Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.378
Filter
1.
Nature ; 631(8019): 37-48, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961155

ABSTRACT

Living systems contain a vast network of metabolic reactions, providing a wealth of enzymes and cells as potential biocatalysts for chemical processes. The properties of protein and cell biocatalysts-high selectivity, the ability to control reaction sequence and operation in environmentally benign conditions-offer approaches to produce molecules at high efficiency while lowering the cost and environmental impact of industrial chemistry. Furthermore, biocatalysis offers the opportunity to generate chemical structures and functions that may be inaccessible to chemical synthesis. Here we consider developments in enzymes, biosynthetic pathways and cellular engineering that enable their use in catalysis for new chemistry and beyond.


Subject(s)
Biocatalysis , Biosynthetic Pathways , Cell Engineering , Enzymes , Humans , Cell Engineering/methods , Enzymes/metabolism , Enzymes/chemistry , Substrate Specificity , Chemistry Techniques, Synthetic
2.
Nat Commun ; 15(1): 6200, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043686

ABSTRACT

Cell fate is likely regulated by a common machinery, while components of this machine remain to be identified. Here we report the design and testing of engineered cell fate controller NanogBiD, fusing BiD or BRG1 interacting domain of SS18 with Nanog. NanogBiD promotes mouse somatic cell reprogramming efficiently in contrast to the ineffective native protein under multiple testing conditions. Mechanistic studies further reveal that it facilitates cell fate transition by recruiting the intended Brg/Brahma-associated factor (BAF) complex to modulate chromatin accessibility and reorganize cell state specific enhancers known to be occupied by canonical Nanog, resulting in precocious activation of multiple genes including Sall4, miR-302, Dppa5a and Sox15 towards pluripotency. Although we have yet to test our approach in other species, our findings suggest that engineered chromatin regulators may provide much needed tools to engineer cell fate in the cells as drugs era.


Subject(s)
Nanog Homeobox Protein , Transcription Factors , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Cellular Reprogramming/genetics , Chromatin/metabolism , Chromatin/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Cell Differentiation , Cell Engineering/methods , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
3.
Biomed Pharmacother ; 177: 117064, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964179

ABSTRACT

Macrophages play a critical role in the body's defense against cancer by phagocytosing tumor cells, presenting antigens, and activating adaptive T cells. However, macrophages are intrinsically incapable of delivering targeted cancer immunotherapies. Engineered adoptive cell therapy introduces new targeting and antitumor capabilities by modifying macrophages to enhance the innate immune response of cells and improve clinical efficacy. In this study, we developed engineered macrophage cholesterol-AS1411-M1 (CAM1) for cellular immunotherapy. To target macrophages, cholesterol-AS1411 aptamers were anchored to the surface of M1 macrophages to produce CAM1 without genetic modification or cell damage. CAM1 induced significantly higher apoptosis/mortality than unmodified M1 macrophages in murine breast cancer cells. Anchoring AS1411 on the surface of macrophages provided a novel approach to construct engineered macrophages for tumor immunotherapy.


Subject(s)
Aptamers, Nucleotide , Immunotherapy, Adoptive , Macrophages , Animals , Macrophages/immunology , Macrophages/metabolism , Immunotherapy, Adoptive/methods , Mice , Cell Line, Tumor , Cholesterol/metabolism , Female , Apoptosis , Cell Engineering/methods , Cell Membrane/metabolism , Humans
4.
Methods Mol Biol ; 2844: 85-96, 2024.
Article in English | MEDLINE | ID: mdl-39068333

ABSTRACT

Automated high-throughput methods that support tracking of mammalian cell growth are currently needed to advance cell line characterization and identification of desired genetic components required for cell engineering. Here, we describe a high-throughput noninvasive assay based on plate reader measurements. The assay relies on the change in absorbance of the pH indicator phenol red. We show that its basic and acidic absorbance profiles can be converted into a cell growth index consistent with cell count profiles, and that, by adopting a computational pipeline and calibration measurements, it is possible to identify a conversion that enables prediction of cell numbers from plate measurements alone. The assay is suitable for growth characterization of both suspension and adherent cell lines when these are grown under different environmental conditions and treated with chemotherapeutic drugs. The method also supports characterization of stably engineered cell lines and identification of desired promoters based on fluorescence output.


Subject(s)
Cell Proliferation , Promoter Regions, Genetic , Animals , Humans , Cell Engineering/methods , Phenolsulfonphthalein , Cell Line , High-Throughput Screening Assays/methods , Cell Culture Techniques/methods , Hydrogen-Ion Concentration
5.
Sci Rep ; 14(1): 14141, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898154

ABSTRACT

Secretion levels required of industrial Chinese hamster ovary (CHO) cell lines can challenge endoplasmic reticulum (ER) homeostasis, and ER stress caused by accumulation of misfolded proteins can be a bottleneck in biomanufacturing. The unfolded protein response (UPR) is initiated to restore homeostasis in response to ER stress, and optimization of the UPR can improve CHO cell production of therapeutic proteins. We compared the fed-batch growth, production characteristics, and transcriptomic response of an immunoglobulin G1 (IgG1) producer to its parental, non-producing host cell line. We conducted differential gene expression analysis using high throughput RNA sequencing (RNASeq) and quantitative polymerase chain reaction (qPCR) to study the ER stress response of each cell line during fed-batch culture. The UPR was activated in the IgG1 producer compared to the host cell line and our analysis of differential expression profiles indicated transient upregulation of ATF6α target mRNAs in the IgG1 producer, suggesting two upstream regulators of the ATF6 arm of the UPR, ATF6ß and WFS1, are rational engineering targets. Although both ATF6ß and WFS1 have been reported to negatively regulate ATF6α, this study shows knockdown of either target elicits different effects in an IgG1-producing CHO cell line. Stable knockdown of ATF6ß decreased cell growth without decreasing titer; however, knockdown of WFS1 decreased titer without affecting growth. Relative expression measured by qPCR indicated no direct relationship between ATF6ß and WFS1 expression, but upregulation of WFS1 in one pool was correlated with decreased growth and upregulation of ER chaperone mRNAs. While knockdown of WFS1 had negative impacts on UPR activation and product mRNA expression, knockdown of ATF6ß improved the UPR specifically later in fed-batch leading to increased overall productivity.


Subject(s)
Activating Transcription Factor 6 , Cricetulus , Immunoglobulin G , Unfolded Protein Response , Animals , CHO Cells , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Unfolded Protein Response/genetics , Endoplasmic Reticulum Stress/genetics , Gene Knockdown Techniques , Cell Engineering/methods , Batch Cell Culture Techniques/methods , Membrane Proteins/metabolism , Membrane Proteins/genetics
6.
Biomater Sci ; 12(14): 3500-3521, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38828621

ABSTRACT

Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.


Subject(s)
Exosomes , Exosomes/chemistry , Exosomes/metabolism , Humans , Animals , Drug Delivery Systems , Cell Engineering
7.
Mol Cell Proteomics ; 23(7): 100796, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851451

ABSTRACT

Protein O-linked mannose (O-Man) glycosylation is an evolutionary conserved posttranslational modification that fulfills important biological roles during embryonic development. Three nonredundant enzyme families, POMT1/POMT2, TMTC1-4, and TMEM260, selectively coordinate the initiation of protein O-Man glycosylation on distinct classes of transmembrane proteins, including α-dystroglycan, cadherins, and plexin receptors. However, a systematic investigation of their substrate specificities is lacking, in part due to the ubiquitous expression of O-Man glycosyltransferases in cells, which precludes analysis of pathway-specific O-Man glycosylation on a proteome-wide scale. Here, we apply a targeted workflow for membrane glycoproteomics across five human cell lines to extensively map O-Man substrates and genetically deconstruct O-Man initiation by individual and combinatorial knockout of O-Man glycosyltransferase genes. We established a human cell library for the analysis of substrate specificities of individual O-Man initiation pathways by quantitative glycoproteomics. Our results identify 180 O-Man glycoproteins, demonstrate new protein targets for the POMT1/POMT2 pathway, and show that TMTC1-4 and TMEM260 pathways widely target distinct Ig-like protein domains of plasma membrane proteins involved in cell-cell and cell-extracellular matrix interactions. The identification of O-Man on Ig-like folds adds further knowledge on the emerging concept of domain-specific O-Man glycosylation which opens for functional studies of O-Man-glycosylated adhesion molecules and receptors.


Subject(s)
Mannose , Humans , Glycosylation , Mannose/metabolism , Substrate Specificity , Glycoproteins/metabolism , Proteomics/methods , Cell Line , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Protein Processing, Post-Translational , Cell Engineering/methods
8.
Adv Protein Chem Struct Biol ; 140: 91-156, 2024.
Article in English | MEDLINE | ID: mdl-38762281

ABSTRACT

This book chapter highlights a comprehensive exploration of the transformative innovations in the field of cancer immunotherapy. CAR (Chimeric Antigen Receptor) T-cell therapy represents a groundbreaking approach to treat cancer by reprogramming a patient immune cells to recognize and destroy cancer cells. This chapter underscores the critical role of synthetic biology in enhancing the safety and effectiveness of CAR T-cell therapies. It begins by emphasizing the growing importance of personalized medicine in cancer treatment, emphasizing the shift from one-size-fits-all approaches to patient-specific solutions. Synthetic biology, a multidisciplinary field, has been instrumental in customizing CAR T-cell therapies, allowing for fine-tuned precision and minimizing unwanted side effects. The chapter highlights recent advances in gene editing, synthetic gene circuits, and molecular engineering, showcasing how these technologies are optimizing CAR T-cell function. In summary, this book chapter sheds light on the remarkable progress made in the development of CAR T-cell therapies using synthetic biology, providing hope for cancer patients and hinting at a future where highly personalized and effective cancer treatments are the norm.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Synthetic Biology , Humans , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Gene Editing , Cell Engineering
9.
Acc Chem Res ; 57(12): 1722-1735, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38819691

ABSTRACT

ConspectusIn human cells, intracellular access and therapeutic cargo transport, including gene-editing tools (e.g., CRISPR-Cas9 and transposons), nucleic acids (e.g., DNA, mRNA, and siRNA), peptides, and proteins (e.g., enzymes and antibodies), are tightly constrained to ensure healthy cell function and behavior. This principle is exemplified in the delivery mechanisms of chimeric antigen receptor (CAR)-T cells for ex-vivo immunotherapy. In particular, the clinical success of CAR-T cells has established a new standard of care by curing previously incurable blood cancers. The approach involves the delivery, typically via the use of electroporation (EP) and lentivirus, of therapeutic CAR genes into a patient's own T cells, which are then engineered to express CARs that target and combat their blood cancer. But the key difficulty lies in genetically manipulating these cells without causing irreversible damage or loss of function─all the while minimizing complexities of manufacturing, safety concerns, and costs, and ensuring the efficacy of the final CAR-T cell product.Nanoinjection─the process of intracellular delivery using nanoneedles (NNs)─is an emerging physical delivery route that efficiently negotiates the plasma membrane of many cell types, including primary human T cells. It occurs with minimal perturbation, invasiveness, and toxicity, with high efficiency and throughput at high spatial and temporal resolutions. Nanoinjection promises greatly improved delivery of a broad range of therapeutic cargos with little or no damage to those cargos. A nanoinjection platform allows these cargos to function in the intracellular space as desired. The adaptability of nanoinjection platforms is now bringing major advantages in immunomodulation, mechanotransduction, sampling of cell states (nanobiopsy), controlled intracellular interrogation, and the primary focus of this account─intracellular delivery and its applications in ex vivo cell engineering.Mechanical nanoinjection typically exerts direct mechanical force on the cell membrane, offering a straightforward route to improve membrane perturbation by the NNs and subsequent transport of genetic cargo into targeted cell type (adherent or suspension cells). By contrast, electroactive nanoinjection is controlled by coupling NNs with an electric field─a new route for activating electroporation (EP) at the nanoscale─allowing a dramatic reduction of the applied voltage to a cell and so minimizing post-EP damage to cells and cargo, and overcoming many of the limitations of conventional bulk EP. Nanoinjection transcends mere technique; it is an approach to cell engineering ex vivo, offering the potential to endow cells with new, powerful features such as generating chimeric antigen receptor (CAR)-T cells for future CAR-T cell technologies.We first discuss the manufacturing of NN devices (Section 2), then delve into nanoinjection-mediated cell engineering (Section 3), nanoinjection mechanisms and interfacing methodologies (Section 4), and emerging applications in using nanoinjection to create functional CAR-T cells (Section 5).


Subject(s)
Cell Engineering , Humans , Cell Engineering/methods , Receptors, Chimeric Antigen/metabolism , Nanotechnology/methods , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Electroporation/methods , Injections
10.
Immunol Cell Biol ; 102(6): 444-447, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38693888

ABSTRACT

Natural killer (NK) cells possess potent cytotoxicity against infected and cancerous cells and hold promise in the development of new immunotherapies. This article for the Highlights of 2023 Series focuses on current advances in NK cell biology in cancerous and infectious settings and highlights opportunities for therapeutic interventions, including engineered NK cell therapies and advancements in feeder cell technologies.


Subject(s)
Cell Engineering , Immunotherapy , Killer Cells, Natural , Neoplasms , Animals , Humans , Cytotoxicity, Immunologic , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Neoplasms/therapy , Neoplasms/immunology
11.
Sci Transl Med ; 16(749): eadg9814, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809963

ABSTRACT

T cell-based cancer immunotherapy has typically relied on membrane-bound cytotoxicity enhancers such as chimeric antigen receptors expressed in autologous αß T cells. These approaches are limited by tonic signaling of synthetic constructs and costs associated with manufacturing. γδ T cells are an emerging alternative for cellular therapy, having innate antitumor activity, potent antibody-dependent cellular cytotoxicity, and minimal alloreactivity. We present an immunotherapeutic platform technology built around the innate properties of the Vγ9Vδ2 T cell, harnessing specific characteristics of this cell type and offering an allocompatible cellular therapy that recruits bystander immunity. We engineered γδ T cells to secrete synthetic tumor-targeting opsonins in the form of an scFv-Fc fusion protein and a mitogenic IL-15Rα-IL-15 fusion protein (stIL15). Using GD2 as a model antigen, we show that GD2-specific opsonin-secreting Vγ9Vδ2 T cells (stIL15-OPS-γδ T cells) have enhanced cytotoxicity and promote bystander activity of other lymphoid and myeloid cells. Secretion of stIL-15 abrogated the need for exogenous cytokine supplementation and further mediated activation of bystander natural killer cells. Compared with unmodified γδ T cells, stIL15-OPS-γδ T cells exhibited superior in vivo control of subcutaneous tumors and persistence in the blood. Moreover, stIL15-OPS-γδ T cells were efficacious against patient-derived osteosarcomas in animal models and in vitro, where efficacy could be boosted with the addition of zoledronic acid. Together, the data identify stIL15-OPS-γδ T cells as a candidate allogeneic cell therapy platform combining direct cytolysis with bystander activation to promote tumor control.


Subject(s)
Osteosarcoma , Receptors, Antigen, T-Cell, gamma-delta , Animals , Osteosarcoma/therapy , Osteosarcoma/immunology , Osteosarcoma/pathology , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Mice , T-Lymphocytes/immunology , Zoledronic Acid/pharmacology , Bystander Effect , Interleukin-15 , Cell Engineering
12.
Mol Ther ; 32(7): 2357-2372, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38751112

ABSTRACT

Natural killer (NK) cells have high intrinsic cytotoxic capacity, and clinical trials have demonstrated their safety and efficacy for adoptive cancer therapy. Expression of chimeric antigen receptors (CARs) enhances NK cell target specificity, with these cells applicable as off-the-shelf products generated from allogeneic donors. Here, we present for the first time an innovative approach for CAR NK cell engineering employing a non-viral Sleeping Beauty (SB) transposon/transposase-based system and minimized DNA vectors termed minicircles. SB-modified peripheral blood-derived primary NK cells displayed high and stable CAR expression and more frequent vector integration into genomic safe harbors than lentiviral vectors. Importantly, SB-generated CAR NK cells demonstrated enhanced cytotoxicity compared with non-transfected NK cells. A strong antileukemic potential was confirmed using established acute lymphocytic leukemia cells and patient-derived primary acute B cell leukemia and lymphoma samples as targets in vitro and in vivo in a xenograft leukemia mouse model. Our data suggest that the SB-transposon system is an efficient, safe, and cost-effective approach to non-viral engineering of highly functional CAR NK cells, which may be suitable for cancer immunotherapy of leukemia as well as many other malignancies.


Subject(s)
Genetic Vectors , Immunotherapy, Adoptive , Killer Cells, Natural , Receptors, Chimeric Antigen , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Mice , Genetic Vectors/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Xenograft Model Antitumor Assays , Transposases/genetics , Transposases/metabolism , Cell Line, Tumor , DNA Transposable Elements , Cytotoxicity, Immunologic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Cell Engineering/methods
13.
Acta Biochim Pol ; 71: 12185, 2024.
Article in English | MEDLINE | ID: mdl-38721308

ABSTRACT

Human chemokine receptor 8 (CCR8) is a promising drug target for immunotherapy of cancer and autoimmune diseases. Monoclonal antibody-based CCR8 targeted treatment shows significant inhibition in tumor growth. The inhibition of CCR8 results in the improvement of antitumor immunity and patient survival rates by regulating tumor-resident regulatory T cells. Recently monoclonal antibody drug development targeting CCR8 has become a research hotspot, which also promotes the advancement of antibody evaluation methods. Therefore, we constructed a novel engineered customized cell line HEK293-cAMP-biosensor-CCR8 combined with CCR8 and a cAMP-biosensor reporter. It can be used for the detection of anti-CCR8 antibody functions like specificity and biological activity, in addition to the detection of antibody-dependent cell-mediated cytotoxicity and antibody-dependent-cellular-phagocytosis. We obtained a new CCR8 mAb 22H9 and successfully verified its biological activities with HEK293-cAMP-biosensor-CCR8. Our reporter cell line has high sensitivity and specificity, and also offers a rapid kinetic detection platform for evaluating anti-CCR8 antibody functions.


Subject(s)
Antibodies, Monoclonal , Biosensing Techniques , Cyclic AMP , Receptors, CCR8 , Humans , HEK293 Cells , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Receptors, CCR8/immunology , Receptors, CCR8/metabolism , Cyclic AMP/metabolism , Biosensing Techniques/methods , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Engineering/methods
14.
Nat Biomed Eng ; 8(4): 337-338, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38654129
15.
Curr Opin Biotechnol ; 87: 103131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599012

ABSTRACT

Glial cells are important in maintaining homeostasis for neurons in the central nervous system (CNS). During CNS disease or after injury, glia react to altered microenvironments and often acquire altered functions that contribute to disease pathology. A major focus for research is utilizing stem cell (SC)-derived glia as a potential renewable source for cell replacement to restore function, including neuronal support, and as a model for disease states to identify therapeutic targets. In this review, we focus on SC differentiation protocols for deriving three types of glial cells, astrocytes, oligodendrocytes, and microglia. These SC-derived glia can be used to identify critical cues that contribute to CNS disease progression and aid in investigation of therapeutic targets.


Subject(s)
Central Nervous System Diseases , Neuroglia , Humans , Neuroglia/metabolism , Central Nervous System Diseases/therapy , Central Nervous System Diseases/metabolism , Animals , Cell Differentiation , Stem Cells/cytology , Cell Engineering/methods
16.
Annu Rev Chem Biomol Eng ; 15(1): 267-292, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38594944

ABSTRACT

Augmenting cells with novel, genetically encoded functions will support therapies that expand beyond natural capacity for immune surveillance and tissue regeneration. However, engineering cells at scale with transgenic cargoes remains a challenge in realizing the potential of cell-based therapies. In this review, we introduce a range of applications for engineering primary cells and stem cells for cell-based therapies. We highlight tools and advances that have launched mammalian cell engineering from bioproduction to precision editing of therapeutically relevant cells. Additionally, we examine how transgenesis methods and genetic cargo designs can be tailored for performance. Altogether, we offer a vision for accelerating the translation of innovative cell-based therapies by harnessing diverse cell types, integrating the expanding array of synthetic biology tools, and building cellular tools through advanced genome writing techniques.


Subject(s)
Cell- and Tissue-Based Therapy , Humans , Cell- and Tissue-Based Therapy/methods , Animals , Cell Engineering/methods , Gene Editing/methods , Stem Cells/cytology , Synthetic Biology/methods
17.
Trends Pharmacol Sci ; 45(5): 406-418, 2024 May.
Article in English | MEDLINE | ID: mdl-38614815

ABSTRACT

T cells modified to express intelligently designed chimeric antigen receptors (CARs) are exceptionally powerful therapeutic agents for relapsed and refractory blood cancers and have the potential to revolutionize therapy for many other diseases. To circumvent the complexity and cost associated with broad-scale implementation of ex vivo manufactured adoptive cell therapy products, alternative strategies to generate CAR T cells in vivo by direct infusion of nanoparticle-formulated nucleic acids or engineered viral vectors under development have received a great deal of attention in the past few years. Here, we outline the ex vivo manufacturing process as a motivating framework for direct in vivo strategies and discuss emerging data from preclinical models to highlight the potency of the in vivo approach, the applicability for new disease indications, and the remaining challenges associated with clinical readiness, including delivery specificity, long term efficacy, and safety.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Animals , T-Lymphocytes/immunology , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Cell Engineering/methods , Receptors, Antigen, T-Cell/immunology , Neoplasms/therapy , Neoplasms/immunology
18.
Front Immunol ; 15: 1360237, 2024.
Article in English | MEDLINE | ID: mdl-38576617

ABSTRACT

Comprising only 1-10% of the circulating T cell population, γδT cells play a pivotal role in cancer immunotherapy due to their unique amalgamation of innate and adaptive immune features. These cells can secrete cytokines, including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), and can directly eliminate tumor cells through mechanisms like Fas/FasL and antibody-dependent cell-mediated cytotoxicity (ADCC). Unlike conventional αßT cells, γδT cells can target a wide variety of cancer cells independently of major histocompatibility complex (MHC) presentation and function as antigen-presenting cells (APCs). Their ability of recognizing antigens in a non-MHC restricted manner makes them an ideal candidate for allogeneic immunotherapy. Additionally, γδT cells exhibit specific tissue tropism, and rapid responsiveness upon reaching cellular targets, indicating a high level of cellular precision and adaptability. Despite these capabilities, the therapeutic potential of γδT cells has been hindered by some limitations, including their restricted abundance, unsatisfactory expansion, limited persistence, and complex biology and plasticity. To address these issues, gene-engineering strategies like the use of chimeric antigen receptor (CAR) T therapy, T cell receptor (TCR) gene transfer, and the combination with γδT cell engagers are being explored. This review will outline the progress in various engineering strategies, discuss their implications and challenges that lie ahead, and the future directions for engineered γδT cells in both monotherapy and combination immunotherapy.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell, gamma-delta , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocytes , Immunotherapy , Immunotherapy, Adoptive , Cell Engineering , Neoplasms/therapy
19.
Methods Mol Biol ; 2774: 31-41, 2024.
Article in English | MEDLINE | ID: mdl-38441756

ABSTRACT

Protein interactions play a crucial role in a variety of biological processes. Therefore, regulation of these interactions has received considerable attention in terms of synthetic biology tool development. Of those, a toolbox of small peptides known as coiled coils (CCs) represents a unique effective tool for mediating protein-protein interactions because their binding specificity and affinity can be designed and controlled. CC peptides have been used as a building module for designing synthetic regulatory circuits in mammalian cells, construction of fast response to a signal, amplification of the response, and localization and regulation of function of diverse proteins. In this chapter, we describe a designed set of CCs used for mammalian cell engineering and provide a protocol for the construction of CC-mediated logic circuits in mammalian cells. Ultimately, these tools could be used for diverse biotechnological and therapeutic applications.


Subject(s)
Biotechnology , Cell Engineering , Animals , Protein Domains , Synthetic Biology , Peptides , Mammals
20.
Biomater Sci ; 12(9): 2244-2258, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38482903

ABSTRACT

As a vital component of blood, platelets play crucial roles in hemostasis and maintaining vascular integrity, and actively participate in inflammation and immune regulation. The unique biological properties of natural platelets have enabled their utilization as drug delivery vehicles. The advancement and integration of various techniques, including biological, chemical, and physicochemical methods, have enabled the preparation of engineered platelets. Platelets can serve as drug delivery platforms combined with immunotherapy and chemokine therapy to enhance their therapeutic impact. This review focuses on the recent advancements in the application of unactivated platelets for drug delivery. The construction strategies of engineered platelets are comprehensively summarized, encompassing internal loading, surface modification, and genetic engineering techniques. Engineered platelets hold vast potential for treating cardiovascular diseases, cancers, and infectious diseases. Furthermore, the challenges and potential considerations in creating engineered platelets with natural activity are discussed.


Subject(s)
Blood Platelets , Drug Delivery Systems , Humans , Blood Platelets/drug effects , Blood Platelets/metabolism , Blood Platelets/chemistry , Animals , Cell Engineering
SELECTION OF CITATIONS
SEARCH DETAIL