Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.326
Filter
1.
Cell Mol Biol Lett ; 29(1): 98, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977956

ABSTRACT

Phospholipid Hydroperoxide Gluthatione Peroxidase also called Glutathione Peroxidase 4 is one of the 25 described human selenoproteins. It plays an essential role in eliminating toxic lipid hydroxy peroxides, thus inhibiting ferroptosis and favoring cell survival. GPX4 is differentially expressed according to myeloid differentiation stage, exhibiting lower expression in hematopoietic stem cells and polymorphonuclear leucocytes, while harboring higher level of expression in common myeloid progenitors and monocytes. In addition, GPX4 is highly expressed in most of acute myeloid leukemia (AML) subtypes compared to normal hematopoietic stem cells. High GPX4 expression is consistently correlated to poor prognosis in patients suffering AML. However, the role of GPX4 in the development of the myeloid lineage and in the initiation and progression of myeloid leukemia remains poorly explored. Given its essential role in the detoxification of lipid hydroperoxides, and its overexpression in most of myeloid malignancies, GPX4 inhibition has emerged as a promising therapeutic strategy to specifically trigger ferroptosis and eradicate myeloid leukemia cells. In this review, we describe the most recent advances concerning the role of GPX4 and, more generally ferroptosis in the myeloid lineage and in the emergence of AML. We also discuss the therapeutic interest and limitations of GPX4 inhibition alone or in combination with other drugs as innovative therapies to treat AML patients.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Phospholipid Hydroperoxide Glutathione Peroxidase , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Ferroptosis/genetics , Cell Lineage/genetics , Animals , Myeloid Cells/metabolism , Myeloid Cells/pathology , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics
2.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-39041189

ABSTRACT

Studies have identified genes and molecular pathways regulating cancer metastasis. However, it remains largely unknown whether metastatic potentials of cancer cells from different lineage types are driven by the same or different gene networks. Here, we aim to address this question through integrative analyses of 493 human cancer cells' transcriptomic profiles and their metastatic potentials in vivo. Using an unsupervised approach and considering both gene coexpression and protein-protein interaction networks, we identify different gene networks associated with various biological pathways (i.e. inflammation, cell cycle, and RNA translation), the expression of which are correlated with metastatic potentials across subsets of lineage types. By developing a regularized random forest regression model, we show that the combination of the gene module features expressed in the native cancer cells can predict their metastatic potentials with an overall Pearson correlation coefficient of 0.90. By analyzing transcriptomic profile data from cancer patients, we show that these networks are conserved in vivo and contribute to cancer aggressiveness. The intrinsic expression levels of these networks are correlated with drug sensitivity. Altogether, our study provides novel comparative insights into cancer cells' intrinsic gene networks mediating metastatic potentials across different lineage types, and our results can potentially be useful for designing personalized treatments for metastatic cancers.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Neoplasm Metastasis , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Protein Interaction Maps/genetics , Transcriptome , Gene Expression Profiling , Cell Lineage/genetics
3.
Methods Mol Biol ; 2811: 165-175, 2024.
Article in English | MEDLINE | ID: mdl-39037657

ABSTRACT

Barcode-based lineage tracing approaches enable molecular characterization of clonal cell families. Barcodes that are expressed as mRNA can be used to deconvolve lineage identity from single-cell RNA sequencing transcriptional data. Here we describe the Watermelon system, which facilitates the simultaneous tracing of lineage, transcriptional, and proliferative state at a single cell level.


Subject(s)
Cell Lineage , Single-Cell Analysis , Single-Cell Analysis/methods , Cell Lineage/genetics , Humans , Cell Proliferation/genetics , Sequence Analysis, RNA/methods , RNA, Messenger/genetics
4.
Cell Rep Med ; 5(7): 101631, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38986623

ABSTRACT

Ovarian cancer (OC) manifests as a complex disease characterized by inter- and intra-patient heterogeneity. Despite enhanced biological and genetic insights, OC remains a recalcitrant malignancy with minimal survival improvement. Based on multi-site sampling and a multi-lineage patient-derived xenograft (PDX) establishment strategy, we present herein the establishment of a comprehensive PDX biobank from histologically and molecularly heterogeneous OC patients. Comprehensive profiling of matched PDX and patient samples demonstrates that PDXs closely recapitulate parental tumors. By leveraging multi-lineage models, we reveal that the previously reported genomic disparities of PDX could be mainly attributed to intra-patient spatial heterogeneity instead of substantial model-independent genomic evolution. Moreover, DNA damage response pathway inhibitor (DDRi) screening uncovers heterogeneous responses across models. Prolonged iterative drug exposure recapitulates acquired drug resistance in initially sensitive models. Meanwhile, interrogation of induced drug-resistant (IDR) models reveals that suppressed interferon (IFN) response and activated Wnt/ß-catenin signaling contribute to acquired DDRi drug resistance.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Animals , Mice , Xenograft Model Antitumor Assays , Wnt Signaling Pathway/genetics , Drug Resistance, Neoplasm/genetics , Genomics/methods , Biological Specimen Banks , Genetic Heterogeneity , DNA Damage/genetics , Interferons/metabolism , Interferons/genetics , Cell Lineage/genetics
5.
Nat Cell Biol ; 26(7): 1200-1211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38977846

ABSTRACT

Organogenesis is a highly complex and precisely regulated process. Here we profiled the chromatin accessibility in >350,000 cells derived from 13 mouse embryos at four developmental stages from embryonic day (E) 10.5 to E13.5 by SPATAC-seq in a single experiment. The resulting atlas revealed the status of 830,873 candidate cis-regulatory elements in 43 major cell types. By integrating the chromatin accessibility atlas with the previous transcriptomic dataset, we characterized cis-regulatory sequences and transcription factors associated with cell fate commitment, such as Nr5a2 in the development of gastrointestinal tract, which was preliminarily supported by the in vivo experiment in zebrafish. Finally, we integrated this atlas with the previous single-cell chromatin accessibility dataset from 13 adult mouse tissues to delineate the developmental stage-specific gene regulatory programmes within and across different cell types and identify potential molecular switches throughout lineage development. This comprehensive dataset provides a foundation for exploring transcriptional regulation in organogenesis.


Subject(s)
Chromatin , Gene Expression Regulation, Developmental , Organogenesis , Single-Cell Analysis , Zebrafish , Animals , Organogenesis/genetics , Chromatin/metabolism , Chromatin/genetics , Zebrafish/genetics , Zebrafish/embryology , Zebrafish/metabolism , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Lineage/genetics , Transcriptome/genetics , Embryo, Mammalian/metabolism , Female , Mice, Inbred C57BL
6.
Nat Cell Biol ; 26(7): 1187-1199, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38977847

ABSTRACT

Currently, the dynamic accessible elements that determine regulatory programs responsible for the unique identity and function of each cell type during zebrafish embryogenesis lack detailed study. Here we present SPATAC-seq: a split-pool ligation-based assay for transposase-accessible chromatin using sequencing. Using SPATAC-seq, we profiled chromatin accessibility in more than 800,000 individual nuclei across 20 developmental stages spanning the sphere stage to the early larval protruding mouth stage. Using this chromatin accessibility map, we identified 604 cell states and inferred their developmental relationships. We also identified 959,040 candidate cis-regulatory elements (cCREs) and delineated development-specific cCREs, as well as transcription factors defining diverse cell identities. Importantly, enhancer reporter assays confirmed that the majority of tested cCREs exhibited robust enhanced green fluorescent protein expression in restricted cell types or tissues. Finally, we explored gene regulatory programs that drive pigment and notochord cell differentiation. Our work provides a valuable open resource for exploring driver regulators of cell fate decisions in zebrafish embryogenesis.


Subject(s)
Chromatin , Embryonic Development , Gene Expression Regulation, Developmental , Single-Cell Analysis , Zebrafish , Animals , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Chromatin/metabolism , Chromatin/genetics , Single-Cell Analysis/methods , Embryonic Development/genetics , Cell Differentiation/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Embryo, Nonmammalian/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Enhancer Elements, Genetic , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Transposases/metabolism , Transposases/genetics , Cell Lineage/genetics
7.
Cell Rep Methods ; 4(7): 100819, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38986613

ABSTRACT

Cell reprogramming, which guides the conversion between cell states, is a promising technology for tissue repair and regeneration, with the ultimate goal of accelerating recovery from diseases or injuries. To accomplish this, regulators must be identified and manipulated to control cell fate. We propose Fatecode, a computational method that predicts cell fate regulators based only on single-cell RNA sequencing (scRNA-seq) data. Fatecode learns a latent representation of the scRNA-seq data using a deep learning-based classification-supervised autoencoder and then performs in silico perturbation experiments on the latent representation to predict genes that, when perturbed, would alter the original cell type distribution to increase or decrease the population size of a cell type of interest. We assessed Fatecode's performance using simulations from a mechanistic gene-regulatory network model and scRNA-seq data mapping blood and brain development of different organisms. Our results suggest that Fatecode can detect known cell fate regulators from single-cell transcriptomics datasets.


Subject(s)
Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Animals , Gene Regulatory Networks , Computational Biology/methods , Cell Differentiation/genetics , Sequence Analysis, RNA/methods , Transcriptome , Deep Learning , Cell Lineage/genetics , Mice , Cellular Reprogramming/genetics , RNA-Seq/methods
8.
Adv Exp Med Biol ; 1459: 143-156, 2024.
Article in English | MEDLINE | ID: mdl-39017843

ABSTRACT

The development of highly specialized blood cells from hematopoietic stem cells (HSCs) in the bone marrow (BM) is dependent upon a stringently orchestrated network of stage- and lineage-restricted transcription factors (TFs). Thus, the same stem cell can give rise to various types of differentiated blood cells. One of the key regulators of B-lymphocyte development is early B-cell factor 1 (EBF1). This TF belongs to a small, but evolutionary conserved, family of proteins that harbor a Zn-coordinating motif and an IPT/TIG (immunoglobulin-like, plexins, transcription factors/transcription factor immunoglobulin) domain, creating a unique DNA-binding domain (DBD). EBF proteins play critical roles in diverse developmental processes, including body segmentation in the Drosophila melanogaster embryo, and retina formation in mice. While several EBF family members are expressed in neuronal cells, adipocytes, and BM stroma cells, only B-lymphoid cells express EBF1. In the absence of EBF1, hematopoietic progenitor cells (HPCs) fail to activate the B-lineage program. This has been attributed to the ability of EBF1 to act as a pioneering factor with the ability to remodel chromatin, thereby creating a B-lymphoid-specific epigenetic landscape. Conditional inactivation of the Ebf1 gene in B-lineage cells has revealed additional functions of this protein in relation to the control of proliferation and apoptosis. This may explain why EBF1 is frequently targeted by mutations in human leukemia cases. This chapter provides an overview of the biochemical and functional properties of the EBF family proteins, with a focus on the roles of EBF1 in normal and malignant B-lymphocyte development.


Subject(s)
B-Lymphocytes , Cell Lineage , Trans-Activators , Animals , Humans , Trans-Activators/genetics , Trans-Activators/metabolism , B-Lymphocytes/metabolism , Cell Lineage/genetics , Hematopoietic Stem Cells/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
9.
Nat Genet ; 56(7): 1377-1385, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38886586

ABSTRACT

The presence of basal lineage characteristics signifies hyperaggressive human adenocarcinomas of the breast, bladder and pancreas. However, the biochemical mechanisms that maintain this aberrant cell state are poorly understood. Here we performed marker-based genetic screens in search of factors needed to maintain basal identity in pancreatic ductal adenocarcinoma (PDAC). This approach revealed MED12 as a powerful regulator of the basal cell state in this disease. Using biochemical reconstitution and epigenomics, we show that MED12 carries out this function by bridging the transcription factor ΔNp63, a known master regulator of the basal lineage, with the Mediator complex to activate lineage-specific enhancer elements. Consistent with this finding, the growth of basal-like PDAC is hypersensitive to MED12 loss when compared to PDAC cells lacking basal characteristics. Taken together, our genetic screens have revealed a biochemical interaction that sustains basal identity in human cancer, which could serve as a target for tumor lineage-directed therapeutics.


Subject(s)
Carcinoma, Pancreatic Ductal , Mediator Complex , Pancreatic Neoplasms , Transcription Factors , Tumor Suppressor Proteins , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Lineage/genetics , Enhancer Elements, Genetic
10.
Cell Mol Life Sci ; 81(1): 270, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886218

ABSTRACT

Early trophoblast differentiation is crucial for embryo implantation, placentation and fetal development. Dynamic changes in DNA methylation occur during preimplantation development and are critical for cell fate determination. However, the underlying regulatory mechanism remains unclear. Recently, we derived morula-like expanded potential stem cells from human preimplantation embryos (hEPSC-em), providing a valuable tool for studying early trophoblast differentiation. Data analysis on published datasets showed differential expressions of DNA methylation enzymes during early trophoblast differentiation in human embryos and hEPSC-em derived trophoblastic spheroids. We demonstrated downregulation of DNA methyltransferase 3 members (DNMT3s) and upregulation of ten-eleven translocation methylcytosine dioxygenases (TETs) during trophoblast differentiation. While DNMT inhibitor promoted trophoblast differentiation, TET inhibitor hindered the process and reduced implantation potential of trophoblastic spheroids. Further integrative analysis identified that glutamyl aminopeptidase (ENPEP), a trophectoderm progenitor marker, was hypomethylated and highly expressed in trophoblast lineages. Concordantly, progressive loss of DNA methylation in ENPEP promoter and increased ENPEP expression were detected in trophoblast differentiation. Knockout of ENPEP in hEPSC-em compromised trophoblast differentiation potency, reduced adhesion and invasion of trophoblastic spheroids, and impeded trophoblastic stem cell (TSC) derivation. Importantly, TET2 was involved in the loss of DNA methylation and activation of ENPEP expression during trophoblast differentiation. TET2-null hEPSC-em failed to produce TSC properly. Collectively, our results illustrated the crucial roles of ENPEP and TET2 in trophoblast fate commitments and the unprecedented TET2-mediated loss of DNA methylation in ENPEP promoter.


Subject(s)
Cell Differentiation , DNA Methylation , DNA-Binding Proteins , Dioxygenases , Proto-Oncogene Proteins , Trophoblasts , Female , Humans , Pregnancy , Blastocyst/metabolism , Blastocyst/cytology , Cell Lineage/genetics , Dioxygenases/metabolism , Dioxygenases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Trophoblasts/metabolism , Trophoblasts/cytology
11.
Dev Biol ; 514: 1-11, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38878991

ABSTRACT

In chordates, the central nervous system arises from precursors that have distinct developmental and transcriptional trajectories. Anterior nervous systems are ontogenically associated with ectodermal lineages while posterior nervous systems are associated with mesoderm. Taking advantage of the well-documented cell lineage of ascidian embryos, we asked to what extent the transcriptional states of the different neural lineages become similar during the course of progressive lineage restriction. We performed single-cell RNA sequencing (scRNA-seq) analyses on hand-dissected neural precursor cells of the two distinct lineages, together with those of their sister cell lineages, with a high temporal resolution covering five successive cell cycles from the 16-cell to neural plate stages. A transcription factor binding site enrichment analysis of neural specific genes at the neural plate stage revealed limited evidence for shared transcriptional control between the two neural lineages, consistent with their different ontogenies. Nevertheless, PCA analysis and hierarchical clustering showed that, by neural plate stages, the two neural lineages cluster together. Consistent with this, we identified a set of genes enriched in both neural lineages at the neural plate stage, including miR-124, Celf3.a, Zic.r-b, and Ets1/2. Altogether, the current study has revealed genome-wide transcriptional dynamics of neural progenitor cells of two distinct developmental origins. Our scRNA-seq dataset is unique and provides a valuable resource for future analyses, enabling a precise temporal resolution of cell types not previously described from dissociated embryos.


Subject(s)
Cell Lineage , Embryonic Development , Gene Expression Regulation, Developmental , Animals , Cell Lineage/genetics , Embryonic Development/genetics , Neural Plate/embryology , Neural Plate/metabolism , Neural Plate/cytology , Ciona intestinalis/embryology , Ciona intestinalis/genetics , Urochordata/embryology , Urochordata/genetics , Single-Cell Analysis , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology
12.
Nucleic Acids Res ; 52(13): 7740-7760, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38932701

ABSTRACT

Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 gene targets include the glucocorticoid receptor (GR; NR3C1) and the NE splicing factor SRRM4, which are key drivers of lineage plasticity. Thus, OC2, despite its previously described NEPC driver function, can indirectly activate a portion of the AR cistrome through epigenetic activation of GR. Mechanisms by which OC2 regulates gene expression include promoter binding, enhancement of genome-wide chromatin accessibility, and super-enhancer reprogramming. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC and support enhanced efforts to therapeutically target OC2 as a means of suppressing treatment-resistant disease.


Subject(s)
Adenocarcinoma , Benzamides , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Nitriles , Prostatic Neoplasms , Receptors, Androgen , Receptors, Glucocorticoid , Male , Humans , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/drug therapy , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Benzamides/pharmacology , Cell Line, Tumor , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Epigenesis, Genetic , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/drug therapy , Animals , Cell Lineage/genetics , Mice
13.
Cells ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38920678

ABSTRACT

Successful heart development depends on the careful orchestration of a network of transcription factors and signaling pathways. In recent years, in vitro cardiac differentiation using human pluripotent stem cells (hPSCs) has been used to uncover the intricate gene-network regulation involved in the proper formation and function of the human heart. Here, we searched for uncharacterized cardiac-development genes by combining a temporal evaluation of human cardiac specification in vitro with an analysis of gene expression in fetal and adult heart tissue. We discovered that CARDEL (CARdiac DEvelopment Long non-coding RNA; LINC00890; SERTM2) expression coincides with the commitment to the cardiac lineage. CARDEL knockout hPSCs differentiated poorly into cardiac cells, and hPSC-derived cardiomyocytes showed faster beating rates after controlled overexpression of CARDEL during differentiation. Altogether, we provide physiological and molecular evidence that CARDEL expression contributes to sculpting the cardiac program during cell-fate commitment.


Subject(s)
Cell Differentiation , Heart , Homeostasis , Myocytes, Cardiac , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , Heart/embryology , Heart/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Gene Expression Regulation, Developmental , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Cell Lineage/genetics , Organogenesis/genetics
14.
Cells ; 13(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38920701

ABSTRACT

While the transcription factor GATA-3 is well-established for its crucial role in T cell development, its specific influence on invariant natural killer T (iNKT) cells remains relatively unexplored. Using flow cytometry and single-cell transcriptomic analysis, we demonstrated that GATA-3 deficiency in mice leads to the absence of iNKT2 and iNKT17 cell subsets, as well as an altered distribution of iNKT1 cells. Thymic iNKT cells lacking GATA-3 exhibited diminished expression of PLZF and T-bet, key transcription factors involved in iNKT cell differentiation, and reduced production of Th2, Th17, and cytotoxic effector molecules. Single-cell transcriptomics revealed a comprehensive absence of iNKT17 cells, a substantial reduction in iNKT2 cells, and an increase in iNKT1 cells in GATA-3-deficient thymi. Differential expression analysis highlighted the regulatory role of GATA-3 in T cell activation signaling and altered expression of genes critical for iNKT cell differentiation, such as Icos, Cd127, Eomes, and Zbtb16. Notably, restoration of Icos, but not Cd127, expression could rescue iNKT cell development in GATA-3-deficient mice. In conclusion, our study demonstrates the pivotal role of GATA-3 in orchestrating iNKT cell effector lineage differentiation through the regulation of T cell activation pathways and Icos expression, providing insights into the molecular mechanisms governing iNKT cell development and function.


Subject(s)
Cell Differentiation , Cell Lineage , GATA3 Transcription Factor , Natural Killer T-Cells , Animals , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Natural Killer T-Cells/cytology , Natural Killer T-Cells/metabolism , Cell Differentiation/genetics , Mice , Cell Lineage/genetics , Mice, Inbred C57BL , RNA-Seq , Single-Cell Analysis , Mice, Knockout , Single-Cell Gene Expression Analysis
15.
Nat Commun ; 15(1): 4963, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862535

ABSTRACT

Image-based lineage tracing enables tissue turnover kinetics and lineage potentials of different adult cell populations to be investigated. Previously, we reported a genetic mouse model system, Red2Onco, which ectopically expressed mutated oncogenes together with red fluorescent proteins (RFP). This system enabled the expansion kinetics and neighboring effects of oncogenic clones to be dissected. We now report Red2Flpe-SCON: a mosaic knockout system that uses multicolor reporters to label both mutant and wild-type cells. We develop the Red2Flpe mouse line for red clone-specific Flpe expression, as well as the FRT-based SCON (Short Conditional IntrON) method to facilitate tunable conditional mosaic knockouts in mice. We use the Red2Flpe-SCON method to study Sox2 mutant clonal analysis in the esophageal epithelium of adult mice which reveal that the stem cell gene, Sox2, is less essential for adult stem cell maintenance itself, but rather for stem cell proliferation and differentiation.


Subject(s)
Luminescent Proteins , Mice, Knockout , Red Fluorescent Protein , SOXB1 Transcription Factors , Animals , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Mice , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mosaicism , Cell Differentiation , Cell Proliferation/genetics , Esophagus/metabolism , Esophagus/pathology , Cell Lineage/genetics , Introns/genetics , Female , Male
16.
Nat Commun ; 15(1): 4914, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851846

ABSTRACT

FOXA family proteins act as pioneer factors by remodeling compact chromatin structures. FOXA1 is crucial for the chromatin binding of the androgen receptor (AR) in both normal prostate epithelial cells and the luminal subtype of prostate cancer (PCa). Recent studies have highlighted the emergence of FOXA2 as an adaptive response to AR signaling inhibition treatments. However, the role of the FOXA1 to FOXA2 transition in regulating cancer lineage plasticity remains unclear. Our study demonstrates that FOXA2 binds to distinct classes of developmental enhancers in multiple AR-independent PCa subtypes, with its binding depending on LSD1. Moreover, we reveal that FOXA2 collaborates with JUN at chromatin and promotes transcriptional reprogramming of AP-1 in lineage-plastic cancer cells, thereby facilitating cell state transitions to multiple lineages. Overall, our findings underscore the pivotal role of FOXA2 as a pan-plasticity driver that rewires AP-1 to induce the differential transcriptional reprogramming necessary for cancer cell lineage plasticity.


Subject(s)
Cell Lineage , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-beta , Prostatic Neoplasms , Transcription Factor AP-1 , Male , Humans , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/genetics , Cell Line, Tumor , Cell Lineage/genetics , Histone Demethylases/metabolism , Histone Demethylases/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Animals , Chromatin/metabolism , Chromatin/genetics , Cell Plasticity/genetics , Cellular Reprogramming/genetics , Mice , Proto-Oncogene Proteins c-jun/metabolism , Proto-Oncogene Proteins c-jun/genetics , Enhancer Elements, Genetic/genetics , Transcription, Genetic
17.
Sci Adv ; 10(23): eadk2693, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838155

ABSTRACT

T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.


Subject(s)
Cell Differentiation , Cell Lineage , Cell Plasticity , T-Box Domain Proteins , Th1 Cells , Th2 Cells , Th1 Cells/immunology , Th1 Cells/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Cell Lineage/genetics , Th2 Cells/immunology , Th2 Cells/metabolism , Mice , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Interferon-gamma/metabolism , Gene Expression Regulation , Cytokines/metabolism
18.
PLoS Genet ; 20(6): e1010935, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875306

ABSTRACT

Gene regulatory networks that act upstream of skeletal muscle fate determinants are distinct in different anatomical locations. Despite recent efforts, a clear understanding of the cascade of events underlying the emergence and maintenance of the stem cell pool in specific muscle groups remains unresolved and debated. Here, we invalidated Pitx2 with multiple Cre-driver mice prenatally, postnatally, and during lineage progression. We showed that this gene becomes progressively dispensable for specification and maintenance of the muscle stem (MuSC) cell pool in extraocular muscles (EOMs) despite being, together with Myf5, a major upstream regulator during early development. Moreover, constitutive inactivation of Pax7 postnatally led to a greater loss of MuSCs in the EOMs compared to the limb. Thus, we propose a relay between Pitx2, Myf5 and Pax7 for EOM stem cell maintenance. We demonstrate also that MuSCs in the EOMs adopt a quiescent state earlier that those in limb muscles and do not spontaneously proliferate in the adult, yet EOMs have a significantly higher content of Pax7+ MuSCs per area pre- and post-natally. Finally, while limb MuSCs proliferate in the mdx mouse model for Duchenne muscular dystrophy, significantly less MuSCs were present in the EOMs of the mdx mouse model compared to controls, and they were not proliferative. Overall, our study provides a comprehensive in vivo characterisation of MuSC heterogeneity along the body axis and brings further insights into the unusual sparing of EOMs during muscular dystrophy.


Subject(s)
Homeobox Protein PITX2 , Homeodomain Proteins , Myogenic Regulatory Factor 5 , Oculomotor Muscles , PAX7 Transcription Factor , Transcription Factors , Animals , Humans , Mice , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice, Inbred mdx , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Oculomotor Muscles/metabolism , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Commun Biol ; 7(1): 773, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937521

ABSTRACT

Distinct Natural Killer (NK)-like CD57+ and PD-1+ CD8+ exhausted-like T cell populations (Tex) have both been linked to beneficial immunotherapy response in autoimmune type 1 diabetes (T1D) patients. The origins and relationships between these cell types are poorly understood. Here we show that while PD-1+ and CD57+ Tex populations are epigenetically similar, CD57+ Tex cells display unique increased chromatin accessibility of inhibitory Killer Cell Immunoglobulin-like Receptor (iKIR) and other NK cell genes. PD-1+ and CD57+ Tex also show reciprocal expression of Inhibitory Receptors (IRs) and iKIRs accompanied by chromatin accessibility of Tcf1 and Tbet transcription factor target sites, respectively. CD57+ Tex show unappreciated gene expression heterogeneity and share clonal relationships with PD-1+ Tex, with these cells differentiating along four interconnected lineage trajectories: Tex-PD-1+, Tex-CD57+, Tex-Branching, and Tex-Fluid. Our findings demonstrate new relationships between Tex-like populations in human autoimmune disease and suggest that modulating common precursor populations may enhance response to autoimmune disease treatment.


Subject(s)
CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Killer Cells, Natural , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/genetics , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , CD57 Antigens/metabolism , Cell Lineage/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Female , Male , Adult
20.
Bioinformatics ; 40(Supplement_1): i218-i227, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940122

ABSTRACT

MOTIVATION: Eukaryotic cells contain organelles called mitochondria that have their own genome. Most cells contain thousands of mitochondria which replicate, even in nondividing cells, by means of a relatively error-prone process resulting in somatic mutations in their genome. Because of the higher mutation rate compared to the nuclear genome, mitochondrial mutations have been used to track cellular lineage, particularly using single-cell sequencing that measures mitochondrial mutations in individual cells. However, existing methods to infer the cell lineage tree from mitochondrial mutations do not model "heteroplasmy," which is the presence of multiple mitochondrial clones with distinct sets of mutations in an individual cell. Single-cell sequencing data thus provide a mixture of the mitochondrial clones in individual cells, with the ancestral relationships between these clones described by a mitochondrial clone tree. While deconvolution of somatic mutations from a mixture of evolutionarily related genomes has been extensively studied in the context of bulk sequencing of cancer tumor samples, the problem of mitochondrial deconvolution has the additional constraint that the mitochondrial clone tree must be concordant with the cell lineage tree. RESULTS: We formalize the problem of inferring a concordant pair of a mitochondrial clone tree and a cell lineage tree from single-cell sequencing data as the Nested Perfect Phylogeny Mixture (NPPM) problem. We derive a combinatorial characterization of the solutions to the NPPM problem, and formulate an algorithm, MERLIN, to solve this problem exactly using a mixed integer linear program. We show on simulated data that MERLIN outperforms existing methods that do not model mitochondrial heteroplasmy nor the concordance between the mitochondrial clone tree and the cell lineage tree. We use MERLIN to analyze single-cell whole-genome sequencing data of 5220 cells of a gastric cancer cell line and show that MERLIN infers a more biologically plausible cell lineage tree and mitochondrial clone tree compared to existing methods. AVAILABILITY AND IMPLEMENTATION: https://github.com/raphael-group/MERLIN.


Subject(s)
Cell Lineage , Mitochondria , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Cell Lineage/genetics , Mitochondria/genetics , Mutation , Genome, Mitochondrial , Algorithms , Evolution, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL