABSTRACT

High volume hemofiltration (HVHF) could remove from plasma inflammatory mediators involved in sepsis-associated acute kidney injury (SA-AKI). The IVOIRE trial did not show improvements of outcome and organ dysfunction using HVHF. The aim of this study was to evaluate in vitro the biological effects of plasma of patients treated by HVHF or standard volume hemofiltration (SVHF). We evaluated leukocyte adhesion, apoptosis and functional alterations of endothelial cells (EC) and tubular epithelial cells (TEC). In vitro data were correlated with plasma levels of TNF-α, Fas-Ligand (FasL), CD40-Ligand (CD40L), von Willebrand Factor (vWF) and endothelial-derived microparticles. An experimental model of in vitro hemofiltration using LPS-activated blood was established to assess cytokine mass adsorption during HVHF or SVHF. Plasma concentrations of TNF-ɑ, FasL, CD40L and von Willebrand Factor (vWF) were elevated at the start (d1h0) of both HVHF and SVHF, significantly decreased after 6 h (d1h6), remained stable after 12 h (d1h12) and then newly increased at 48 h (d3h0). Plasma levels of all these molecules were similar between HVHF- and SVHF-treated patients at all time points considered. In addition, the levels of endothelial microparticles remained always elevated, suggesting the presence of a persistent microvascular injury. Plasma from septic patients induced leukocyte adhesion on EC and TEC through up-regulation of adhesion receptors. Moreover, on EC, septic plasma induced a cytotoxic and anti-angiogenic effect. On TEC, septic plasma exerted a direct pro-apoptotic effect via Fas up-regulation and caspase activation, loss of polarity, altered expression of megalin and tight junction molecules with an impaired ability to internalize albumin. The inhibition of plasma-induced cell injury was concomitant to the decrease of TNF-α, Fas-Ligand and CD40-Ligand levels. The protective effect of both HVHF and SVHF was time-limited, since a further increase of circulating mediators and plasma-induced cell injury was observed after 48 h (d3h0). No significant difference of EC/TEC damage were observed using HVHF- or SVHF-treated plasma. The in vitro hemofiltration model confirmed the absence of a significant modulation of cytokine adsorption between HVHF and SVHF. In comparison to SVHF, HVHF did not increase inflammatory cytokine clearance and did not reverse the detrimental effects of septic plasma-induced EC and TEC injury. Further studies using adsorptive membranes are needed to evaluate the potential role of high dose convective therapies in the limitation of the harmful activity of plasma soluble factors involved in SA-AKI.Trial registration IVOIRE randomized clinical trial; ClinicalTrials.gov (NCT00241228) (18/10/2005).


Subject(s)
Endothelial Cells , Epithelial Cells , Hemofiltration , Sepsis , Humans , Sepsis/therapy , Endothelial Cells/metabolism , Hemofiltration/methods , Epithelial Cells/metabolism , Male , Acute Kidney Injury/therapy , Acute Kidney Injury/etiology , Female , Middle Aged , Apoptosis , Aged , Kidney Tubules/metabolism , Cytokines/metabolism , Cytokines/blood , Cell Adhesion
10.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125716

ABSTRACT

In patients with endometriosis, refluxed endometrial fragments evade host immunosurveillance, developing into endometriotic lesions. However, the mechanisms underlying this evasion have not been fully elucidated. N-Myc and STAT Interactor (NMI) have been identified as key players in host immunosurveillance, including interferon (IFN)-induced cell death signaling pathways. NMI levels are markedly reduced in the stromal cells of human endometriotic lesions due to modulation by the Estrogen Receptor beta/Histone Deacetylase 8 axis. Knocking down NMI in immortalized human endometrial stromal cells (IHESCs) led to elevated RNA levels of genes involved in cell-to-cell adhesion and extracellular matrix signaling following IFNA treatment. Furthermore, NMI knockdown inhibited IFN-regulated canonical signaling pathways, such as apoptosis mediated by Interferon Stimulated Gene Factor 3 and necroptosis upon IFNA treatment. In contrast, NMI knockdown with IFNA treatment activated non-canonical IFN-regulated signaling pathways that promote proliferation, including ß-Catenin and AKT signaling. Moreover, NMI knockdown in IHESCs stimulated ectopic lesions' growth in mouse endometriosis models. Therefore, NMI is a novel endometriosis suppressor, enhancing apoptosis and inhibiting proliferation and cell adhesion of endometrial cells upon IFN exposure.


