Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.600
Filter
1.
Bone Res ; 12(1): 40, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987568

ABSTRACT

Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss. Proposed model of osteoclast fusion regulated by caspase-8 activation and PS exposure. RANK/RANK-L interaction. Activation of procaspase-8 into caspase-8. Caspase-8 activates caspase-3. Active capase-3 cleaves Xkr8. Local PS exposure is induced. Exposed PS is recognized by the fusion partner. FUSION. PS is re-internalized.


Subject(s)
Caspase 8 , Cell Fusion , Osteoclasts , Phosphatidylserines , Phospholipid Transfer Proteins , Caspase 8/metabolism , Caspase 8/genetics , Animals , Osteoclasts/metabolism , Phosphatidylserines/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Mice , Mice, Inbred C57BL , Bone Resorption/metabolism , Bone Resorption/pathology , Bone Resorption/genetics , Cell Differentiation , RANK Ligand/metabolism
2.
Cell Biochem Funct ; 42(5): e4090, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973147

ABSTRACT

Cellular therapy is considered a better option for the treatment of degenerative disorders. Different cell types are being used for tissue regeneration. Despite extensive research in this field, several issues remain to be addressed concerning cell transplantation. One of these issues is the survival and homing of administered cells in the injured tissue, which depends on the ability of these cells to adhere. To enhance cell adherence and survival, Rap1 GTPase was activated in mesenchymal stem cells (MSCs) as well as in cardiomyocytes (CMs) by using 8-pCPT-2'-O-Me-cAMP, and the effect on gene expression dynamics was determined through quantitative reverse transcriptase-polymerase chain reaction analysis. Pharmacological activation of MSCs and CMs resulted in the upregulation of connexin-43 and cell adhesion genes, which increased the cell adhesion ability of MSCs and CMs, and increased the fusion of MSCs with neonatal CMs. Treating stem cells with a pharmacological agent that activates Rap1a before transplantation can enhance their fusion with CMs and increase cellular regeneration.


Subject(s)
Mesenchymal Stem Cells , Myocytes, Cardiac , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Animals , Cell Adhesion/drug effects , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Cell Fusion , Cells, Cultured , Rats , Animals, Newborn , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics
3.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891857

ABSTRACT

Cell fusion is a biological process that is crucial for the development and homeostasis of different tissues, but it is also pathophysiologically associated with tumor progression and malignancy. The investigation of cell fusion processes is difficult because there is no standardized marker. Many studies therefore use different systems to observe and quantify cell fusion in vitro and in vivo. The comparability of the results must be critically questioned, because both the experimental procedure and the assays differ between studies. The comparability of the fluorescence-based fluorescence double reporter (FDR) and dual split protein (DSP) assay was investigated as part of this study, in which general conditions were kept largely constant. In order to be able to induce both a high and a low cell fusion rate, M13SV1 breast epithelial cells were modified with regard to the expression level of the fusogenic protein Syncytin-1 and its receptor ASCT2 and were co-cultivated for 72 h with different breast cancer cell lines. A high number of fused cells was found in co-cultures with Syncytin-1-overexpressing M13SV1 cells, but differences between the assays were also observed. This shows that the quantification of cell fusion events in particular is highly dependent on the assay selected, but the influence of fusogenic proteins can be visualized very well.


Subject(s)
Breast Neoplasms , Cell Fusion , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Cell Line, Tumor , Coculture Techniques , Pregnancy Proteins , Gene Products, env
4.
FASEB J ; 38(13): e23706, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38877842

ABSTRACT

The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear. In this study, we found that the DNMTs expression was downregulated during trophoblast cells fusion. Downregulation of DNMTs was observed during the reconstruction of the denuded syncytiotrophoblast (STB) layer of placental explants. Additionally, overexpression of DNMTs inhibited trophoblast fusion. Conversely, treatment with the DNA methylation inhibitor 5-aza-CdR decreased the expression of DNMTs and promoted trophoblast fusion. A combined analysis of DNA methylation data and gene transcriptome data obtained from the primary cytotrophoblasts (CTBs) fusion process identified 104 potential methylation-regulated differentially expressed genes (MeDEGs) with upregulated expression due to DNA demethylation, including CD59, TNFAIP3, SDC1, and CDK6. The transcription regulation region (TRR) of TNFAIP3 showed a hypomethylation with induction of 5-aza-CdR, which facilitated CREB recruitment and thereby participated in regulating trophoblast fusion. More importantly, clinical correlation analysis of PE showed that the abnormal increase in DNMTs may be involved in the development of PE. This study identified placental DNA methylation-regulated genes that may contribute to PE, offering a novel perspective on the role of epigenetics in trophoblast fusion and its implication in PE development.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , Pre-Eclampsia , Trophoblasts , Trophoblasts/metabolism , Female , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Humans , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Cell Fusion , Placenta/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics
5.
Proc Natl Acad Sci U S A ; 121(24): e2403389121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833471

ABSTRACT

Cell-cell fusion mediated by most paramyxovirus requires fusion protein (F) and attachment protein (H, HN, or G). The F protein is proteolytic cleaved to be fusogenically active. J paramyxovirus (JPV) has a unique feature in the family Paramyxoviridae: It encodes an integral membrane protein, syncytial protein (SP, formerly known as transmembrane protein, TM), which is essential in JPV-promoted cell-cell fusion (i.e., syncytial). In this study, we report that cleavage of SP is essential for its syncytial-promoting activity. We have identified the cleavage site of SP at amino acid residues 172 to 175, LKTG, and deletion of the "LKTG" residues abolished SP protein cleavage and its ability to promote cell-cell fusion. Replacing the cleavage site LKTG with a factor Xa protease cleavage site allows cleavage of the SP with factor Xa protease and restores its ability to promote cell-cell fusion. Furthermore, results from a hemifusion assay indicate that cleavage of SP plays an important role in the progression from the intermediate hemifusion state to a complete fusion. This work indicates that SP has many characteristics of a fusion protein. We propose that SP is likely a cell-cell fusion-promoting protein.


Subject(s)
Cell Fusion , Viral Fusion Proteins , Animals , Viral Fusion Proteins/metabolism , Chlorocebus aethiops , Proteolysis , Vero Cells , Virus Internalization , Factor Xa/metabolism , Humans , Cell Line
6.
Biochem Biophys Res Commun ; 726: 150281, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38909532

ABSTRACT

Cell-fusion mediated generation of multinucleated syncytia represent critical feature during viral infection and in development. Efficiency of syncytia formation is usually illustrated as fusion efficiency under given condition by quantifying total number of nuclei in syncytia normalized to total number of nuclei (both within syncytia and unfused cell nuclei) in unit field of view. However heterogeneity in multinucleated syncytia sizes poses challenge in quantification of cell-fusion multinucleation under diverse conditions. Taking in-vitro SARS-CoV-2 spike-protein variants mediated virus-cell fusion model and placenta trophoblast syncytialization as cell-cell fusion model; herein we emphasize wide application of simple unbiased detailed measure of virus-cell and cell-cell multinucleation using experiential cumulative distribution function (CDF) and fusion number events (FNE) approaches illustrating comprehensive metrics for syncytia interpretation.


Subject(s)
Cell Fusion , Giant Cells , SARS-CoV-2 , Trophoblasts , Humans , Giant Cells/virology , Giant Cells/cytology , SARS-CoV-2/physiology , Trophoblasts/virology , Trophoblasts/cytology , Spike Glycoprotein, Coronavirus/metabolism , Female , COVID-19/virology , Pregnancy , Virus Internalization , Placenta/virology , Placenta/cytology
7.
Vet Microbiol ; 295: 110164, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936155

ABSTRACT

The membrane-associated RING-CH (MARCH) family of proteins are members of the E3 ubiquitin ligase family and are essential for a variety of biological functions. Currently, MARCH proteins are discovered to execute antiviral functions by directly triggering viral protein degradation or blocking the furin cleavage of viral class I fusion proteins. Here, we report a novel antiviral mechanism of MARCH1 and MARCH2 (MARCH1/2) in the replication of Pseudorabies virus (PRV), a member of the Herpesviridae family. We discovered MARCH1/2 restrict PRV replication at the cell-to-cell fusion step. Furthermore, MARCH1/2 block gB cleavage, and this is dependent on their E3 ligase activity. Interestingly, the blocking of gB cleavage by MARCH1/2 does not contribute to their antiviral activity in vitro. We discovered that MARCH1/2 are associated with the cell-to-cell fusion complex of gB, gD, gH, and gL and trap these viral proteins in the trans-Golgi network (TGN) rather than degrading them. Overall, we conclude that MARCH1/2 inhibit PRV by trapping the viral cell-to-cell fusion complex in TGN.


Subject(s)
Herpesvirus 1, Suid , Ubiquitin-Protein Ligases , Virus Replication , trans-Golgi Network , Herpesvirus 1, Suid/physiology , Animals , trans-Golgi Network/virology , trans-Golgi Network/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Fusion , Swine , Cell Line , Humans , Viral Proteins/metabolism , Viral Proteins/genetics , HEK293 Cells , Pseudorabies/virology
8.
Differentiation ; 138: 100789, 2024.
Article in English | MEDLINE | ID: mdl-38896972

ABSTRACT

Osteoclast (OC) differentiation, vital for bone resorption, depends on osteoclast and precursor fusion. Osteoprotegerin (OPG) inhibits osteoclast differentiation. OPG's influence on fusion and mechanisms is unclear. Osteoclasts and precursors were treated with OPG alone or with ATP. OPG significantly reduced OC number, area and motility and ATP mitigated OPG's inhibition. However, OPG hardly affected the motility of precusors. OPG downregulated fusion-related molecules (CD44, CD47, DC-STAMP, ATP6V0D2) in osteoclasts, reducing only CD47 in precursors. OPG reduced Connexin43 phosphorylated forms (P1 and P2) in osteoclasts, affecting only P2 in precursors. OPG disrupted subcellular localization of CD44, CD47, DC-STAMP, ATP6V0D2, and Connexin43 in both cell types. Findings underscore OPG's multifaceted impact, inhibiting multinucleated osteoclast and mononuclear precursor fusion through distinct molecular mechanisms. Notably, ATP mitigates OPG's inhibitory effect, suggesting a potential regulatory role for the ATP signaling pathway. This study enhances understanding of intricate processes in osteoclast differentiation and fusion, offering insights into potential therapeutic targets for abnormal bone metabolism.


Subject(s)
Adenosine Triphosphate , Cell Differentiation , Osteoclasts , Osteoprotegerin , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , Osteoclasts/metabolism , Osteoclasts/cytology , Animals , Adenosine Triphosphate/metabolism , Mice , Connexin 43/metabolism , Connexin 43/genetics , Cell Fusion , CD47 Antigen/metabolism , CD47 Antigen/genetics , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Bone Resorption/metabolism , Bone Resorption/genetics , Bone Resorption/pathology , Signal Transduction , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Nerve Tissue Proteins
9.
J Neuropathol Exp Neurol ; 83(8): 684-694, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38752570

ABSTRACT

We previously reported that human muscle-derived stem cells (hMuStem cells) contribute to tissue repair after local administration into injured skeletal muscle or infarcted heart in immunodeficient rodent models. However, extrapolation of these findings to a clinical context is problematic owing to the considerable differences often seen between in vivo findings in humans versus rodents. Therefore, we investigated whether the muscle regenerative behavior of hMuStem cells is maintained in a clinically relevant transplantation context. Human MuStem cells were intramuscularly administered by high-density microinjection matrices into nonhuman primates receiving tacrolimus-based immunosuppression thereby reproducing the protocol that has so far produced the best results in clinical trials of cell therapy in myopathies. Four and 9 weeks after administration, histological analysis of cell injection sites revealed large numbers of hMuStem cell-derived nuclei in all cases. Most graft-derived nuclei were distributed in small myofiber groups in which no signs of a specific immune response were observed. Importantly, hMuStem cells contributed to simian tissue repair by fusing mainly with host myofibers, demonstrating their capacity for myofiber regeneration in this model. Together, these findings obtained in a valid preclinical model provide new insights supporting the potential of hMuStem cells in future cell therapies for muscle diseases.


Subject(s)
Proof of Concept Study , Animals , Humans , Muscle Fibers, Skeletal/physiology , Stem Cell Transplantation/methods , Muscle, Skeletal/physiology , Male , Cell Fusion , Female
10.
Curr Biol ; 34(9): R343-R345, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38714160

ABSTRACT

Repeated rounds of fusion between apposing myoblasts allow muscles to become multinucleated. New research finds that myoblasts undergoing fusion in the Drosophila embryo respond to hormone signaling from a nearby tissue, resulting in the activation of a myoblast-specific gene necessary for the fusion process.


Subject(s)
Cell Fusion , Myoblasts , Animals , Myoblasts/metabolism , Myoblasts/physiology , Drosophila/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Signal Transduction , Cell Communication
11.
Proc Natl Acad Sci U S A ; 121(23): e2217971121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805272

ABSTRACT

Myogenesis is a multistep process that requires a spatiotemporal regulation of cell events resulting finally in myoblast fusion into multinucleated myotubes. Most major insights into the mechanisms underlying fusion seem to be conserved from insects to mammals and include the formation of podosome-like protrusions (PLPs) that exert a driving force toward the founder cell. However, the machinery that governs this process remains poorly understood. In this study, we demonstrate that MTM1 is the main enzyme responsible for the production of phosphatidylinositol 5-phosphate, which in turn fuels PI5P 4-kinase α to produce a minor and functional pool of phosphatidylinositol 4,5-bisphosphate that concentrates in PLPs containing the scaffolding protein Tks5, Dynamin-2, and the fusogenic protein Myomaker. Collectively, our data reveal a functional crosstalk between a PI-phosphatase and a PI-kinase in the regulation of PLP formation.


Subject(s)
Cell Fusion , Myoblasts , Phosphatidylinositol Phosphates , Podosomes , Animals , Phosphatidylinositol Phosphates/metabolism , Mice , Myoblasts/metabolism , Myoblasts/cytology , Podosomes/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Muscle Development/physiology
12.
Methods Mol Biol ; 2808: 1-7, 2024.
Article in English | MEDLINE | ID: mdl-38743358

ABSTRACT

We have adopted a real-time assay based on a dual-split reporter to assess cell-cell fusion mediated by the measles virus (MeV) membrane fusion machinery. This reporter system is comprised of two expression vectors, each encoding a segment of Renilla luciferase fused to a segment of GFP. To regain function, the two segments need to associate, which is dependent on cell-cell fusion between effector cells expressing the MeV fusion machinery and target cells expressing the corresponding MeV receptor. By measuring reconstituted luciferase activity, we can follow the kinetics of cell-cell fusion and quantify the extent of fusion. This assay lends itself to the study of the MeV fusion machinery comprised of the attachment and fusion glycoproteins, the matrix protein, and the MeV receptors. Moreover, entry inhibitors targeting attachment or fusion can be readily screened using this assay. Finally, this assay can be easily adopted to study the entry of other members of the Paramyxoviridae, as we have demonstrated for the henipaviruses.


Subject(s)
Cell Fusion , Measles virus , Virus Internalization , Measles virus/genetics , Measles virus/physiology , Humans , Animals , Cell Fusion/methods , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Chlorocebus aethiops , Cell Line , Vero Cells , Luciferases, Renilla/genetics , Luciferases, Renilla/metabolism
13.
Sci Rep ; 14(1): 11312, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760496

ABSTRACT

The syncytiotrophoblast is a multinucleated structure that arises from fusion of mononucleated cytotrophoblasts, to sheath the placental villi and regulate transport across the maternal-fetal interface. Here, we ask whether the dynamic mechanical forces that must arise during villous development might influence fusion, and explore this question using in vitro choriocarcinoma trophoblast models. We demonstrate that mechanical stress patterns arise around sites of localized fusion in cell monolayers, in patterns that match computational predictions of villous morphogenesis. We then externally apply these mechanical stress patterns to cell monolayers and demonstrate that equibiaxial compressive stresses (but not uniaxial or equibiaxial tensile stresses) enhance expression of the syndecan-1 and loss of E-cadherin as markers of fusion. These findings suggest that the mechanical stresses that contribute towards sculpting the placental villi may also impact fusion in the developing tissue. We then extend this concept towards 3D cultures and demonstrate that fusion can be enhanced by applying low isometric compressive stresses to spheroid models, even in the absence of an inducing agent. These results indicate that mechanical stimulation is a potent activator of cellular fusion, suggesting novel avenues to improve experimental reproductive modelling, placental tissue engineering, and understanding disorders of pregnancy development.


Subject(s)
Cell Fusion , Stress, Mechanical , Trophoblasts , Trophoblasts/metabolism , Trophoblasts/cytology , Trophoblasts/physiology , Humans , Female , Pregnancy , Biomechanical Phenomena , Placenta/metabolism , Placenta/cytology , Cadherins/metabolism , Models, Biological
14.
Curr Top Dev Biol ; 158: 53-82, 2024.
Article in English | MEDLINE | ID: mdl-38670716

ABSTRACT

Myocyte fusion is a pivotal process in the development and regeneration of skeletal muscle. Failure during fusion can lead to a range of developmental as well as pathological consequences. This review aims to comprehensively explore the intricate processes underlying myocyte fusion, from the molecular to tissue scale. We shed light on key players, such as the muscle-specific fusogens - Myomaker and Myomixer, in addition to some lesser studied molecules contributing to myocyte fusion. Conserved across vertebrates, Myomaker and Myomixer play a crucial role in driving the merger of plasma membranes of fusing myocytes, ensuring the formation of functional muscle syncytia. Our multiscale approach also delves into broader cell and tissue dynamics that orchestrate the timing and positioning of fusion events. In addition, we explore the relevance of muscle fusogens to human health and disease. Mutations in fusogen genes have been linked to congenital myopathies, providing unique insights into the molecular basis of muscle diseases. We conclude with a discussion on potential therapeutic avenues that may emerge from manipulating the myocyte fusion process to remediate skeletal muscle disorders.


Subject(s)
Cell Fusion , Humans , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Muscle Cells/metabolism , Muscle Cells/cytology , Muscle Proteins/metabolism , Muscle Proteins/genetics
15.
Biofabrication ; 16(3)2024 May 09.
Article in English | MEDLINE | ID: mdl-38663395

ABSTRACT

Three-dimensional (3D) cell culture has been used in many fields of biology because of its unique advantages. As a representative of the 3D systems, 3D spheroids are used as building blocks for tissue construction. Larger tumor aggregates can be assembled by manipulating or stacking the tumor spheroids. The motivation of this study is to investigate the behavior of the cells distributed at different locations of the spheroids in the fusion process and the mechanism behind it. To this aim, spheroids with varying grades of maturity or age were generated for fusion to assemble micro-tumor tissues. The dynamics of the fusion process, the motility of the cells distributed in different heterogeneous architecture sites, and their reactive oxygen species profiles were studied. We found that the larger the spheroid necrotic core, the slower the fusion rate of the spheroid. The cells that move were mainly distributed on the spheroid's surface during fusion. In addition to dense microfilament distribution and low microtubule content, the reactive oxygen content was high in the fusion site, while the non-fusion site was the opposite. Last, multi-spheroids with different maturities were fused to complex micro-tissues to mimic solid tumors and evaluate Doxorubicin's anti-tumor efficacy.


Subject(s)
Doxorubicin , Reactive Oxygen Species , Spheroids, Cellular , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/pathology , Humans , Reactive Oxygen Species/metabolism , Doxorubicin/pharmacology , Cell Fusion , Neoplasms/pathology , Neoplasms/metabolism , Cell Line, Tumor , Cell Culture Techniques, Three Dimensional , Cell Movement , Tissue Engineering
16.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672482

ABSTRACT

Hyaluronic acid (HA), a major glycosaminoglycan of the brain extracellular matrix, modulates cell behaviors through binding its receptor, Cd44. In this study, we assessed the influence of HA on high-grade brain tumors in vitro. The model comprised cell cultures derived from six rodent carcinogen-induced brain tumors, forming 3D spheroids prone to spontaneous fusion. Supplementation of the standard culture medium with 0.25% HA significantly inhibited the fusion rates, preserving the shape and size uniformity of spheroids. The 3D cultures were assigned to two groups; a Cd44lo group had a tenfold decreased relative expression of Cd44 than another (Cd44hi) group. In addition, these two groups differed by expression levels of Sox2 transcription factor; the correlation analysis revealed a tight negative association for Cd44 and Sox2. Transcriptomic responses of spheroids to HA exposure also depended on Cd44 expression levels, from subtle in Cd44lo to more pronounced and specific in Cd44hi, involving cell cycle progression, PI3K/AKT/mTOR pathway activation, and multidrug resistance genes. The potential HA-induced increase in brain tumor 3D models' resistance to anticancer drug therapy should be taken into account when designing preclinical studies using HA scaffold-based models. The property of HA to prevent the fusion of brain-derived spheroids can be employed in CNS regenerative medicine and experimental oncology to ensure the production of uniform, controllably fusing neurospheres when creating more accurate in vitro brain models.


Subject(s)
Brain Neoplasms , Hyaluronan Receptors , Hyaluronic Acid , SOXB1 Transcription Factors , Spheroids, Cellular , Hyaluronic Acid/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Animals , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Rats , Transcriptome/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Tumor Cells, Cultured , Cell Fusion
17.
mBio ; 15(5): e0075124, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38591890

ABSTRACT

The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly, BA.2.87.1 is more resistant to neutralization by XBB.1.5-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines. IMPORTANCE: This study investigates the recently emerged SARS-CoV-2 variants, BA.2.87.1 and JN.1, in comparison to earlier variants and the parental D614G. Varied infectivity and cell-cell fusion activity among these variants suggest potential disparities in their ability to infect target cells and possibly pathogenesis. BA.2.87.1 exhibits lower nAb escape from bivalent mRNA vaccinee and BA.2.86/JN.1-infected sera than JN.1 but is relatively resistance to XBB.1.5-vaccinated hamster sera, revealing distinct properties in immune reason and underscoring the significance of continuing surveillance of variants and reformulation of vaccines. Antigenic differences between BA.2.87.1 and other earlier variants yield critical information not only for antibody evasion but also for viral evolution. In conclusion, this study furnishes timely insights into the spike biology and immune escape of the emerging variants BA.2.87.1 and JN.1, thus guiding effective vaccine development and informing public health interventions.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Cell Fusion , Immune Evasion , SARS-CoV-2 , Animals , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , COVID-19/immunology , COVID-19/virology , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cricetinae , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines/immunology
18.
Cancer Med ; 13(4): e6940, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38457216

ABSTRACT

BACKGROUND: Tumor metastasis is responsible for the high mortality rate of patients with oral squamous cell carcinoma (OSCC). Although many hypotheses have been proposed to elucidate the mechanism of tumor metastasis, the origin of the metastatic tumor cells remains unclear. In this study, we explored the role of cell fusion in the formation of OSCC metastatic tumor cells. METHODS: Murine OSCC tumor cells and macrophages were fused in vitro, and the cell proliferation, migration, and phagocytosis abilities of hybrid cells and parental cells were compared. Subsequently, we compared the transcriptome differences between hybrid and parental cells. RESULTS: Murine OSCC tumor cells and macrophages were successfully fused in vitro. The cytological and molecular experimental results revealed that OSCC tumor cells obtained a migration-related phenotype after fusion with macrophages, and the migration ability of hybrid cells was related to the activation of the "chemokine signal pathway". CONCLUSION: After fusion with macrophages, the chemokine signaling pathway in OSCC tumor cells was activated, leading to metastasis.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Animals , Mice , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Mouth Neoplasms/pathology , Cell Fusion , Cell Line, Tumor , Cell Movement/genetics , Signal Transduction/genetics , Macrophages/metabolism , Chemokines/metabolism , Head and Neck Neoplasms/pathology
19.
Viruses ; 16(2)2024 02 04.
Article in English | MEDLINE | ID: mdl-38400027

ABSTRACT

Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. Herpes simplex virus 1 has a complex fusion mechanism that is incompletely understood. The HSV-1 strain ANG has notable fusion and entry activities that distinguish it from wild type. HSV-1 ANG virions fused with the Vero cell surface at 4 °C and also entered cells more efficiently at 15 °C, relative to wild type HSV-1 strain KOS virions, consistent with a hyperfusogenic phenotype. Understanding the molecular basis for the unique entry and fusion activities of HSV-1 strain ANG will help decipher the HSV fusion reaction and entry process. Sequencing of HSV-1 ANG genes revealed multiple changes in gB, gC, gD, gH, and gL proteins relative to wild type HSV-1 strains. The ANG UL45 gene sequence, which codes for a non-essential envelope protein, was identical to wild type KOS. HSV-1 ANG gB, gD, and gH/gL were necessary and sufficient to mediate cell-cell fusion in a virus-free reporter assay. ANG gB, when expressed with wild type KOS gD and gH/gL, increased membrane fusion, suggesting that ANG gB has hyperfusogenic cell-cell fusion activity. Replacing the KOS gD, gH, or gL with the corresponding ANG alleles did not enhance cell-cell fusion. The novel mutations in the ANG fusion and entry glycoproteins provide a platform for dissecting the cascade of interactions that culminate in HSV fusion and entry.


Subject(s)
Herpesvirus 1, Human , Humans , Animals , Chlorocebus aethiops , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Cell Fusion , Glycoproteins/genetics , Glycoproteins/metabolism , Vero Cells , Virus Internalization , Membrane Fusion
20.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339201

ABSTRACT

Previous studies have shown that nuclear binding protein 2 (NUCB2) is expressed in the human placenta and increases with an increase in the syncytialization of trophoblast cells. This study aimed to investigate the role of NUCB2 in the differentiation and fusion of trophectoderm cells. In this study, the expression levels of NUCB2 and E-cadherin in the placentas of rats at different gestation stages were investigated. The results showed that there was an opposite trend between the expression of placental NUCB2 and E-cadherin in rat placentas in different trimesters. When primary human trophoblast (PHT) and BeWo cells were treated with high concentrations of Nesfatin-1, the trophoblast cell syncytialization was significantly inhibited. The effects of NUCB2 knockdown in BeWo cells and Forskolin-induced syncytialization were investigated. These cells showed a significantly decreased cell fusion rate. The mechanism underlying NUCB2-regulated trophoblast cell syncytialization was explored using RNA-Seq and the results indicated that the epidermal growth factor receptor (EGFR)-phospholipase C gamma 1 (PLCG1)-calmodulin-dependent protein kinase IV (CAMK4) pathway might be involved. The results suggested that the placental expression of NUCB2 plays an important role in the fusion of trophoblasts during differentiation via the EGFR-PLCG1-CAMK4 pathway.


Subject(s)
Nucleobindins , Placenta , Placentation , Trophoblasts , Animals , Female , Pregnancy , Rats , Cadherins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Carrier Proteins/metabolism , Cell Fusion , ErbB Receptors/metabolism , Nuclear Proteins/metabolism , Phospholipase C gamma/metabolism , Placenta/metabolism , Trophoblasts/metabolism , Nucleobindins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...