Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.781
Filter
1.
Biomaterials ; 313: 122769, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39208698

ABSTRACT

Minimally invasive transcatheter interventional therapy utilizing cardiac occluders represents the primary approach for addressing congenital heart defects and left atrial appendage (LAA) thrombosis. However, incomplete endothelialization and delayed tissue healing after occluder implantation collectively compromise clinical efficacy. In this study, we have customized a recombinant humanized collagen type I (rhCol I) and developed an rhCol I-based extracellular matrix (ECM)-mimetic coating. The innovative coating integrates metal-phenolic networks with anticoagulation and anti-inflammatory functions as a weak cross-linker, combining them with specifically engineered rhCol I that exhibits high cell adhesion activity and elicits a low inflammatory response. The amalgamation, driven by multiple forces, effectively serves to functionalize implantable materials, thereby responding positively to the microenvironment following occluder implantation. Experimental findings substantiate the coating's ability to sustain a prolonged anticoagulant effect, enhance the functionality of endothelial cells and cardiomyocyte, and modulate inflammatory responses by polarizing inflammatory cells into an anti-inflammatory phenotype. Notably, occluder implantation in a canine model confirms that the coating expedites reendothelialization process and promotes tissue healing. Collectively, this tailored ECM-mimetic coating presents a promising surface modification strategy for improving the clinical efficacy of cardiac occluders.


Subject(s)
Coated Materials, Biocompatible , Extracellular Matrix , Wound Healing , Animals , Extracellular Matrix/metabolism , Dogs , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Wound Healing/drug effects , Collagen Type I/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Human Umbilical Vein Endothelial Cells , Re-Epithelialization/drug effects , Cell Adhesion/drug effects
2.
Mol Biol Rep ; 51(1): 1002, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305332

ABSTRACT

BACKGROUND: Recent 23Na-MRI reports show higher salt deposition in malignant breast tissue than in surrounding normal tissue. The effect of high salt on cancer progression remains controversial. Here, we investigated the direct effect of high salt on breast cancer progression in vitro. METHODS: Here, the impact of high salt on apoptosis, proliferation, cell cycle, adhesion, and migration of MDA-MB-231 and MCF-7 cells was studied using MTT, scratch, and clonogenic assays, as well as RT-PCR and flow cytometry. Gene expression was analyzed using Real-Time PCR and western blotting. The effect of high salt on global transcriptomics changes in MDA MB-231 cells was studied using RNA-sequencing analysis. RESULTS: Flow cytometry with Annexin V and CFSE revealed that high salt-induced dose-dependent apoptosis and inhibited proliferation. High salt-induced cell cycle arrest at the G1/S phase of the cell cycle. p-MDM2 is known to suppress p53, which plays a crucial role in regulating apoptosis and cell cycle arrest under cellular stress conditions. High salt treatment led to decreased p-MDM2 and increased p53 expression, suggesting that high salt induces apoptosis through p53 stabilization. decreased p-MDM2 and increased p53 expression. High salt also reduced migration and adhesion of cells in a dose-dependent manner suggesting its inhibitory effect on metastatic properties as evident from wound healing assay. RNA sequencing analysis revealed overexpression of tumor suppressor genes and genes associated with anti-tumor activity (PCDHGA11, EIF3CL, RAVER1, TNFSF15, RANBP3L) and under-expression of genes involved in cancer-promoting activity (MT1X, CLDN14, CSF-2). CONCLUSION: Our results unequivocally demonstrate the anti-tumor efficacy of high salt against breast cancer cells, suggesting its potential as a therapeutic strategy in cancer treatment.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Movement , Cell Proliferation , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , MCF-7 Cells , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Cell Adhesion/drug effects , Cell Cycle/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Antineoplastic Agents/pharmacology , Sodium Chloride/pharmacology , Cell Cycle Checkpoints/drug effects
3.
Colloids Surf B Biointerfaces ; 244: 114186, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39226849

ABSTRACT

Developing biomaterials with high osteogenic properties is crucial for achieving rapid bone repair and regeneration. This study focuses on the application of nanocrystal hydroxyapatite (nHAp) as a drug carrier to load Fu Yuan Huo Xue Decoction (FYHXD), a traditional Chinese medicine derived from Angelica sinensis, aiming to achieve improved efficacy in treating bone diseases such as osteoporosis. Through a facile physical adsorption approach, the FTIR result emerges new characteristic absorption peaks in the range of 1200-950 cm-1, proving the successful absorption of FYHXD onto the nHAp with a loading efficiency of 39.76 %. The modified nHAp exhibits a similar shape to the bone-derived hydroxyapatite nanocrystals, and their diameter increases slightly after modification. The drug release assay implies the rapid release of FYHXD in the first 10 h, followed by a continuously slow release within 70 h. The developed nHAp effectively enhances the adhesion, spreading, and proliferation of MC3T3-E1 cells in vitro, and significantly promotes their osteogenic differentiation, as indicated by increased alkaline phosphatase activity. Overall, the biocomposites hold great promise as active ingredients for integration into bone-associated biomaterials, offering the potential to stimulate spontaneous osteogenesis without requiring exogenous osteogenic factors.


Subject(s)
Cell Differentiation , Drugs, Chinese Herbal , Durapatite , Nanoparticles , Osteogenesis , Durapatite/chemistry , Osteogenesis/drug effects , Cell Differentiation/drug effects , Mice , Animals , Nanoparticles/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Cell Proliferation/drug effects , Medicine, Chinese Traditional , Drug Liberation , Alkaline Phosphatase/metabolism , Particle Size , Cell Line , Cell Adhesion/drug effects , Drug Carriers/chemistry
4.
Int J Mol Sci ; 25(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39273096

ABSTRACT

In recent years, with the advent of a super-aged society, lifelong dental care has gained increasing emphasis, and implant therapy for patients with an edentulous jaw has become a significant option. However, for implant therapy to be suitable for elderly patients with reduced regenerative and immunological capabilities, higher osteoconductive and antimicrobial properties are required on the implant surfaces. Silicon nitride, a non-oxide ceramic known for its excellent mechanical properties and biocompatibility, has demonstrated high potential for inducing hard tissue differentiation and exhibiting antibacterial properties. In this study, silicon nitride was deposited on pure titanium metal surfaces and evaluated for its biocompatibility and antibacterial properties. The findings indicate that silicon nitride improves the hydrophilicity of the material surface, enhancing the initial adhesion of rat bone marrow cells and promoting hard tissue differentiation. Additionally, the antibacterial properties were assessed using Staphylococcus aureus, revealing that the silicon nitride-coated surfaces exhibited significant antibacterial activity. Importantly, no cytotoxicity was observed, suggesting that silicon nitride-coated titanium could serve as a novel implant material.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Silicon Compounds , Staphylococcus aureus , Surface Properties , Titanium , Titanium/chemistry , Titanium/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Rats , Staphylococcus aureus/drug effects , Silicon Compounds/chemistry , Silicon Compounds/pharmacology , Materials Testing , Cell Adhesion/drug effects , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects
5.
ACS Appl Mater Interfaces ; 16(36): 47178-47191, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39222394

ABSTRACT

Guided bone regeneration (GBR) technology has been demonstrated to be an effective method for reconstructing bone defects. A membrane is used to cover the bone defect to stop soft tissue from growing into it. The biosurface design of the barrier membrane is key to the technology. In this work, an asymmetric functional gradient Janus membrane was designed to address the bidirectional environment of the bone and soft tissue during bone reconstruction. The Janus membrane was simply and efficiently prepared by the multilayer self-assembly technique, and it was divided into the polycaprolactone isolation layer (PCL layer, GBR-A) and the nanohydroxyapatite/polycaprolactone/polyethylene glycol osteogenic layer (HAn/PCL/PEG layer, GBR-B). The morphology, composition, roughness, hydrophilicity, biocompatibility, cell attachment, and osteogenic mineralization ability of the double surfaces of the Janus membrane were systematically evaluated. The GBR-A layer was smooth, dense, and hydrophobic, which could inhibit cell adhesion and resist soft tissue invasion. The GBR-B layer was rough, porous, hydrophilic, and bioactive, promoting cell adhesion, proliferation, matrix mineralization, and expression of alkaline phosphatase and RUNX2. In vitro and in vivo results showed that the membrane could bind tightly to bone, maintain long-term space stability, and significantly promote new bone formation. Moreover, the membrane could fix the bone filling material in the defect for a better healing effect. This work presents a straightforward and viable methodology for the fabrication of GBR membranes with Janus-based bioactive surfaces. This work may provide insights for the design of biomaterial surfaces and treatment of bone defects.


Subject(s)
Bone Regeneration , Osteogenesis , Polyesters , Bone Regeneration/drug effects , Animals , Polyesters/chemistry , Polyesters/pharmacology , Osteogenesis/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Polyethylene Glycols/chemistry , Membranes, Artificial , Cell Adhesion/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects , Humans , Guided Tissue Regeneration/methods , Rabbits , Mice
6.
Biointerphases ; 19(5)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39235276

ABSTRACT

In order to properly satisfy biomedical constraints for cardiovascular applications, additively manufactured NiTi scaffolds required further process and metallurgical engineering. Additively manufactured NiTi materials for cardiovascular use will have to undergo surface finishing in order to minimize negative surface interactions within the artery. In this study, we sought to understand biocompatibility from chemically etched additively manufactured NiTi scaffolds by laser powder bed fusion (LPBF). Although two distinct oxide films were created in the surface etching process (labeled CP-A and CP-B), no qualitative changes in microroughness were seen between the two conditions. CP-A possessed significantly less Ni at the surface (0.19 at. %) than the CP-B group (3.30 at. %), via x-ray photoelectron spectroscopy, alongside a concomitant shift in the O1 s peak presentation alluding to a greater formation of a Ni based oxide in the CP-B group. Our live dead staining revealed significant toxicity and reduced cellular attachment for the CP-B group, in addition to inducing more cell lysis (20.9 ± 5.1%), which was significantly increased when compared to CP-A (P < 0.01). Future practices of manufacturing NiTi scaffolds using LPBF should focus on producing surface films that are not only smooth, but free of cytotoxic Ni based oxides.


Subject(s)
Biocompatible Materials , Nickel , Surface Properties , Titanium , Titanium/chemistry , Titanium/pharmacology , Nickel/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Oxides/chemistry , Oxides/pharmacology , Materials Testing , Cell Survival/drug effects , Photoelectron Spectroscopy , Cell Adhesion/drug effects , Tissue Scaffolds/chemistry
7.
Int J Biol Sci ; 20(11): 4114-4127, 2024.
Article in English | MEDLINE | ID: mdl-39247831

ABSTRACT

Osteosarcoma is the most prevalent form of primary malignant bone tumor, primarily affecting children and adolescents. The nerve growth factors (NGF) referred to as neurotrophins have been associated with cancer-induced bone pain; however, the role of NGF in osteosarcoma has yet to be elucidated. In osteosarcoma samples from the Genomic Data Commons data portal, we detected higher levels of NGF and M2 macrophage markers, but not M1 macrophage markers. In cellular experiments, NGF-stimulated osteosarcoma conditional medium was shown to facilitate macrophage polarization from the M0 to the M2 phenotype. NGF also enhanced VCAM-1-dependent monocyte adhesion within the osteosarcoma microenvironment by down-regulating miR-513c-5p levels through the FAK and c-Src cascades. In in vivo xenograft models, the overexpression of NGF was shown to enhance tumor growth, while the oral administration of the TrK inhibitor larotrectinib markedly antagonized NGF-promoted M2 macrophage expression and tumor progression. These results suggest that larotrectinib could potentially be used as a therapeutic agent aimed at mitigating NGF-mediated osteosarcoma progression.


Subject(s)
Monocytes , Nerve Growth Factor , Osteosarcoma , Tumor Microenvironment , Vascular Cell Adhesion Molecule-1 , Osteosarcoma/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Humans , Nerve Growth Factor/metabolism , Animals , Tumor Microenvironment/drug effects , Monocytes/metabolism , Monocytes/drug effects , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Cell Adhesion/drug effects , Cell Line, Tumor , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Macrophages/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Mice, Nude
8.
Biomater Adv ; 165: 214001, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39216317

ABSTRACT

Artificial periosteum is deemed a novel strategy for inducing endogenous bone regeneration, but ideal periosteum substitutes achieved by orchestrating a biomimetic microenvironment for bone regeneration remain a significant challenge. Here, we design and fabricate a hybridized nanofiber-based artificial periosteum with boosted osteoinduction properties. Via a "molecular cage" biomineralization strategy, nano-hydroxyapatite (nano-HAp) with a controllable size (∼22 nm) and excellent dispersion serves as unique nano-additives for water-soluble polyvinyl-alcohol (PVA)-based artificial periosteum. The PVA/HAp composite is electrospun into nanofibers to replicate the extracellular-matrix-inspired nanostructure for inducing cell adhesion, proliferation, and fate manipulation. A simple post-crosslinking treatment is subsequently applied to further booster its mechanical strength (6.6 MPa) and swelling stability. The optimized sample of C-PVA/HAp (10 wt% nano-HAp) artificial periosteum features excellent biocompatibility and remarkable in vitro mineralization. Cell experiments demonstrate that its effectively boasted cell modulation for enhanced osteogenesis without the aid of growth factors, showing a possible activation of the ERK/MAPK signaling pathway. This work provides an effective strategy for designing novel HAp nano-additives and expands the possibility of biomimetic fabrication for more advanced nanofiber-based artificial periosteum.


Subject(s)
Durapatite , Nanofibers , Osteogenesis , Periosteum , Polyvinyl Alcohol , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , Durapatite/chemistry , Durapatite/pharmacology , Osteogenesis/drug effects , Humans , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Bone Regeneration/drug effects , Cell Proliferation/drug effects , Animals , Biocompatible Materials/chemistry , Cell Adhesion/drug effects , Bone Substitutes/chemistry
9.
Colloids Surf B Biointerfaces ; 243: 114146, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39173311

ABSTRACT

Scaffolds with multiphasic structures are considered to be superior for guided tissue regeneration. Two types of tilapia skin collagen gradient membranes (stepped gradient and linear gradient) with multiphasic structures were prepared by controlling the collagen concentrations and the freezing rates. The results revealed that collagen gradient membranes were more capable of guiding tissue regeneration compared to homogeneous membranes. These two gradient membranes featured a dense outer layer and a loose inner layer, with good mechanical properties as indicated by tensile strengths of more than 250 Kpa and porosities exceeding 85 %. Additionally, these membranes also showed good hydrophilicity and water absorption, with an inner layer contact angle of less than 91° and a water absorption ratio greater than 40 times. Furthermore, the multiphasic scaffolds were proved to be biocompatible by the acute toxicity assay, the intradermal irritation test and so on. Gradient membranes could effectively promote the adhesion and proliferation of fibroblasts and osteoblasts, through elevating the TGF-ß/Smad signaling pathway by TGF-ß and Smads, and activating the Wnt/ß-catenin signaling pathway by LRP5 and ß-catenin, similar to homogenous membranes. Therefore, collagen gradient membranes from tilapia skin show important application value in guiding tissue regeneration.


Subject(s)
Biocompatible Materials , Collagen , Animals , Collagen/chemistry , Collagen/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/cytology , Cell Proliferation/drug effects , Membranes, Artificial , Tilapia/metabolism , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Mice , Materials Testing , Skin/metabolism , Cell Adhesion/drug effects , Tensile Strength
10.
Clin Oral Investig ; 28(9): 476, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120764

ABSTRACT

OBJECTIVES: To synthesize casein enzymatic hydrolysate (CEH)-laden gelatin methacryloyl (GelMA) fibrous scaffolds and evaluate the cytocompatibility and anti-inflammatory effects on dental pulp stem cells (DPSCs). MATERIALS AND METHODS: GelMA fibrous scaffolds with 10%, 20%, and 30% CEH (w/w) and without CEH (control) were obtained via electrospinning. Chemo-morphological, degradation, and mechanical analyses were conducted to evaluate the morphology and composition of the fibers, mass loss, and mechanical properties, respectively. Adhesion/spreading and viability of DPSCs seeded on the scaffolds were also assessed. The anti-inflammatory potential on DPSCs was tested after the chronic challenge of cells with lipopolysaccharides (LPS), followed by treatment with extracts obtained after immersing the scaffolds in α-MEM. The synthesis of the pro-inflammatory cytokines IL-6, IL-1α, and TNF-α was measured by ELISA. Data were analyzed by ANOVA/post-hoc tests (α = 5%). RESULTS: CEH-laden electrospun fibers had a larger diameter than pure GelMA (p ≤ 0.036). GelMA scaffolds laden with 20% and 30% CEH had a greater mass loss. Tensile strength was reduced for the 10% CEH fibers (p = 0.0052), whereas no difference was observed for the 20% and 30% fibers (p ≥ 0.6736) compared to the control. Young's modulus decreased with CEH (p < 0.0001). Elongation at break increased for the 20% and 30% CEH scaffolds (p ≤ 0.0038). Over time, DPSCs viability increased across all groups, indicating cytocompatibility, with CEH-laden scaffolds exhibiting greater cell viability after seven days (p ≤ 0.0166). Also, 10% CEH-GelMA scaffolds decreased the IL-6, IL-1α, and TNF-α synthesis (p ≤ 0.035). CONCLUSION: CEH-laden GelMA scaffolds facilitated both adhesion and proliferation of DPSCs, and 10% CEH provided anti-inflammatory potential after chronic LPS challenge. CLINICAL RELEVANCE: CEH incorporated in GelMA fibrous scaffolds demonstrated the potential to be used as a cytocompatible and anti-inflammatory biomaterial for vital pulp therapy.


Subject(s)
Anti-Inflammatory Agents , Caseins , Cell Survival , Dental Pulp , Gelatin , Tissue Scaffolds , Gelatin/chemistry , Dental Pulp/cytology , Dental Pulp/drug effects , Tissue Scaffolds/chemistry , Humans , Anti-Inflammatory Agents/pharmacology , Cell Survival/drug effects , Methacrylates/chemistry , Materials Testing , Enzyme-Linked Immunosorbent Assay , Tensile Strength , Cells, Cultured , Stem Cells/drug effects , Cell Adhesion/drug effects , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Cytokines/metabolism , Surface Properties
11.
Acta Biomater ; 186: 246-259, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39111679

ABSTRACT

Bioresorbable shape memory polymers (SMP) are an emerging class of polymers that can help address several challenges associated with minimally invasive surgery by providing a solution for structural tissue repair. Like most synthetic polymer networks, SMPs require additional biorelevance and modification for biomedical applications. Methodologies used to incorporate bioactive ligands must preserve SMP thermomechanics and ensure biofunctionality following in vivo delivery. We have previously described the development of a novel thermoresponsive bioresorbable SMP, poly (glycerol dodecanedioate) (PGD). In this study, cell-adhesive peptide sequences RGD and YIGSR were conjugated with PGD. We investigated 1) the impact of conjugated peptides on the fixity (Rf), recovery (Rr), and recovery rate (dRr/dT), 2) the impact of conjugated peptides on cell binding, and 3) the impact of the shape memory cycle (Tprog) on conjugated peptide functionality towards binding human bone marrow stromal cells (BMSC). Peptide conjugation conditions impact fixity but not the recovery or recovery rate (p < 0.01). Peptide-conjugated substrates increased cell attachment and proliferation compared with controls (p < 0.001). Using complementary integrin binding cell-adhesive peptides increased proliferation compared with using single peptides (p < 0.05). Peptides bound to PGD substrates exhibited specificity to their respective integrin targets. Following the shape memory cycle, peptides maintained functionality and specificity depending on the shape memory cycle conditions (p < 0.001). The dissipation of strain energy during recovery can drive differential arrangement of conjugated sequences impacting functionality, an important design consideration for functionalized SMPs. STATEMENT OF SIGNIFICANCE: Shape memory elastomers are an emerging class of polymers that are well-suited for minimally invasive repair of soft tissues. Tissue engineering approaches commonly utilize biodegradable scaffolds to deliver instructive cues, including cells and bioactive signals. Delivering these instructive cues on biodegradable shape memory elastomers requires modification with bioactive ligands. Furthermore, it is necessary to ensure the specificity of the ligands to their biological targets when conjugated to the polymer. Moreover, the bioactive ligand functionality must be conserved after completing the shape memory cycle, for applications in tissue engineering.


Subject(s)
Cell Adhesion , Mesenchymal Stem Cells , Oligopeptides , Humans , Oligopeptides/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Adhesion/drug effects , Polymers/chemistry , Smart Materials/chemistry , Glycerol/chemistry , Glycerol/analogs & derivatives
12.
Am J Physiol Renal Physiol ; 327(4): F610-F622, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39116349

ABSTRACT

Studies in animal models have suggested a linkage between the inflammatory response to injury and subsequent nephron loss during the acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Failure of normal repair during the CKD transition correlates with de novo expression of vascular cell adhesion protein-1 (VCAM-1) by a subset of injured proximal tubule cells. This study identified the role of VCAM-1 expression in promoting the failed repair state. Single-cell transcriptome analysis of patients with AKI and CKD and whole kidney RNA and protein analyses of mouse models of CKD confirmed a marked increase of VCAM-1 expression in the proximal tubules of injured kidneys. In immortalized mouse proximal tubular cells and primary cultured renal cells (PCRCs), VCAM-1 expression was induced by proinflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-1ß. Analyses of bulk RNA sequencing of TNF-α-treated primary cultured renal cells or pseudo-bulk RNA sequencing of biopsies from Kidney Precision Medicine Project datasets indicated activation of NF-κB and an enrichment of inflammatory response and cell adhesion pathways in VCAM-1-positive cells. Pharmacological inhibition of NF-κB signaling or genetic deletion of myeloid differentiation factor 88 and TIR domain-containing adapter-inducing interferon-ß suppressed TNF-α- and IL-1ß-induced VCAM-1 expression in vitro. TNF-α stimulation or overexpression of VCAM-1 significantly increased splenocyte adhesion to the mouse proximal tubular monolayer in culture. These results demonstrate that persistence of proinflammatory cytokines after AKI can induce NF-κB-dependent VCAM-1 expression by proximal tubule cells, mediating increased immune cell adhesion to the tubule and thus promoting further tubule injury and greater risk of progression from AKI to CKD.NEW & NOTEWORTHY We demonstrated the induction of VCAM-1 and its biological function in proximal tubules. We found that proinflammatory cytokines (TNF-α and IL-1ß) significantly induced VCAM-1 expression via NF-κB signaling pathway. TNF-α treatment or overexpression of VCAM-1 in immortalized MPT cells increased CD45+ splenocyte adhesion. Pharmacological inhibition of NF-κB or genetic deletion of Vcam1 suppressed TNF-α-induced splenocyte adhesion in vitro, suggesting that VCAM-1 mediates proximal tubular-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition.


Subject(s)
Acute Kidney Injury , Kidney Tubules, Proximal , Renal Insufficiency, Chronic , Vascular Cell Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Animals , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/immunology , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/immunology , Acute Kidney Injury/genetics , Humans , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/pathology , Disease Models, Animal , Male , Signal Transduction , Mice, Inbred C57BL , NF-kappa B/metabolism , Mice , Disease Progression , Cell Adhesion/drug effects
13.
J Mater Chem B ; 12(36): 8911-8918, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39145600

ABSTRACT

Polymethyl methacrylate (PMMA) based biomaterials have been widely utilized in clinics. However, currently, PMMA catalyzed by benzoyl peroxide (BPO) exhibits disquieting disadvantages including an exothermic polymerization reaction and a lack of bioactivity. Here, we first designed three industrial-scale synthesis methods for high-purity butoxydibutylborane (BODBB), achieving purity levels greater than 95% (maximum: 97.6%) and ensuring excellent fire safety. By utilizing BODBB as a catalyst, the highest polymerization temperature of PMMA bone cement (PMMA-BODBB) reached only 36.05 °C, ensuring that no thermal damage occurred after implantation. Compared to PMMA catalyzed by BPO and partially oxidized tributylborane (TBBO, catalyst of Super Bond C&B), PMMA-BODBB exhibited superior cell adhesion, proliferation, and osteogenesis, attributed to the reduced release of free radicals and toxic monomer, and moderate bioactive boron release. After injection into a 5 mm defect in the rat cranial bone, PMMA-BODBB demonstrated the highest level of osteointegration. This work not only presents an industrial-scale synthesis of high-purity BODBB, but also offers an innovative PMMA biomaterial system with intrinsic biocompatibility and osseointegration, paving the way for the next generation of PMMA-based biomaterials with broader applications.


Subject(s)
Biocompatible Materials , Bone Cements , Osseointegration , Polymerization , Polymethyl Methacrylate , Polymethyl Methacrylate/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Catalysis , Rats , Bone Cements/chemistry , Bone Cements/chemical synthesis , Osseointegration/drug effects , Boranes/chemistry , Boranes/chemical synthesis , Cell Proliferation/drug effects , Materials Testing , Rats, Sprague-Dawley , Mice , Cell Adhesion/drug effects
14.
Int Immunopharmacol ; 141: 112929, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39153307

ABSTRACT

As a prominent complication of diabetes mellitus (DM) affecting microvasculature, diabetic retinopathy (DR) originates from blood-retinal barrier (BRB) damage. Natural polyphenolic compound chlorogenic acid (CGA) has already been reported to alleviate DR. This study delves into the concrete mechanism of the CGA-supplied protection against DR and elucidates its key target in retinal endothelial cells. DM in mice was induced using streptozotocin (STZ). CGA mitigated BRB dysfunction, leukocytes adhesion and the formation of acellular vessels in vivo. CGA suppressed retinal inflammation and the release of tumor necrosis factor-α (TNFα) by inhibiting nuclear factor kappa-B (NFκB). Furthermore, CGA reduced the TNFα-initiated adhesion of peripheral blood mononuclear cell (PBMC) to human retinal endothelial cell (HREC). CGA obviously decreased the TNFα-upregulated expression of vascular cell adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1), and abrogated the TNFα-induced NFκB activation in HRECs. All these phenomena were reversed by overexpressing type 1 TNF receptor (TNFR1) in HRECs. The CGA-provided improvement on leukocytes adhesion and retinal inflammation was disappeared in mice injected with an endothelial-specific TNFR1 overexpression adeno-associated virus (AAV). CGA reduced the interaction between TNFα and TNFR1 through binding to TNFR1 in retinal endothelial cells. In summary, excepting reducing TNFα expression via inhibiting retinal inflammation, CGA also reduced the adhesion of leukocytes to retinal vessels through decreasing VCAM1 and ICAM1 expression via blocking the TNFα-initiated NFκB activation by targeting TNFR1 in retinal endothelial cells. All of those mitigated retinal inflammation, ultimately alleviating BRB breakdown in DR.


Subject(s)
Chlorogenic Acid , Diabetic Retinopathy , Endothelial Cells , Mice, Inbred C57BL , NF-kappa B , Receptors, Tumor Necrosis Factor, Type I , Retina , Tumor Necrosis Factor-alpha , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/immunology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Humans , Tumor Necrosis Factor-alpha/metabolism , Male , NF-kappa B/metabolism , Mice , Retina/drug effects , Retina/pathology , Retina/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Intercellular Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Cell Adhesion/drug effects , Blood-Retinal Barrier/drug effects , Blood-Retinal Barrier/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cells, Cultured , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism
15.
PeerJ ; 12: e17913, 2024.
Article in English | MEDLINE | ID: mdl-39193517

ABSTRACT

Background: Dental pulp stem cells (DPSCs) possess mesenchymal stem cell characteristics and have potential for cell-based therapy. Cell expansion is essential to achieve sufficient cell numbers. However, continuous cell replication causes cell aging in vitro, which usually accompanies and potentially affect DPSC characteristics and activities. Continuous passaging could alter susceptibility to external factors such as drug treatment. Therefore, this study sought to investigate potential outcome of in vitro passaging on DPSC morphology and activities in the absence or presence of external factor. Methods: Human DPSCs were subcultured until reaching early passages (P5), extended passages (P10), and late passages (P15). Cells were evaluated and compared for cell and nuclear morphologies, cell adhesion, proliferative capacity, alkaline phosphatase (ALP) activity, and gene expressions in the absence or presence of external factor. Alendronate (ALN) drug treatment was used as an external factor. Results: Continuous passaging of DPSCs gradually lost their normal spindle shape and increased in cell and nuclear sizes. DPSCs were vulnerable to ALN. The size and shape were altered, leading to morphological abnormality and inhomogeneity. Long-term culture and ALN interfered with cell adhesion. DPSCs were able to proliferate irrespective of cell passages but the rate of cell proliferation in late passages was slower. ALN at moderate dose inhibited cell growth. ALN caused reduction of ALP activity in early passage. In contrast, extended passage responded differently to ALN by increasing ALP activity. Late passage showed higher collagen but lower osteocalcin gene expressions compared with early passage in the presence of ALN. Conclusion: An increase in passage number played critical role in cell morphology and activities as well as responses to the addition of an external factor. The effects of cell passage should be considered when used in basic science research and clinical applications.


Subject(s)
Alendronate , Cell Adhesion , Cell Proliferation , Dental Pulp , Humans , Dental Pulp/cytology , Dental Pulp/drug effects , Cell Proliferation/drug effects , Alendronate/pharmacology , Cell Adhesion/drug effects , Alkaline Phosphatase/metabolism , Cells, Cultured , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Culture Techniques/methods , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Cell Differentiation/drug effects
16.
Nat Cardiovasc Res ; 3(8): 970-986, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39196030

ABSTRACT

Doxorubicin, the most prescribed chemotherapeutic drug, causes dose-dependent cardiotoxicity and heart failure. However, our understanding of the immune response elicited by doxorubicin is limited. Here we show that an aberrant CD8+ T cell immune response following doxorubicin-induced cardiac injury drives adverse remodeling and cardiomyopathy. Doxorubicin treatment in non-tumor-bearing mice increased circulating and cardiac IFNγ+CD8+ T cells and activated effector CD8+ T cells in lymphoid tissues. Moreover, doxorubicin promoted cardiac CD8+ T cell infiltration and depletion of CD8+ T cells in doxorubicin-treated mice decreased cardiac fibrosis and improved systolic function. Doxorubicin treatment induced ICAM-1 expression by cardiac fibroblasts resulting in enhanced CD8+ T cell adhesion and transformation, contact-dependent CD8+ degranulation and release of granzyme B. Canine lymphoma patients and human patients with hematopoietic malignancies showed increased circulating CD8+ T cells after doxorubicin treatment. In human cancer patients, T cells expressed IFNγ and CXCR3, and plasma levels of the CXCR3 ligands CXCL9 and CXCL10 correlated with decreased systolic function.


Subject(s)
Disease Models, Animal , Doxorubicin , Fibrosis , Interferon-gamma , T-Lymphocytes, Cytotoxic , Animals , Doxorubicin/adverse effects , Fibrosis/chemically induced , Humans , Dogs , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Interferon-gamma/metabolism , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/toxicity , Mice, Inbred C57BL , Cardiotoxicity/etiology , Receptors, CXCR3/metabolism , Chemokine CXCL10/metabolism , Male , Granzymes/metabolism , Cardiomyopathies/chemically induced , Cardiomyopathies/pathology , Cardiomyopathies/immunology , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Cell Degranulation/drug effects , Chemokine CXCL9/metabolism , Ventricular Function, Left/drug effects , Systole/drug effects , Mice , Female , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Cell Adhesion/drug effects , Lymphocyte Activation/drug effects
17.
ACS Appl Mater Interfaces ; 16(34): 44605-44622, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39159061

ABSTRACT

Skeletal muscle tissue can be severely damaged by disease or trauma beyond its ability to self-repair, necessitating the further development of biofabrication and tissue-engineering tools for reconstructive processes. Hence, in this study, a composite bioink of oxidized alginate (ADA) and gelatin (GEL) including cell-laden ribbon-shaped fillers is used for enhancing cell alignment and the formation of an anisotropic structure. Different plasma treatments combined with protein coatings were evaluated for the improvement of cell adhesion to poly(lactic-co-glycolic acid) (PLGA) ribbon surfaces. Oxygen plasma activation of 30 W for 5 min showed high immobilization of fibronectin as a protein coating on the PLGA ribbon surface, which resulted in enhanced cell adhesion and differentiation of muscle cells. Furthermore, the effect of various concentrations of CaCl2 solution, used for ionic cross-linking of ADA, on ADA-GEL physical and mechanical properties as well as encapsulated C2C12 cell viability and proliferation behavior was investigated. The pore area was measured via two approaches, cryofixation and lyophilization, which, in accordance with degradation tests and mechanical analysis, showed that 60 mM CaCl2 concentration is the optimum range for cross-linking of the formulation of ADA 2.5%w/v-GEL 3.75%w/v. These cross-linked hydrogels showed a compression modulus of 11.5 kPa (similar to the native skeletal muscle tissue), a high viability of C2C12 muscle cells (>80%), and a high proliferation rate during 7 days of culture. Rheological characterization of the ADA-GEL composite hydrogel containing short fillers (100 µm long) showed its suitability as a bioink with shear-thinning and flow behavior compared to ADA-GEL.


Subject(s)
Alginates , Gelatin , Hydrogels , Muscle, Skeletal , Tissue Engineering , Gelatin/chemistry , Alginates/chemistry , Animals , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/cytology , Cell Line , Tissue Scaffolds/chemistry , Cell Survival/drug effects , Cell Proliferation/drug effects , Cell Adhesion/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Cell Differentiation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
18.
Int J Immunopathol Pharmacol ; 38: 3946320241276894, 2024.
Article in English | MEDLINE | ID: mdl-39135409

ABSTRACT

Background: Pentagalloyl glucose (PGG) is a polyphenol with vasoprotective properties. Targeted delivery of PGG reversed aortic aneurysm growth in several rodent models associated with decreased number of macrophages and transforming growth factor-ß (TGF-ß) expression. Thus, we sought to determine cellular mechanisms by which PGG reduces macrophage-induced aortic pathogenicity and its relationship to TGF-ß. Methods: Using THP-1 cells, primary human aortic cells, and explanted rat aortas, we assessed the anti-inflammatory effect of PGG. Expression of pro/anti-inflammatory macrophage markers was analyzed. Adhesion of monocytes as well as oxidative stress status, viability, and TGF-ß expression after primary aortic cell exposure to macrophage-conditioned medium with and without PGG were assessed. The release of TGF-ß was also examined in elastase-treated cultured rat aortas. Results: PGG pre-treatment of human aortic cell monolayers reduced the adhesion of THP-1 monocytes. PGG enhanced the expression of anti-inflammatory markers in THP-1-derived macrophages, and increased mitochondrial reactive oxygen species as well as mitochondrial polarization. Conditioned medium from THP-1-derived macrophages induced reactive oxygen species, cell death, and TGF-ß release from human aortic cells, which was suppressed by PGG. In explanted rat aortas, PGG reduced elastase mediated TGF-ß release. Conclusions: Combining anti-inflammatory, cytotoxic, and oxidative effects, PGG has high cardiovascular therapeutic potential. We confirmed previous in vivo observations whereby PGG suppressed TGF-ß response associated with disease resolution.


Subject(s)
Anti-Inflammatory Agents , Aorta , Hydrolyzable Tannins , Macrophages , Transforming Growth Factor beta , Hydrolyzable Tannins/pharmacology , Humans , Animals , Transforming Growth Factor beta/metabolism , THP-1 Cells , Macrophages/drug effects , Macrophages/metabolism , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Anti-Inflammatory Agents/pharmacology , Rats , Reactive Oxygen Species/metabolism , Male , Cell Adhesion/drug effects , Oxidative Stress/drug effects
19.
Chem Biol Interact ; 400: 111180, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39089413

ABSTRACT

Metastatic cancer remains a formidable challenge in anticancer therapy. Despite efforts to develop effective antimetastasis drugs over the past half-century, currently approved treatments fall short of expectations. This report highlights the promising antiproliferative activity of a ruthenium-based therapeutic agent, namely dichlorido(p-cymene)[2-amino-4-(pyridin-3-yl)-4H-benzo[h]-chromene-3-carbonitrile]ruthenium(II) (complex 1) against metastatic cell lines. Complex 1 shows significant efficacy in metastatic LoVo and Du-145 cell lines at nanomolar concentrations, being markedly more active than clinically used anticancer cisplatin. Studies on the MDA-MB-231 cell line, which displays invasive characteristics, demonstrated that 1 significantly reduces cell invasion. This efficacy was confirmed by its impact on matrix metalloproteinase production in MDA-MB-231 cells. Given that cell migration drives cancer invasion and metastasis, complex 1's effect on MDA-MB-231 cell migration was evaluated via wound healing assay and vimentin network analysis. Results indicated a strong reduction in migration. A re-adhesion assay further demonstrated that 1 significantly lowers the re-adhesion ability of MDA-MB-231 cells compared to cisplatin. To better simulate the human body environment, a 3D spheroid invasion assay was used. This method showed that 1 effectively inhibits tumor spheroids from infiltrating the surrounding extracellular matrix. This study underscores the potential of (arene)ruthenium(II) complexes with naphthopyran ligands as potent antimetastatic agents for chemotherapy.


Subject(s)
Antineoplastic Agents , Cell Movement , Coordination Complexes , Ruthenium , Humans , Cell Line, Tumor , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Ruthenium/chemistry , Ruthenium/pharmacology , Ruthenium/therapeutic use , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Cell Proliferation/drug effects , Neoplasm Metastasis/prevention & control , Neoplasm Metastasis/drug therapy , Cell Adhesion/drug effects
20.
J Appl Oral Sci ; 32: e20240034, 2024.
Article in English | MEDLINE | ID: mdl-39140581

ABSTRACT

OBJECTIVE: Bisphosphonates are prescribed to treat excessive bone resorption in patients with osteoporosis. However, its use is associated with potential adverse effects such as medication-related osteonecrosis of the jaw, prompting the introduction of the drug holiday concept in patients prior to dentoalveolar surgery. Furthermore, bisphosphonate discontinuation has been studied in vivo, in humans, and in animal models. However, it is not known whether this approach could affect bone cells in vitro. Therefore, the objective of this study was to investigate the potential effects of bisphosphonate discontinuation on pre-osteoblast and osteoblast activities in vitro. METHODOLOGY: Pre-osteoblasts (MC3T3) and osteoblasts were treated with bisphosphonate (alendronate) at concentrations of 1, 5, and 10 µM. Alendronate was then withdrawn at different time points. The negative control consisted of untreated cells (0 µM), while the positive control consisted of cells incubated with alendronate throughout the experiment. Cell viability, cell adhesion, cell cytoskeleton, mineralization, and gene expressions were investigated. RESULTS: Pre-osteoblasts and osteoblasts showed a decrease in cell viability after treatment with 5-10 µM alendronate for 4 days or longer. Two days of alendronate discontinuation significantly increased cell viability compared with the positive control. However, these levels did not reach those of the negative control. Bone nodule formation was reduced by alendronate. Discontinuation of alendronate regained bone nodule formation. Longer periods of discontinuation were more effective in restoring nodule formation than shorter periods. Addition of alendronate resulted in an increase in the percentage of dead cells, which, in turn, decreased when alendronate was discontinued. Alendronate affected the cell cytoskeleton by disassembling actin stress fibers. Cell adhesion and cell morphological parameters were also affected by alendronate. Discontinuation of alendronate restored cell adhesion and these parameters. Overall, the highest improvement after alendronate discontinuation was seen at 10 µM. However, alendronate treatment and discontinuation did not affect osteoblast gene expression. CONCLUSION: Discontinuation of alendronate helps to reverse the negative effects of the drug on cell viability, cell adhesion, and mineralization by restoring the cell cytoskeleton. Our data suggest the benefits of drug holiday and/or intermittent strategies for alendronate administration at the cellular level.


Subject(s)
Alendronate , Bone Density Conservation Agents , Calcification, Physiologic , Cell Adhesion , Cell Survival , Cytoskeleton , Osteoblasts , Osteoblasts/drug effects , Alendronate/pharmacology , Cell Survival/drug effects , Bone Density Conservation Agents/pharmacology , Cytoskeleton/drug effects , Animals , Cell Adhesion/drug effects , Time Factors , Calcification, Physiologic/drug effects , Mice , Gene Expression/drug effects , Real-Time Polymerase Chain Reaction , Analysis of Variance
SELECTION OF CITATIONS
SEARCH DETAIL