Subject(s)
Apoptosis , Endometriosis , Signal Transduction , Female , Humans , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/genetics , Animals , Mice , Apoptosis/genetics , Endometrium/metabolism , Endometrium/pathology , Cell Proliferation , Stromal Cells/metabolism , Cell Adhesion/genetics , Interferons/metabolism , Intracellular Signaling Peptides and Proteins
11.
J Appl Oral Sci ; 32: e20240034, 2024.
Article in English | MEDLINE | ID: mdl-39140581

ABSTRACT

OBJECTIVE: Bisphosphonates are prescribed to treat excessive bone resorption in patients with osteoporosis. However, its use is associated with potential adverse effects such as medication-related osteonecrosis of the jaw, prompting the introduction of the drug holiday concept in patients prior to dentoalveolar surgery. Furthermore, bisphosphonate discontinuation has been studied in vivo, in humans, and in animal models. However, it is not known whether this approach could affect bone cells in vitro. Therefore, the objective of this study was to investigate the potential effects of bisphosphonate discontinuation on pre-osteoblast and osteoblast activities in vitro. METHODOLOGY: Pre-osteoblasts (MC3T3) and osteoblasts were treated with bisphosphonate (alendronate) at concentrations of 1, 5, and 10 µM. Alendronate was then withdrawn at different time points. The negative control consisted of untreated cells (0 µM), while the positive control consisted of cells incubated with alendronate throughout the experiment. Cell viability, cell adhesion, cell cytoskeleton, mineralization, and gene expressions were investigated. RESULTS: Pre-osteoblasts and osteoblasts showed a decrease in cell viability after treatment with 5-10 µM alendronate for 4 days or longer. Two days of alendronate discontinuation significantly increased cell viability compared with the positive control. However, these levels did not reach those of the negative control. Bone nodule formation was reduced by alendronate. Discontinuation of alendronate regained bone nodule formation. Longer periods of discontinuation were more effective in restoring nodule formation than shorter periods. Addition of alendronate resulted in an increase in the percentage of dead cells, which, in turn, decreased when alendronate was discontinued. Alendronate affected the cell cytoskeleton by disassembling actin stress fibers. Cell adhesion and cell morphological parameters were also affected by alendronate. Discontinuation of alendronate restored cell adhesion and these parameters. Overall, the highest improvement after alendronate discontinuation was seen at 10 µM. However, alendronate treatment and discontinuation did not affect osteoblast gene expression. CONCLUSION: Discontinuation of alendronate helps to reverse the negative effects of the drug on cell viability, cell adhesion, and mineralization by restoring the cell cytoskeleton. Our data suggest the benefits of drug holiday and/or intermittent strategies for alendronate administration at the cellular level.


Subject(s)
Alendronate , Bone Density Conservation Agents , Calcification, Physiologic , Cell Adhesion , Cell Survival , Cytoskeleton , Osteoblasts , Osteoblasts/drug effects , Alendronate/pharmacology , Cell Survival/drug effects , Bone Density Conservation Agents/pharmacology , Cytoskeleton/drug effects , Animals , Cell Adhesion/drug effects , Time Factors , Calcification, Physiologic/drug effects , Mice , Gene Expression/drug effects , Real-Time Polymerase Chain Reaction , Analysis of Variance
12.
Chem Biol Interact ; 400: 111180, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39089413

ABSTRACT

Metastatic cancer remains a formidable challenge in anticancer therapy. Despite efforts to develop effective antimetastasis drugs over the past half-century, currently approved treatments fall short of expectations. This report highlights the promising antiproliferative activity of a ruthenium-based therapeutic agent, namely dichlorido(p-cymene)[2-amino-4-(pyridin-3-yl)-4H-benzo[h]-chromene-3-carbonitrile]ruthenium(II) (complex 1) against metastatic cell lines. Complex 1 shows significant efficacy in metastatic LoVo and Du-145 cell lines at nanomolar concentrations, being markedly more active than clinically used anticancer cisplatin. Studies on the MDA-MB-231 cell line, which displays invasive characteristics, demonstrated that 1 significantly reduces cell invasion. This efficacy was confirmed by its impact on matrix metalloproteinase production in MDA-MB-231 cells. Given that cell migration drives cancer invasion and metastasis, complex 1's effect on MDA-MB-231 cell migration was evaluated via wound healing assay and vimentin network analysis. Results indicated a strong reduction in migration. A re-adhesion assay further demonstrated that 1 significantly lowers the re-adhesion ability of MDA-MB-231 cells compared to cisplatin. To better simulate the human body environment, a 3D spheroid invasion assay was used. This method showed that 1 effectively inhibits tumor spheroids from infiltrating the surrounding extracellular matrix. This study underscores the potential of (arene)ruthenium(II) complexes with naphthopyran ligands as potent antimetastatic agents for chemotherapy.


Subject(s)
Antineoplastic Agents , Cell Movement , Coordination Complexes , Ruthenium , Humans , Cell Line, Tumor , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Ruthenium/chemistry , Ruthenium/pharmacology , Ruthenium/therapeutic use , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Cell Proliferation/drug effects , Neoplasm Metastasis/prevention & control , Neoplasm Metastasis/drug therapy , Cell Adhesion/drug effects
13.
Nat Commun ; 15(1): 6495, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090098

ABSTRACT

The evolutionary transition from diffusion-mediated cell-cell communication to faster, targeted synaptic signaling in animal nervous systems is still unclear. Genome sequencing analyses have revealed a widespread distribution of synapse-related genes among early-diverging metazoans, but how synaptic machinery evolved remains largely unknown. Here, we examine the function of neurexins (Nrxns), a family of presynaptic cell adhesion molecules with critical roles in bilaterian chemical synapses, using the cnidarian model, Nematostella vectensis. Delta-Nrxns are expressed mainly in neuronal cell clusters that exhibit both peptidergic and classical neurotransmitter signaling. Knockdown of δ-Nrxn reduces spontaneous peristalsis of N. vectensis polyps. Interestingly, gene knockdown and pharmacological studies suggest that δ-Nrxn is involved in glutamate- and glycine-mediated signaling rather than peptidergic signaling. Knockdown of the epithelial α-Nrxn reveals a major role in cell adhesion between ectodermal and endodermal epithelia. Overall, this study provides molecular, functional, and cellular insights into the pre-neural function of Nrxns, as well as key information for understanding how and why they were recruited to the synaptic machinery.


Subject(s)
Neurexins , Neurons , Sea Anemones , Animals , Cell Adhesion/genetics , Gene Knockdown Techniques , Glutamic Acid/metabolism , Glycine/metabolism , Neural Cell Adhesion Molecules/metabolism , Neural Cell Adhesion Molecules/genetics , Neurons/metabolism , Sea Anemones/genetics , Sea Anemones/metabolism , Signal Transduction , Synapses/metabolism , Neurexins/metabolism
14.
Zool Res ; 45(5): 1048-1060, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39147719

ABSTRACT

Extracellular membrane proteins are crucial for mediating cell attachment, recognition, and signal transduction in the testicular microenvironment, particularly germline stem cells. Cadherin 18 (CDH18), a type II classical cadherin, is primarily expressed in the nervous and reproductive systems. Here, we investigated the expression of CDH18 in neonatal porcine prospermatogonia (ProSGs) and murine spermatogonial stem cells (SSCs). Disruption of CDH18 expression did not adversely affect cell morphology, proliferation, self-renewal, or differentiation in cultured porcine ProSGs, but enhanced cell adhesion and prolonged cell maintenance. Transcriptomic analysis indicated that the down-regulation of CDH18 in ProSGs significantly up-regulated genes and signaling pathways associated with cell adhesion. To further elucidate the function of CDH18 in germ cells, Cdh18 knockout mice were generated, which exhibited normal testicular morphology, histology, and spermatogenesis. Transcriptomic analysis showed increased expression of genes associated with adhesion, consistent with the observations in porcine ProSGs. The interaction of CDH18 with ß-catenin and JAK2 in both porcine ProSGs and murine SSCs suggested an inhibitory effect on the canonical Wnt and JAK-STAT signaling pathways during CDH18 deficiency. Collectively, these findings highlight the crucial role of CDH18 in regulating cell adhesion in porcine ProSGs and mouse SSCs. Understanding this regulatory mechanism provides significant insights into the testicular niche.


Subject(s)
Cadherins , Cell Adhesion , Animals , Male , Swine , Cell Adhesion/physiology , Mice , Cadherins/metabolism , Cadherins/genetics , Mice, Knockout , Spermatogonia/metabolism , Spermatogonia/physiology , Testis/metabolism , Testis/physiology , Adult Germline Stem Cells/metabolism , Adult Germline Stem Cells/physiology , Gene Expression Regulation , Stem Cells/physiology , Stem Cells/metabolism
15.
Methods Mol Biol ; 2828: 23-36, 2024.
Article in English | MEDLINE | ID: mdl-39147967

ABSTRACT

Cell-cell interaction mediated by secreted and adhesive signaling molecules forms the basis of the coordinated cell movements (i.e., collective cell migration) observed in developing embryos, regenerating tissues, immune cells, and metastatic cancer. Decoding the underlying input/output rules at the single-cell level, however, remains a challenge due to the vast complexity in the extracellular environments that support such cellular behaviors. The amoebozoa Dictyostelium discoideum uses GPCR-mediated chemotaxis and cell-cell contact signals mediated by adhesion proteins with immunoglobulin-like folds to form a collectively migrating slug. Coordinated migration and repositioning of the cells in this relatively simple morphogenetic system are driven strictly by regulation of actin cytoskeleton by these signaling factors. Its unique position in the eukaryotic tree of life outside metazoa points to basic logics of tissue self-organization that are common across taxa. Here, we describe a method to reconstitute intercellular contact signals and the resulting cell polarization using purified adhesion proteins. In addition, a protocol using a microfluidic chamber is laid out where one can study how the cell-cell contact signal and chemoattractant signals, when simultaneously presented, are interpreted. Quantitative image analysis for obtaining cell morphology features is also provided. A similar approach should be applicable to study other collectively migrating cells.


Subject(s)
Cell Communication , Cell Movement , Chemotaxis , Dictyostelium , Dictyostelium/physiology , Dictyostelium/cytology , Cell Adhesion , Signal Transduction , Cell Polarity
16.
Methods Mol Biol ; 2828: 37-43, 2024.
Article in English | MEDLINE | ID: mdl-39147968

ABSTRACT

Collective cell migration occurs when the orientation of cell polarity is aligned with each other in a group of cells. Such collective polarization depends on a reciprocal process between cell intrinsic mechanisms such as cell-cell adhesion and extracellular guidance mechanism such as wound healing and chemotaxis. As part of its development life cycle, individual single cells of Dictyostelium discoideum exhibit chemotaxis toward cAMP, which is secreted from a certain population of cells. During the formation of multicellular body by chemotaxis-dependent cell aggregation, D. discoideum is also known to relay on multiple cell-cell adhesion mechanisms. In particular, tail-following behavior at the contact site, called contact following of locomotion (CFL), plays a pivotal role on the formation of the multicellular body. However, whether and how CFL alone can lead to a formation of collective behavior was not well understood. KI cell is a mutant of D. discoideum that lacks all chemotactic activity. Yet, it can exhibit the CFL activity and show nontrivial collective cell migration. This mutant provides an excellent model system to analyze the mechanism of the CFL and the macroscopic phenomena brought by the CFL. This chapter describes protocols for using KI cell to understand the biophysics and cell biology behind the collective cell migration induced by CFL.


Subject(s)
Cell Movement , Chemotaxis , Dictyostelium , Dictyostelium/genetics , Dictyostelium/physiology , Dictyostelium/cytology , Chemotaxis/genetics , Cell Movement/genetics , Mutation , Cyclic AMP/metabolism , Cell Polarity/genetics , Cell Adhesion , Models, Biological
17.
Int J Immunopathol Pharmacol ; 38: 3946320241276894, 2024.
Article in English | MEDLINE | ID: mdl-39135409

ABSTRACT

Background: Pentagalloyl glucose (PGG) is a polyphenol with vasoprotective properties. Targeted delivery of PGG reversed aortic aneurysm growth in several rodent models associated with decreased number of macrophages and transforming growth factor-ß (TGF-ß) expression. Thus, we sought to determine cellular mechanisms by which PGG reduces macrophage-induced aortic pathogenicity and its relationship to TGF-ß. Methods: Using THP-1 cells, primary human aortic cells, and explanted rat aortas, we assessed the anti-inflammatory effect of PGG. Expression of pro/anti-inflammatory macrophage markers was analyzed. Adhesion of monocytes as well as oxidative stress status, viability, and TGF-ß expression after primary aortic cell exposure to macrophage-conditioned medium with and without PGG were assessed. The release of TGF-ß was also examined in elastase-treated cultured rat aortas. Results: PGG pre-treatment of human aortic cell monolayers reduced the adhesion of THP-1 monocytes. PGG enhanced the expression of anti-inflammatory markers in THP-1-derived macrophages, and increased mitochondrial reactive oxygen species as well as mitochondrial polarization. Conditioned medium from THP-1-derived macrophages induced reactive oxygen species, cell death, and TGF-ß release from human aortic cells, which was suppressed by PGG. In explanted rat aortas, PGG reduced elastase mediated TGF-ß release. Conclusions: Combining anti-inflammatory, cytotoxic, and oxidative effects, PGG has high cardiovascular therapeutic potential. We confirmed previous in vivo observations whereby PGG suppressed TGF-ß response associated with disease resolution.


Subject(s)
Anti-Inflammatory Agents , Aorta , Hydrolyzable Tannins , Macrophages , Transforming Growth Factor beta , Hydrolyzable Tannins/pharmacology , Humans , Animals , Transforming Growth Factor beta/metabolism , THP-1 Cells , Macrophages/drug effects , Macrophages/metabolism , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Anti-Inflammatory Agents/pharmacology , Rats , Reactive Oxygen Species/metabolism , Male , Cell Adhesion/drug effects , Oxidative Stress/drug effects
18.
Nat Commun ; 15(1): 6960, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138209

ABSTRACT

Leishmania species, members of the kinetoplastid parasites, cause leishmaniasis, a neglected tropical disease, in millions of people worldwide. Leishmania has a complex life cycle with multiple developmental forms, as it cycles between a sand fly vector and a mammalian host; understanding their life cycle is critical to understanding disease spread. One of the key life cycle stages is the haptomonad form, which attaches to insect tissues through its flagellum. This adhesion, conserved across kinetoplastid parasites, is implicated in having an important function within their life cycles and hence in disease transmission. Here, we discover the kinetoplastid-insect adhesion proteins (KIAPs), which localise in the attached Leishmania flagellum. Deletion of these KIAPs impairs cell adhesion in vitro and prevents Leishmania from colonising the stomodeal valve in the sand fly, without affecting cell growth. Additionally, loss of parasite adhesion in the sand fly results in reduced physiological changes to the fly, with no observable damage of the stomodeal valve and reduced midgut swelling. These results provide important insights into a comprehensive understanding of the Leishmania life cycle, which will be critical for developing transmission-blocking strategies.


Subject(s)
Flagella , Leishmania , Psychodidae , Animals , Leishmania/physiology , Leishmania/genetics , Leishmania/metabolism , Psychodidae/parasitology , Flagella/metabolism , Cell Adhesion , Insect Vectors/parasitology , Host-Parasite Interactions , Insect Proteins/metabolism , Insect Proteins/genetics , Life Cycle Stages , Leishmaniasis/parasitology , Leishmaniasis/transmission , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Female
19.
Bull Exp Biol Med ; 177(2): 243-247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39090462

ABSTRACT

The influence of non-opsonized and opsonized S. aureus 2879M and E. coli 321 strains on the total strength of interaction between the endothelial cell and neutrophil during the docking process was studied using in vitro model of experimental septicemia. We observed a decrease in the force and work of adhesion between receptors of neutrophils and endothelial cells under the influence of non-opsonized strains and further decrease in the affinity of single interactions between cells under the influence of opsonized S. aureus, which was compensated by an increase in the number of contacts, as well as an increase in the force of adhesion under the influence of opsonized E. coli compared to non-opsonized bacteria, which remained below the control level, while adhesion work reaches the control level. Thus, opsonization of S. aureus aggravates the "immunological uncoupling" between neutrophils and endothelial cells, while opsonization of E. coli reduces the pathological effect compared to non-opsonized bacteria.


Subject(s)
Endothelial Cells , Escherichia coli , Neutrophils , Sepsis , Staphylococcus aureus , Neutrophils/immunology , Neutrophils/metabolism , Escherichia coli/immunology , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity , Sepsis/immunology , Sepsis/microbiology , Sepsis/metabolism , Sepsis/pathology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endothelial Cells/microbiology , Humans , Phagocytosis , Cell Adhesion/immunology , Opsonin Proteins/metabolism , Opsonin Proteins/immunology , Bacterial Adhesion , Animals
20.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39120608

ABSTRACT

The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.


Subject(s)
Desmosomes , Desmosomes/metabolism , Desmosomes/ultrastructure , Humans , Animals , Cell Adhesion , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL