Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.435
Filter
1.
Front Immunol ; 15: 1410603, 2024.
Article in English | MEDLINE | ID: mdl-39044829

ABSTRACT

Introduction: Hepatocellular carcinoma (HCC), representing more than 80% of primary liver cancer cases, lacks satisfactory etiology and diagnostic methods. This study aimed to elucidate the role of programmed cell death-associated genes (CDRGs) in HCC by constructing a diagnostic model using single-cell RNA sequencing (scRNA-seq) and RNA sequencing (RNA-seq) data. Methods: Six categories of CDRGs, including apoptosis, necroptosis, autophagy, pyroptosis, ferroptosis, and cuproptosis, were collected. RNA-seq data from blood-derived exosomes were sourced from the exoRBase database, RNA-seq data from cancer tissues from the TCGA database, and scRNA-seq data from the GEO database. Subsequently, we intersected the differentially expressed genes (DEGs) of the HCC cohort from exoRBase and TCGA databases with CDRGs, as well as DEGs obtained from single-cell datasets. Candidate biomarker genes were then screened using clinical indicators and a machine learning approach, resulting in the construction of a seven-gene diagnostic model for HCC. Additionally, scRNA-seq and spatial transcriptome sequencing (stRNA-seq) data of HCC from the Mendeley data portal were used to investigate the underlying mechanisms of these seven key genes and their association with immune checkpoint blockade (ICB) therapy. Finally, we validated the expression of key molecules in tissues and blood-derived exosomes through quantitative Polymerase Chain Reaction (qPCR) and immunohistochemistry experiments. Results: Collectively, we obtained a total of 50 samples and 104,288 single cells. Following the meticulous screening, we established a seven-gene diagnostic model for HCC, demonstrating high diagnostic efficacy in both the exoRBase HCC cohort (training set: AUC = 1; testing set: AUC = 0.847) and TCGA HCC cohort (training set: AUC = 1; testing set: AUC = 0.976). Subsequent analysis revealed that HCC cluster 3 exhibited a higher stemness index and could serve as the starting point for the differentiation trajectory of HCC cells, also displaying more abundant interactions with other cell types in the microenvironment. Notably, key genes TRIB3 and NQO1 displayed elevated expression levels in HCC cells. Experimental validation further confirmed their elevated expression in both tumor tissues and blood-derived exosomes of cancer patients. Additionally, stRNA analysis not only substantiated these findings but also suggested that patients with high TRIB3 and NQO1 expression might respond more favorably to ICB therapy. Conclusions: The seven-gene diagnostic model demonstrated remarkable accuracy in HCC screening, with TRIB3 emerging as a promising diagnostic tool and therapeutic target for HCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Single-Cell Analysis , Cell Death/genetics , Transcriptome , Exosomes/metabolism , Exosomes/genetics , Multiomics
2.
Cell Biol Toxicol ; 40(1): 61, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075259

ABSTRACT

Advancements in the CRISPR technology, a game-changer in experimental research, have revolutionized various fields of life sciences and more profoundly, cancer research. Cell death pathways are among the most deregulated in cancer cells and are considered as critical aspects in cancer development. Through decades, our knowledge of the mechanisms orchestrating programmed cellular death has increased substantially, attributed to the revolution of cutting-edge technologies. The heroic appearance of CRISPR systems have expanded the available screening platform and genome engineering toolbox to detect mutations and create precise genome edits. In that context, the precise ability of this system for identification and targeting of mutations in cell death signaling pathways that result in cancer development and therapy resistance is an auspicious choice to transform and accelerate the individualized cancer therapy. The concept of personalized cancer therapy stands on the identification of molecular characterization of the individual tumor and its microenvironment in order to provide a precise treatment with the highest possible outcome and minimum toxicity. This study explored the potential of CRISPR technology in precision cancer treatment by identifying and targeting specific cell death pathways. It showed the promise of CRISPR in finding key components and mutations involved in programmed cell death, making it a potential tool for targeted cancer therapy. However, this study also highlighted the challenges and limitations that need to be addressed in future research to fully realize the potential of CRISPR in cancer treatment.


Subject(s)
CRISPR-Cas Systems , Cell Death , Neoplasms , Precision Medicine , Humans , Neoplasms/genetics , Neoplasms/therapy , CRISPR-Cas Systems/genetics , Precision Medicine/methods , Cell Death/genetics , Signal Transduction/genetics , Gene Editing/methods , Apoptosis/genetics , Mutation/genetics , Animals
3.
Nat Commun ; 15(1): 4920, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858353

ABSTRACT

The differentiation of the stroma is a hallmark event during postnatal uterine development. However, the spatiotemporal changes that occur during this process and the underlying regulatory mechanisms remain elusive. Here, we comprehensively delineated the dynamic development of the neonatal uterus at single-cell resolution and characterized two distinct stromal subpopulations, inner and outer stroma. Furthermore, single-cell RNA sequencing revealed that uterine ablation of Pr-set7, the sole methyltransferase catalyzing H4K20me1, led to a reduced proportion of the inner stroma due to massive cell death, thus impeding uterine development. By combining RNA sequencing and epigenetic profiling of H4K20me1, we demonstrated that PR-SET7-H4K20me1 either directly repressed the transcription of interferon stimulated genes or indirectly restricted the interferon response via silencing endogenous retroviruses. Declined H4K20me1 level caused viral mimicry responses and ZBP1-mediated apoptosis and necroptosis in stromal cells. Collectively, our study provides insight into the epigenetic machinery governing postnatal uterine stromal development mediated by PR-SET7.


Subject(s)
Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Stromal Cells , Uterus , Female , Animals , Uterus/metabolism , Stromal Cells/metabolism , Mice , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Interferons/metabolism , Interferons/genetics , Endogenous Retroviruses/genetics , Apoptosis/genetics , Mice, Inbred C57BL , Cell Death/genetics , Necroptosis/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Histones/metabolism , Single-Cell Analysis , Mice, Knockout , Cell Differentiation/genetics
4.
Wiley Interdiscip Rev RNA ; 15(3): e1862, 2024.
Article in English | MEDLINE | ID: mdl-38837618

ABSTRACT

Cell death plays a crucial role in various physiological and pathological processes. Until recently, programmed cell death was mainly attributed to caspase-dependent apoptosis. However, emerging evidence suggests that caspase-independent cell death (CICD) mechanisms also contribute significantly to cellular demise. We and others have reported and functionally characterized numerous long noncoding RNAs (lncRNAs) that modulate caspase-dependent apoptotic pathways potentially in a pathway-dependent manner. However, the interplay between lncRNAs and CICD pathways has not been comprehensively documented. One major reason for this is that most CICD pathways have been recently discovered with some being partially characterized at the molecular level. In this review, we discuss the emerging evidence that implicates specific lncRNAs in the regulation and execution of CICD. We summarize the diverse mechanisms through which lncRNAs modulate different forms of CICD, including ferroptosis, necroptosis, cuproptosis, and others. Furthermore, we highlight the intricate regulatory networks involving lncRNAs, protein-coding genes, and signaling pathways that orchestrate CICD in health and disease. Understanding the molecular mechanisms and functional implications of lncRNAs in CICD may unravel novel therapeutic targets and diagnostic tools for various diseases, paving the way for innovative strategies in disease management and personalized medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Subject(s)
Cell Death , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Animals , Cell Death/genetics , Caspases/metabolism , Caspases/genetics , Signal Transduction , Apoptosis/genetics
5.
Sci Rep ; 14(1): 14667, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918587

ABSTRACT

Bladder urothelial carcinoma (BLCA) presents a persistent challenge in clinical management. Despite recent advancements demonstrating the BLCA efficacy of immune checkpoint inhibitors (ICI) in BLCA patients, there remains a critical need to identify and expand the subset of individuals who benefit from this treatment. Mitochondria, as pivotal regulators of various cell death pathways in eukaryotic cells, exert significant influence over tumor cell fate and survival. In this study, our objective was to investigate biomarkers centered around mitochondrial function and cell death mechanisms to facilitate prognostic prediction and guide therapeutic decision-making in BLCA. Utilizing ssGSEA and LASSO regression, we developed a prognostic signature termed mitochondrial function and cell death (mtPCD). Subsequently, we evaluated the associations between mtPCD score and diverse clinical outcomes, including prognosis, functional pathway enrichment, immune cell infiltration, immunotherapy response analysis and drug sensitivity, within high- and low-risk subgroups. Additionally, we employed single-cell level functional assays, RT-qPCR, and immunohistochemistry to validate the differential expression of genes comprising the mtPCD signature. The mtPCD signature comprises a panel of 10 highly influential genes, strongly correlated with survival outcomes in BLCA patients and exhibiting robust predictive capabilities. Importantly, individuals classified as high-risk according to mtPCD score displayed a subdued overall immune response, characterized by diminished immunotherapeutic efficacy. In summary, our findings highlight the development of a novel prognostic signature, which not only holds promise as a biomarker for BLCA prognosis but also offers insights into the immune landscape of BLCA. This paradigm may pave the way for personalized treatment strategies in BLCA management.


Subject(s)
Biomarkers, Tumor , Mitochondria , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/drug therapy , Humans , Prognosis , Mitochondria/genetics , Mitochondria/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Cell Death/genetics , Male , Gene Expression Profiling
6.
J Cell Mol Med ; 28(11): e18463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847472

ABSTRACT

Accumulating evidence suggests that a wide variety of cell deaths are deeply involved in cancer immunity. However, their roles in glioma have not been explored. We employed a logistic regression model with the shrinkage regularization operator (LASSO) Cox combined with seven machine learning algorithms to analyse the patterns of cell death (including cuproptosis, ferroptosis, pyroptosis, apoptosis and necrosis) in The Cancer Genome Atlas (TCGA) cohort. The performance of the nomogram was assessed through the use of receiver operating characteristic (ROC) curves and calibration curves. Cell-type identification was estimated by using the cell-type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) and single sample gene set enrichment analysis methods. Hub genes associated with the prognostic model were screened through machine learning techniques. The expression pattern and clinical significance of MYD88 were investigated via immunohistochemistry (IHC). The cell death score represents an independent prognostic factor for poor outcomes in glioma patients and has a distinctly superior accuracy to that of 10 published signatures. The nomogram performed well in predicting outcomes according to time-dependent ROC and calibration plots. In addition, a high-risk score was significantly related to high expression of immune checkpoint molecules and dense infiltration of protumor cells, these findings were associated with a cell death-based prognostic model. Upregulated MYD88 expression was associated with malignant phenotypes and undesirable prognoses according to the IHC. Furthermore, high MYD88 expression was associated with poor clinical outcomes and was positively related to CD163, PD-L1 and vimentin expression in the in-horse cohort. The cell death score provides a precise stratification and immune status for glioma. MYD88 was found to be an outstanding representative that might play an important role in glioma.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Glioma , Machine Learning , Nomograms , Humans , Glioma/genetics , Glioma/immunology , Glioma/pathology , Prognosis , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Cell Death/genetics , Male , Female , ROC Curve , Gene Expression Profiling , Middle Aged , Transcriptome , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
7.
Sci Rep ; 14(1): 12749, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830963

ABSTRACT

Keratoconus is corneal disease in which the progression of conical dilation of cornea leads to reduced visual acuity and even corneal perforation. However, the etiology mechanism of keratoconus is still unclear. This study aims to identify the signature genes related to cell death in keratoconus and examine the function of these genes. A dataset of keratoconus from the GEO database was analysed to identify the differentially expressed genes (DEGs). A total of 3558 DEGs were screened from GSE151631. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that they mainly involved in response to hypoxia, cell-cell adhesion, and IL-17 signaling pathway. Then, the cell death-related genes datasets were intersected with the above 3558 DEGs to obtain 70 ferroptosis-related DEGs (FDEGs), 32 autophagy-related DEGs (ADEGs), six pyroptosis-related DEGs (PDEGs), four disulfidptosis-related DEGs (DDEGs), and one cuproptosis-related DEGs (CDEGs). After using Least absolute shrinkage and selection operator (LASSO), Random Forest analysis, and receiver operating characteristic (ROC) curve analysis, one ferroptosis-related gene (TNFAIP3) and five autophagy-related genes (CDKN1A, HSPA5, MAPK8IP1, PPP1R15A, and VEGFA) were screened out. The expressions of the above six genes were significantly decreased in keratoconus and the area under the curve (AUC) values of these genes was 0.944, 0.893, 0.797, 0.726, 0.882 and 0.779 respectively. GSEA analysis showed that the above six genes mainly play an important role in allograft rejection, asthma, and circadian rhythm etc. In conclusion, the results of this study suggested that focusing on these genes and autoimmune diseases will be a beneficial perspective for the keratoconus etiology research.


Subject(s)
Computational Biology , Gene Expression Profiling , Keratoconus , Keratoconus/genetics , Keratoconus/pathology , Humans , Computational Biology/methods , Gene Ontology , Cell Death/genetics , Gene Regulatory Networks , Ferroptosis/genetics , Databases, Genetic , Transcriptome , Protein Interaction Maps/genetics
8.
Cell Mol Life Sci ; 81(1): 279, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916773

ABSTRACT

Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.


Subject(s)
Formins , Mitosis , Podocytes , Transcriptome , Humans , Mitosis/genetics , Podocytes/metabolism , Podocytes/pathology , Transcriptome/genetics , Formins/genetics , Formins/metabolism , Cell Death/genetics , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/metabolism , Mutation , Cell Nucleus/metabolism , Cell Nucleus/genetics , Cell Line
9.
Neoplasia ; 54: 101009, 2024 08.
Article in English | MEDLINE | ID: mdl-38850836

ABSTRACT

BACKGROUND: Lipid metabolism and regulated cell death (RCD) play a role in the remodeling of tumor immune microenvironment and regulation of cancer progression. Since the underlying immune mechanisms of colon cancer remain elusive, this study aims to identify potential therapeutic target genes. METHODS: Differential genes related to lipid metabolism and RCD in COAD patients were identified using R language and online tools. Based on the expression of genes, two groups were classified using consensus clustering. CIBERSORT and ssGSEA were used to detect immune infiltration in both groups. Prognostic signature genes for colon cancer were screened using machine learning algorithms. KEGG, GO and GSEA for gene pathway enrichment. In addition, interacting genes in the immune module were obtained using a weighted gene co-expression network (WGCNA). Finally, expression and mutation of key in colon cancer genes were detected using TIMER, HPR, cBioPortal website and qPCR. RESULTS: The consensus clustering analysis revealed that 231 relevant differential genes were highly associated with immune infiltration. A series of machine learning and website analyses identified AGT as a hub gene linked to lipid metabolism and regulated cell death, which is overexpressed in colon cancer. CONCLUSION: AGT, as a signature gene of lipid metabolism and regulated cell death, plays a critical role in the development of COAD and is associated with tumor immune infiltration.


Subject(s)
Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Lipid Metabolism , Tumor Microenvironment , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Lipid Metabolism/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Prognosis , Cell Death/genetics , Biomarkers, Tumor/genetics , Computational Biology/methods , Gene Expression Profiling , Gene Regulatory Networks , Transcriptome
10.
Front Biosci (Landmark Ed) ; 29(6): 233, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38940043

ABSTRACT

BACKGROUND: This study investigated the mechanism by which tazarotene-induced gene 1 (TIG1) inhibits melanoma cell growth. The main focus was to analyze downstream genes regulated by TIG1 in melanoma cells and its impact on cell growth. METHODS: The effects of TIG1 expression on cell viability and death were assessed using water-soluble tetrazolium 1 (WST-1) mitochondrial staining and lactate dehydrogenase release assays. RNA sequencing and Western blot analysis were employed to investigate the genes regulated by TIG1 in melanoma cells. Additionally, the correlation between TIG1 expression and its downstream genes was analyzed in a melanoma tissue array. RESULTS: TIG1 expression in melanoma cells was associated with decreased cell viability and increased cell death. RNA-sequencing (RNA-seq), quantitative reverse transcription PCR (reverse RT-QPCR), and immunoblots revealed that TIG1 expression induced the expression of Endoplasmic Reticulum (ER) stress response-related genes such as Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 (HERPUD1), Binding immunoglobulin protein (BIP), and DNA damage-inducible transcript 3 (DDIT3). Furthermore, analysis of the melanoma tissue array revealed a positive correlation between TIG1 expression and the expression of HERPUD1, BIP, and DDIT3. Additionally, attenuation of the ER stress response in melanoma cells weakened the impact of TIG1 on cell growth. CONCLUSIONS: TIG1 expression effectively hinders the growth of melanoma cells. TIG1 induces the upregulation of ER stress response-related genes, leading to an increase in caspase-3 activity and subsequent cell death. These findings suggest that the ability of retinoic acid to prevent melanoma formation may be associated with the anticancer effect of TIG1.


Subject(s)
Cell Survival , Endoplasmic Reticulum Stress , Gene Expression Regulation, Neoplastic , Melanoma , Humans , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/drug effects , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cell Death/genetics , Apoptosis/genetics , Apoptosis/drug effects , Cell Proliferation/genetics , Cell Proliferation/drug effects , Membrane Proteins
11.
Mol Metab ; 86: 101973, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914291

ABSTRACT

BACKGROUND: Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW: Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS: We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Humans , Insulin-Secreting Cells/metabolism , Genetic Predisposition to Disease , Animals , Cell Death/genetics , Genome-Wide Association Study
12.
Biomolecules ; 14(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38785921

ABSTRACT

Musculoskeletal diseases (MSDs), including osteoarthritis (OA), osteosarcoma (OS), multiple myeloma (MM), intervertebral disc degeneration (IDD), osteoporosis (OP), and rheumatoid arthritis (RA), present noteworthy obstacles associated with pain, disability, and impaired quality of life on a global scale. In recent years, it has become increasingly apparent that N6-methyladenosine (m6A) is a key regulator in the expression of genes in a multitude of biological processes. m6A is composed of 0.1-0.4% adenylate residues, especially at the beginning of 3'-UTR near the translation stop codon. The m6A regulator can be classified into three types, namely the "writer", "reader", and "eraser". Studies have shown that the epigenetic modulation of m6A influences mRNA processing, nuclear export, translation, and splicing. Regulated cell death (RCD) is the autonomous and orderly death of cells under genetic control to maintain the stability of the internal environment. Moreover, distorted RCDs are widely used to influence the course of various diseases and receiving increasing attention from researchers. In the past few years, increasing evidence has indicated that m6A can regulate gene expression and thus influence different RCD processes, which has a central role in the etiology and evolution of MSDs. The RCDs currently confirmed to be associated with m6A are autophagy-dependent cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, immunogenic cell death, NETotic cell death and oxeiptosis. The m6A-RCD axis can regulate the inflammatory response in chondrocytes and the invasive and migratory of MM cells to bone remodeling capacity, thereby influencing the development of MSDs. This review gives a complete overview of the regulatory functions on the m6A-RCD axis across muscle, bone, and cartilage. In addition, we also discuss recent advances in the control of RCD by m6A-targeted factors and explore the clinical application prospects of therapies targeting the m6A-RCD in MSD prevention and treatment. These may provide new ideas and directions for understanding the pathophysiological mechanism of MSDs and the clinical prevention and treatment of these diseases.


Subject(s)
Adenosine , Musculoskeletal Diseases , Humans , Musculoskeletal Diseases/genetics , Musculoskeletal Diseases/metabolism , Musculoskeletal Diseases/pathology , Adenosine/analogs & derivatives , Adenosine/metabolism , Cell Death/genetics , Animals , Epigenesis, Genetic
13.
Sci Rep ; 14(1): 11874, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789729

ABSTRACT

Low-grade glioma (LGG) is heterogeneous at biological and transcriptomic levels, and it is still controversial for the definition and typing of LGG. Therefore, there is an urgent need for specific and practical molecular signatures for accurate diagnosis, individualized therapy, and prognostic evaluation of LGG. Cell death is essential for maintaining homeostasis, developing and preventing hyperproliferative malignancies. Based on diverse programmed cell death (PCD) related genes and prognostic characteristics of LGG, this study constructed a model to explore the mechanism and treatment strategies for LGG cell metastasis and invasion. We screened 1161 genes associated with PCD and divided 512 LGG samples into C1 and C2 subtypes by consistent cluster analysis. We analyzed the two subtypes' differentially expressed genes (DEGs) and performed functional enrichment analysis. Using R packages such as ESTIMATE, CIBERSOTR, and MCPcounter, we assessed immune cell scores for both subtypes. Compared with C1, the C2 subtype has a poor prognosis and a higher immune score, and patients in the C2 subtype are more strongly associated with tumor progression. LASSO and COX regression analysis screened four characteristic genes (CLU, FHL3, GIMAP2, and HVCN1). Using data sets from different platforms to validate the four-gene feature, we found that the expression and prognostic correlation of the four-gene feature had a high degree of stability, showing stable predictive effects. Besides, we found downregulation of CLU, FHL3, and GIMAP2 significantly impairs the growth, migration, and invasive potential of LGG cells. Take together, the four-gene feature constructed based on PCD-related genes provides valuable information for further study of the pathogenesis and clinical treatment of LGG.


Subject(s)
Brain Neoplasms , Gene Expression Regulation, Neoplastic , Glioma , Humans , Glioma/genetics , Glioma/pathology , Glioma/mortality , Glioma/diagnosis , Prognosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Biomarkers, Tumor/genetics , Gene Expression Profiling , Neoplasm Grading , Male , Female , Cell Death/genetics , Transcriptome
14.
Free Radic Biol Med ; 221: 31-39, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38729452

ABSTRACT

Reactive oxygen species (ROS) are highly reactive and their accumulation causes oxidative damage to cells. Cells maintain survival upon mild oxidative stress with anti-oxidative systems, such as the kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) system. On the other hand, upon severe oxidative stress, cells undergo regulated cell death, including apoptosis, for eliminating damaged cells. To execute efficient cell death, cells need to turn off the anti-oxidant systems, while triggering cell death. However, it remains unknown how cells orchestrate these two conflicting systems under excessive oxidative stress. Herein, we show that when cells are exposed to excessive oxidative damage, an E3 ubiquitin ligase Roquin-2 (also known as RC3H2) plays a key role in switching cell fate from survival to death by terminating activation of transforming growth factor-ß-activated kinase 1 (TAK1), a positive regulator for Nrf2 activation. Roquin-2 interacted with TAK1 via four cysteine residues in TAK1 (C96, C302, C486, and C500) that are susceptible to oxidative stress and participate in oligomer formation via disulfide bonds, promoting K48-linked polyubiquitination and degradation of TAK1. Nrf2 was inactivated upon lethal oxidative stress in wild-type mouse embryonic fibroblast (MEF) cells, whereas it sustained activation and conferred resistance to Roquin-2 deficient cells, which was reversed by pharmacological or genetic inhibition of TAK1. These data demonstrate that in response to excessive ROS exposure, Roquin-2 promotes ubiquitination and degradation of TAK1 to suppress Nrf2 activation, and thereby contributes to an efficient cell death, providing insight into the pathogenesis of oxidative stress-related diseases, including cancer.


Subject(s)
Apoptosis , MAP Kinase Kinase Kinases , NF-E2-Related Factor 2 , Oxidative Stress , Reactive Oxygen Species , Ubiquitin-Protein Ligases , Ubiquitination , Animals , Humans , Mice , Cell Death/genetics , HEK293 Cells , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Proteolysis , Reactive Oxygen Species/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
15.
STAR Protoc ; 5(2): 103072, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38768032

ABSTRACT

The CRISPR-Kill system enables targeted cell ablation by inducing multiple double-strand breaks in evolutionarily conserved repetitive genomic regions. Here, we present a protocol for the application of the CRISPR-Kill system to analyze the systemic and cellular effects of targeted cell death in Arabidopsis. We describe steps for generating constitutive and inducible CRISPR-Kill lines, chemically inducing CRISPR-Cas9-mediated genome elimination, and monitoring of cell death in shoot and root apical meristems. This enables the investigation of a wide range of questions in developmental plant biology. For complete details on the use and execution of this protocol, please refer to Gehrke et al.1.


Subject(s)
Arabidopsis , CRISPR-Cas Systems , Arabidopsis/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , Cell Death/genetics , Cell Death/drug effects , Meristem/genetics , Meristem/cytology
16.
J Med Genet ; 61(8): 750-758, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38816193

ABSTRACT

BACKGROUND AND AIMS: Variants in ZFYVE19 underlie a disorder characterised by progressive portal fibrosis, portal hypertension and eventual liver decompensation. We aim to create an animal model to elucidate the pathogenic mechanism. METHODS: Zfyve19 knockout (Zfyve19-/- ) mice were generated and exposed to different liver toxins. Their livers were characterised at the tissue, cellular and molecular levels. Findings were compared with those in wild-type mice and in ZFYVE19-deficient patients. ZFYVE19 knockout and knockdown retinal pigment epithelial-1 cells and mouse embryonic fibroblasts were generated to study cell division and cell death. RESULTS: The Zfyve19-/- mice were normal overall, particularly with respect to hepatobiliary features. However, when challenged with α-naphthyl isothiocyanate, Zfyve19-/- mice developed changes resembling those in ZFYVE19-deficient patients, including elevated serum liver injury markers, increased numbers of bile duct profiles with abnormal cholangiocyte polarity and biliary fibrosis. Failure of cell division, centriole and cilia abnormalities, and increased cell death were observed in knockdown/knockout cells. Increased cell death and altered mRNA expression of cell death-related signalling pathways was demonstrated in livers from Zfyve19-/- mice and patients. Transforming growth factor-ß (TGF-ß) and Janus kinase-Signal Transducer and Activator of Transcription 3 (JAK-STAT3) signalling pathways were upregulated in vivo, as were chemokines such as C-X-C motif ligands 1, 10 and 12. CONCLUSIONS: Our findings demonstrated that ZFYVE19 deficiency is a ciliopathy with novel histological features. Failure of cell division with ciliary abnormalities and cell death activates macrophages and may thus lead to biliary fibrosis via TGF-ß pathway in the disease.


Subject(s)
Cell Death , Ciliopathies , Mice, Knockout , Animals , Humans , Mice , Cell Death/genetics , Cell Division/genetics , Cilia/pathology , Cilia/genetics , Cilia/metabolism , Ciliopathies/genetics , Ciliopathies/pathology , Disease Models, Animal , Liver/pathology , Liver/metabolism , Signal Transduction/genetics
17.
Plant Physiol ; 195(4): 2985-2996, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38723194

ABSTRACT

Transcription activator-like effectors (TALEs) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harboring only 7.5 repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.


Subject(s)
Cell Death , Gene Expression Regulation, Plant , Nicotiana , Cell Death/genetics , Nicotiana/genetics , Nicotiana/microbiology , Xanthomonas/physiology , Xanthomonas/pathogenicity , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Activator-Like Effectors/metabolism , Transcription Activator-Like Effectors/genetics , Genes, Plant , Plant Diseases/microbiology , Plant Diseases/genetics , Promoter Regions, Genetic/genetics , Gene Expression Profiling , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
18.
Curr Protoc ; 4(4): e1023, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38606936

ABSTRACT

Necroptosis is a form of inflammatory lytic cell death involving active cytokine production and plasma membrane rupture. Progression of necroptosis is tightly regulated in time and space, and its signaling outcomes can shape the local inflammatory environment of cells and tissues. Pharmacological induction of necroptosis is well established, but the diffusive nature of chemical death inducers makes it challenging to study cell-cell communication precisely during necroptosis. Receptor-interacting protein kinase 3, or RIPK3, is a crucial signaling component of necroptosis, acting as a crucial signaling node for both canonical and non-canonical necroptosis. RIPK3 oligomerization is crucial to the formation of the necrosome, which regulates plasma membrane rupture and cytokine production. Commonly used necroptosis inducers can activate multiple downstream signaling pathways, confounding the signaling outcomes of RIPK3-mediated necroptosis. Opsin-free optogenetic techniques may provide an alternative strategy to address this issue. Optogenetics uses light-sensitive protein-protein interaction to modulate cell signaling. Compared to chemical-based approaches, optogenetic strategies allow for spatiotemporal modulation of signal transduction in live cells and animals. We developed an optogenetic system that allows for ligand-free optical control of RIPK3 oligomerization and necroptosis. This article describes the sample preparation, experimental setup, and optimization required to achieve robust optogenetic induction of RIPK3-mediated necroptosis in colorectal HT-29 cells. We expect that this optogenetic system could provide valuable insights into the dynamic nature of lytic cell death. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of lentivirus encoding the optogenetic RIPK3 system Support Protocol: Quantification of the titer of lentivirus Basic Protocol 2: Culturing, chemical transfection, and lentivirus transduction of HT-29 cells Basic Protocol 3: Optimization of optogenetic stimulation conditions Basic Protocol 4: Time-stamped live-cell imaging of HT-29 lytic cell death Basic Protocol 5: Quantification of HT-29 lytic cell death.


Subject(s)
Optogenetics , Signal Transduction , Humans , Animals , Cell Death/genetics , HT29 Cells , Cytokines
19.
Cell Death Dis ; 15(4): 251, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589365

ABSTRACT

Cell death mediated by genetically defined signaling pathways influences the health and dynamics of all tissues, however the tissue specificity of cell death pathways and the relationships between these pathways and human disease are not well understood. We analyzed the expression profiles of an array of 44 cell death genes involved in apoptosis, necroptosis, and pyroptosis cell death pathways across 49 human tissues from GTEx, to elucidate the landscape of cell death gene expression across human tissues, and the relationship between tissue-specific genetically determined expression and the human phenome. We uncovered unique cell death gene expression profiles across tissue types, suggesting there are physiologically distinct cell death programs in different tissues. Using summary statistics-based transcriptome wide association studies (TWAS) on human traits in the UK Biobank (n ~ 500,000), we evaluated 513 traits encompassing ICD-10 defined diagnoses and laboratory-derived traits. Our analysis revealed hundreds of significant (FDR < 0.05) associations between genetically regulated cell death gene expression and an array of human phenotypes encompassing both clinical diagnoses and hematologic parameters, which were independently validated in another large-scale DNA biobank (BioVU) at Vanderbilt University Medical Center (n = 94,474) with matching phenotypes. Cell death genes were highly enriched for significant associations with blood traits versus non-cell-death genes, with apoptosis-associated genes enriched for leukocyte and platelet traits. Our findings are also concordant with independently published studies (e.g. associations between BCL2L11/BIM expression and platelet & lymphocyte counts). Overall, these results suggest that cell death genes play distinct roles in their contribution to human phenotypes, and that cell death genes influence a diverse array of human traits.


Subject(s)
Genome-Wide Association Study , Transcriptome , Humans , Genome-Wide Association Study/methods , Phenotype , Cell Death/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
20.
Sci Signal ; 17(831): eadh1922, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593154

ABSTRACT

Androgen deprivation therapy (ADT) is the primary treatment for prostate cancer; however, resistance to ADT invariably develops, leading to castration-resistant prostate cancer (CRPC). Prostate cancer progression is marked by increased de novo synthesis of fatty acids due to overexpression of fatty acid synthase (FASN), making this enzyme a therapeutic target for prostate cancer. Inhibition of FASN results in increased intracellular amounts of ceramides and sphingomyelin, leading to DNA damage through the formation of DNA double-strand breaks and cell death. We found that combining a FASNi with the poly-ADP ribose polymerase (PARP) inhibitor olaparib, which induces cell death by blocking DNA damage repair, resulted in a more pronounced reduction in cell growth than that caused by either drug alone. Human CRPC organoids treated with a combination of PARP and FASNi were smaller, had decreased cell proliferation, and showed increased apoptosis and necrosis. Together, these data indicate that targeting FASN increases the therapeutic efficacy of PARP inhibitors by impairing DNA damage repair, suggesting that combination therapies should be explored for CRPC.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Androgen Antagonists , Cell Death/genetics , Cell Line, Tumor , DNA Damage , Lipids , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL