Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 346
Filter
1.
Int J Pharm ; 660: 124305, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38852749

ABSTRACT

With an ever-increasing burden of vision loss caused by diseases of the posterior ocular segment, there is an unmet clinical need for non-invasive treatment strategies. Topical drug application using eye drops suffers from low to negligible bioavailability to the posterior segment as a result of static and dynamic defensive ocular barriers to penetration, while invasive delivery systems are expensive to administer and suffer potentially severe complications. As the cornea is the main anatomical barrier to uptake of topically applied drugs from the ocular surface, we present an approach to increase corneal permeability of a corticosteroid, dexamethasone sodium-phosphate (DSP), using a novel penetration enhancing agent (PEA). We synthesised a novel polyacetylene (pAc) polymer and compared its activity to two previously described cell penetrating peptide (CPP) based PEAs, TAT and penetratin, with respect to increasing transcorneal permeability of DSP in a rapid ex-vivo porcine corneal assay over 60 min. The transcorneal apparent permeability coefficients (Papp) for diffusion of pAc, and fluorescein isothiocyanate (FITC) conjugated TAT and penetratin were up to 5 times higher (p < 0.001), when compared to controls. When pAc was used in formulation with DSP, an almost 5-fold significant increase was observed in Papp of DSP across the cornea (p = 0.0130), a significant 6-fold increase with TAT (p = 0.0377), and almost 7-fold mean increase with penetratin (p = 0.9540). Furthermore, we investigated whether the PEAs caused any irreversible damage to the barrier integrity of the corneal epithelium by measuring transepithelial electrical resistance (TEER) and immunostaining of tight junction proteins using zonula occludens-1 (ZO-1) and occludin antibodies. There was no damage or structural toxicity, and the barrier integrity was preserved after PEA application. Finally, an in-vitro cytotoxicity assessment of all PEAs in human retinal pigment epithelium cells (ARPE-19) demonstrated that all PEAs were very well-tolerated, with IC50 values of 64.79 mM for pAc and 1335.45 µM and 87.26 µM for TAT and penetratin, respectively. Our results suggest that this drug delivery technology could potentially be used to achieve a significantly higher intraocular therapeutic bioavailability after topical eye drop administration, than currently afforded.


Subject(s)
Cell-Penetrating Peptides , Cornea , Dexamethasone , Drug Delivery Systems , Permeability , Animals , Dexamethasone/administration & dosage , Dexamethasone/pharmacokinetics , Dexamethasone/analogs & derivatives , Swine , Cornea/metabolism , Cornea/drug effects , Cell-Penetrating Peptides/administration & dosage , Drug Delivery Systems/methods , Humans , Retina/metabolism , Retina/drug effects , Cell Line , Gene Products, tat/administration & dosage , Gene Products, tat/chemistry , Administration, Ophthalmic , Administration, Topical , Ophthalmic Solutions/administration & dosage , Carrier Proteins/metabolism , Polymers/chemistry
2.
Int J Pharm ; 659: 124198, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38816263

ABSTRACT

Autophagy, an intracellular degradation system, plays a vital role in protecting cells by clearing damaged organelles, pathogens, and protein aggregates. Autophagy upregulation through pharmacological interventions has gained significant attention as a potential therapeutic avenue for proteinopathies. Here, we report the development of an autophagy-inducing peptide (BCN4) derived from the Beclin 1 protein, the master regulator of autophagy. To deliver the BCN4 into cells and the central nervous system (CNS), it was conjugated to our previously developed cell and blood-brain barrier-penetrating peptide (CPP). CPP-BCN4 significantly upregulated autophagy and reduced protein aggregates in motor neuron (MN)-like cells. Moreover, its systemic administration in a reporter mouse model of autophagy resulted in a significant increase in autophagy activity in the spinal MNs. Therefore, this novel autophagy-inducing peptide with a demonstrated ability to upregulate autophagy in the CNS has significant potential for the treatment of various neurodegenerative diseases with protein aggregates as a characteristic feature.


Subject(s)
Autophagy , Beclin-1 , Motor Neurons , Up-Regulation , Animals , Autophagy/drug effects , Beclin-1/metabolism , Motor Neurons/drug effects , Mice , Up-Regulation/drug effects , Spinal Cord/drug effects , Spinal Cord/metabolism , Peptides/pharmacology , Peptides/administration & dosage , Peptides/chemistry , Cell-Penetrating Peptides/administration & dosage , Cell-Penetrating Peptides/chemistry , Humans , Male , Protein Aggregates/drug effects
3.
Biol Pharm Bull ; 47(5): 1033-1042, 2024.
Article in English | MEDLINE | ID: mdl-38797668

ABSTRACT

Eye drops, including solutions and suspensions, are essential dosage forms to treat ophthalmic diseases, with poorly water-soluble drugs typically formulated as ophthalmic suspensions. In addition to low bioavailability, suspensions exhibit limited efficacy, safety, and usability due to the presence of drug particles. Improving bioavailability can reduce the drug concentrations and the risk of problems associated with suspended drug particles. However, practical penetration enhancers capable of improving bioavailability remain elusive. Herein, we focused on penetratin (PNT), a cell-penetrating peptide (CPP) that promotes active cellular transport related to macromolecule uptake, such as micropinocytosis. According to the in vitro corneal uptake study using a reconstructed human corneal epithelial tissue model, LabCyte CORNEA-MODEL24, PNT enhanced the uptake of Fluoresbrite® YG carboxylate polystyrene microspheres without covalent binding. In an ex vivo porcine eye model, the addition of 10 µM PNT to rebamipide ophthalmic suspension markedly improved the corneal uptake of rebamipide; however, the addition of 100 µM PNT was ineffective due to potentially increased particle size by aggregation. This article provides basic information on the application of PNT as a penetration enhancer in ophthalmic suspensions, including the in vitro and ex vivo studies mentioned above, as well as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and storage stability at different pH values.


Subject(s)
Cell-Penetrating Peptides , Cornea , Ophthalmic Solutions , Suspensions , Animals , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/administration & dosage , Ophthalmic Solutions/administration & dosage , Humans , Cornea/metabolism , Cornea/drug effects , Swine , Quinolones/administration & dosage , Quinolones/pharmacokinetics , Quinolones/chemistry , Administration, Ophthalmic , Biological Availability , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Particle Size , Alanine/analogs & derivatives
4.
Mol Pharm ; 21(5): 2097-2117, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38440998

ABSTRACT

Currently, one of the most significant and rapidly growing unmet medical challenges is the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). This challenge encompasses the imperative development of efficacious therapeutic agents and overcoming the intricacies of the blood-brain barrier for successful drug delivery. Here we focus on the delivery aspect with particular emphasis on cell-penetrating peptides (CPPs), widely used in basic and translational research as they enhance drug delivery to challenging targets such as tissue and cellular compartments and thus increase therapeutic efficacy. The combination of CPPs with nanomaterials such as nanoparticles (NPs) improves the performance, accuracy, and stability of drug delivery and enables higher drug loads. Our review presents and discusses research that utilizes CPPs, either alone or in conjugation with NPs, to mitigate the pathogenic effects of neurodegenerative diseases with particular reference to AD and PD.


Subject(s)
Blood-Brain Barrier , Cell-Penetrating Peptides , Drug Delivery Systems , Nanoparticles , Neurodegenerative Diseases , Parkinson Disease , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/administration & dosage , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Drug Delivery Systems/methods , Nanoparticles/chemistry , Neurodegenerative Diseases/drug therapy , Animals , Parkinson Disease/drug therapy , Alzheimer Disease/drug therapy
5.
Eur J Pharm Biopharm ; 170: 170-178, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34963657

ABSTRACT

Ulcerative colitis (UC) is a refractory inflammatory bowel disease that causes inflammation and ulcers in the digestive tract, and significantly reduces the patient's quality of life. While existing UC treatments have many challenges, nanotechnology, and small interfering RNA (siRNA) based formulations are novel and promising for UC treatment. We previously reported that intravenous administration of MPEG-PCL-CH2R4H2C nanomicelles had high inflammatory site accumulation and remarkable therapeutic effects on rheumatoid arthritis by a phenomenon similar to enhanced permeability and retention effect. In this study, we investigated the effects of siRNA delivered using MPEG-PCL-CH2R4H2C nanomicelles through intravenous administration to the inflammation site of dextran sulfate sodium-induced colitis mice. The MPEG-PCL-CH2R4H2C micelles had optimum physical properties and high siRNA compaction ability. Moreover, model-siRNA delivered through MPEG-PCL-CH2R4H2C showed higher accumulation in the inflammatory site than that of the naked siRNA. Furthermore, intravenous administration of MPEG-PCL-CH2R4H2C/siRelA micelles, targeting siRelA, a subunit of NF-κB, significantly decreased the shortening of large intestine, clinical score, and production of inflammatory cytokines compared the 5-ASA and naked siRelA. These results suggest that MPEG-PCL-CH2R4H2C is a useful carrier for the systemic delivery and accumulation of siRNA, thus improving its therapeutic effect.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Colitis, Ulcerative/drug therapy , Polyesters/administration & dosage , Polyethylene Glycols/administration & dosage , RNA, Small Interfering/administration & dosage , Administration, Intravenous , Animals , Cell-Penetrating Peptides/chemical synthesis , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Micelles , Polyesters/chemical synthesis , Polyethylene Glycols/chemical synthesis , Polymers/chemical synthesis
6.
Adv Drug Deliv Rev ; 180: 114044, 2022 01.
Article in English | MEDLINE | ID: mdl-34774552

ABSTRACT

Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.


Subject(s)
Antineoplastic Agents/administration & dosage , Cell-Penetrating Peptides/administration & dosage , Drug Delivery Systems , Animals , Antineoplastic Agents/pharmacology , Cell-Penetrating Peptides/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Proteins/metabolism , Tumor Microenvironment
7.
Front Immunol ; 12: 750496, 2021.
Article in English | MEDLINE | ID: mdl-34867981

ABSTRACT

One of the main hallmarks of tuberculosis (TB) is the ability of the causative agent to transform into a stage of dormancy and the capability of long persistence in the host phagocytes. It is believed that approximately one-third of the population of the world is latently infected with Mycobacterium tuberculosis (Mtb), and 5%-10% of these individuals can develop clinical manifestations of active TB even decades after the initial infection. In this latent, intracellular form, the bacillus is shielded by an extremely robust cell wall and becomes phenotypically resistant to most antituberculars. Therefore, there is a clear rationale to develop novel compounds or carrier-conjugated constructs of existing drugs that are effective against the intracellular form of the bacilli. In this paper, we describe an experimental road map to define optimal candidates against intracellular Mtb and potential compounds effective in the therapy of latent TB. To validate our approach, isoniazid, a first-line antitubercular drug was employed, which is active against extracellular Mtb in the submicromolar range, but ineffective against the intracellular form of the bacteria. Cationic peptide conjugates of isoniazid were synthesized and employed to study the host-directed drug delivery. To measure the intracellular killing activity of the compounds, Mtb-infected MonoMac-6 human monocytic cells were utilized. We have assessed the antitubercular activity, cytotoxicity, membrane interactions in combination with internalization efficacy, localization, and penetration ability on interface and tissue-mimicking 3D models. Based on these in vitro data, most active compounds were further evaluated in vivo in a murine model of TB. Intraperitoneal infectious route was employed to induce a course of slowly progressive and systemic disease. The well-being of the animals, monitored by the body weight, allows a prolonged experimental setup and provides a great opportunity to test the long-term activity of the drug candidates. Having shown the great potency of this simple and suitable experimental design for antimicrobial research, the proposed novel assay platform could be used in the future to develop further innovative and highly effective antituberculars.


Subject(s)
Antimicrobial Peptides/administration & dosage , Antitubercular Agents/administration & dosage , Biological Assay/methods , Cell-Penetrating Peptides/administration & dosage , Isoniazid/administration & dosage , Mycobacterium tuberculosis/drug effects , Animals , Antimicrobial Peptides/chemistry , Antitubercular Agents/chemistry , Bronchi , Cell Line , Cell-Penetrating Peptides/chemistry , Endocytosis , Female , Humans , Isoniazid/chemistry , Mice, Inbred BALB C , Monocytes/microbiology , Mycobacterium tuberculosis/growth & development , Reproducibility of Results , Spheroids, Cellular , Tuberculosis/drug therapy
8.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769414

ABSTRACT

Cell-penetrating peptides (CPPs) are small peptide sequences used mainly as cellular delivery agents that are able to efficiently deliver cargo into cells. Some CPPs also demonstrate intrinsic anticancer properties. Previously, our group developed a new family of CPP2-thiazole conjugates that have been shown to effectively reduce the proliferation of different cancer cells. This work aimed to combine these CPP2-thiazole conjugates with paclitaxel (PTX) and 5-fluorouracil (5-FU) in PC-3 prostate and HT-29 colon cancer cells, respectively, to evaluate the cytotoxic effects of these combinations. We also combined these CPP2-thiazole conjugates with clotrimazole (CLZ), an antifungal agent that has been shown to decrease cancer cell proliferation. Cell viability was evaluated using MTT and SRB assays. Drug interaction was quantified using the Chou-Talalay method. We determined that CPP2 did not have significant activity in these cells and demonstrate that N-terminal modification of this peptide enhanced its anticancer activity in both cell lines. Our results also showed an uneven response between cell lines to the proposed combinations. PC-3 cells were more responsive to the combination of CPP2-thiazole conjugates with CLZ than PTX and were more sensitive to these combinations than HT-29 cells. In addition, the interaction of drugs resulted in more synergism in PC-3 cells. These results suggest that N-terminal modification of CPP2 results in the enhanced anticancer activity of the peptide and demonstrates the potential of CPPs as adjuvants in cancer therapy. These results also validate that CLZ has significant anticancer activity both alone and in combination and support the strategy of drug repurposing coupled to drug combination for prostate cancer therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell-Penetrating Peptides/pharmacology , Clotrimazole/pharmacology , Colonic Neoplasms/drug therapy , Prostatic Neoplasms/drug therapy , Thiazoles/pharmacology , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell-Penetrating Peptides/administration & dosage , Cell-Penetrating Peptides/chemistry , Clotrimazole/administration & dosage , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Drug Synergism , Fluorouracil/administration & dosage , Fluorouracil/pharmacology , Humans , Male , Paclitaxel/administration & dosage , Paclitaxel/pharmacology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Thiazoles/administration & dosage , Thiazoles/chemistry
9.
Int Immunopharmacol ; 101(Pt A): 108251, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34715492

ABSTRACT

African swine fever (ASF) is a highly fatal swine disease threatening the global pig industry. Currently, vaccine is not commercially available for ASF. Hence, it is desirable to develop effective subunit vaccines against ASF. Here, we expressed and purified two recombinant fusion proteins comprising ASFV proteins p30 and p54 fused to a novel cell-penetrating peptide Z12, which were labeled as ZPM (Z12-p30-modified p54) and ZPMT (Z12-p30-modified p54-T cell epitope). Purified recombinant p30 and modified p54 expressed alone or fused served as controls. The transduction capacity of these recombinant proteins was assessed in RAW264.7 cells. Both ZPM and ZPMT exhibited higher transduction efficiency than the other proteins. Subsequently, humoral and cellular immune responses elicited by these proteins were evaluated in mice. ZPMT elicited the highest levels of antigen-specific IgG responses, cytokines (interleukin-2, interferon-γ, and tumor necrosis factor-α) and lymphocyte proliferation. Importantly, sera from mice immunized with ZPM or ZPMT neutralized greater than 85% of ASFV in vitro. Our results indicate that ZPMT induces potent neutralizing antibody responses and cellular immunity in mice. Therefore, ZPMT may be a suitable candidate to elicit immune responses in swine, providing valuable information for the development of subunit vaccines against ASF.


Subject(s)
African Swine Fever Virus/immunology , African Swine Fever/immunology , Viral Vaccines/immunology , African Swine Fever/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cell-Penetrating Peptides/administration & dosage , Cell-Penetrating Peptides/genetics , Cell-Penetrating Peptides/immunology , Epitopes, T-Lymphocyte/administration & dosage , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , Immunity, Cellular/immunology , Mice , Phosphoproteins/administration & dosage , Phosphoproteins/genetics , Phosphoproteins/immunology , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Swine , Vaccine Development , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Viral Proteins/administration & dosage , Viral Proteins/genetics , Viral Proteins/immunology , Viral Structural Proteins/administration & dosage , Viral Structural Proteins/genetics , Viral Structural Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
10.
Pharmacol Res Perspect ; 9(3): e00755, 2021 05.
Article in English | MEDLINE | ID: mdl-33951329

ABSTRACT

Friedreich ataxia is an autosomal recessive, neurodegenerative disease characterized by the deficiency of the iron-sulfur cluster assembly protein frataxin. Loss of this protein impairs mitochondrial function. Mitochondria alter their morphology in response to various stresses; however, such alterations to morphology may be homeostatic or maladaptive depending upon the tissue and disease state. Numerous neurodegenerative diseases exhibit excessive mitochondrial fragmentation, and reversing this phenotype improves bioenergetics for diseases in which mitochondrial dysfunction is a secondary feature of the disease. This paper demonstrates that frataxin deficiency causes excessive mitochondrial fragmentation that is dependent upon Drp1 activity in Friedreich ataxia cellular models. Drp1 inhibition by the small peptide TAT-P110 reverses mitochondrial fragmentation but also decreases ATP levels in frataxin-knockdown fibroblasts and FRDA patient fibroblasts, suggesting that fragmentation may provide a homeostatic pathway for maintaining cellular ATP levels. The cardiolipin-stabilizing compound SS-31 similarly reverses fragmentation through a Drp1-dependent mechanism, but it does not affect ATP levels. The combination of TAT-P110 and SS-31 does not affect FRDA patient fibroblasts differently from SS-31 alone, suggesting that the two drugs act through the same pathway but differ in their ability to alter mitochondrial homeostasis. In approaching potential therapeutic strategies for FRDA, an important criterion for compounds that improve bioenergetics should be to do so without impairing the homeostatic response of mitochondrial fragmentation.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Dynamins/antagonists & inhibitors , Fibroblasts/metabolism , Friedreich Ataxia/metabolism , GTP Phosphohydrolases/administration & dosage , Iron-Binding Proteins/metabolism , Mitochondria/metabolism , Oligopeptides/administration & dosage , Peptide Fragments/administration & dosage , Adenosine Triphosphate/metabolism , Biomarkers , Cells, Cultured , Dynamins/metabolism , Energy Metabolism , Homeostasis , Humans , Iron-Binding Proteins/genetics , RNA, Small Interfering/genetics , Frataxin
11.
Int J Cancer ; 149(6): 1313-1321, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34019700

ABSTRACT

CIGB-552 is a synthetic peptide that interacts with COMMD1 and upregulates its protein levels. The objectives of this phase I study were safety, pharmacokinetic profile, evaluation of the lymphocytes CD4+ and CD8+ and preliminary activity in patients with advanced tumors. A 3 + 3 dose-escalation design with seven dose levels was implemented. Patients were included until a grade 3 related adverse event occurred and the maximum tolerated dose was reached. The patients received subcutaneous administration of CIGB-552 three times per week for 2 weeks. Single-dose plasma pharmacokinetics was characterized at two dose levels, and tumor responses were classified by RECIST 1.1. Twenty-four patients received CIGB-552. Dose-limiting toxicity was associated with a transient grade 3 pruritic maculopapular rash at a dose of 7.0 mg. The maximum tolerated dose was defined as 4.7 mg. Ten patients were assessable for immunological status. Seven patients had significant changes in the ratio CD4/CD8 in response to CIGB-552 treatment; three patients did not modify the immunological status. Stable disease was observed in five patients, including two metastatic soft sarcomas. We conclude that CIGB-552 at dose 4.7 mg was well tolerated with no significant adverse events and appeared to provide some clinical benefits.


Subject(s)
Antineoplastic Agents/administration & dosage , Cell-Penetrating Peptides/administration & dosage , NF-kappa B/drug effects , Neoplasms/drug therapy , Adaptor Proteins, Signal Transducing/metabolism , Adult , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Cell-Penetrating Peptides/adverse effects , Cell-Penetrating Peptides/pharmacokinetics , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Injections, Subcutaneous , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Staging , Neoplasms/metabolism , Neoplasms/pathology , Research Design , Treatment Outcome
12.
Trends Mol Med ; 27(7): 643-659, 2021 07.
Article in English | MEDLINE | ID: mdl-33994320

ABSTRACT

RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Genetic Diseases, Inborn/therapy , Genetic Therapy/methods , Neoplasms/therapy , Oligonucleotides, Antisense/administration & dosage , RNA Splicing , Genetic Diseases, Inborn/genetics , Humans , Neoplasms/genetics
13.
Molecules ; 26(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805680

ABSTRACT

This review summarizes recent developments in conjugation techniques for the synthesis of cell-penetrating peptide (CPP)-drug conjugates targeting cancer cells. We will focus on small organic molecules as well as metal complexes that were used as cytostatic payloads. Moreover, two principle ways of coupling chemistry will be discussed direct conjugation as well as the use of bifunctional linkers. While direct conjugation of the drug to the CPP is still popular, the use of bifunctional linkers seems to gain increasing attention as it offers more advantages related to the linker chemistry. Thus, three main categories of linkers will be highlighted, forming either disulfide acid-sensitive or stimuli-sensitive bonds. All techniques will be thoroughly discussed by their pros and cons with the aim to help the reader in the choice of the optimal conjugation technique that might be used for the synthesis of a given CPP-drug conjugate.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Cell-Penetrating Peptides/chemical synthesis , Cytostatic Agents/administration & dosage , Cytostatic Agents/chemical synthesis , Drug Delivery Systems/methods , Amino Acid Sequence , Animals , Cell Line, Tumor , Cytostatic Agents/chemistry , Drug Carriers/administration & dosage , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Delivery Systems/trends , Humans , Molecular Structure , Organic Chemistry Phenomena
14.
Pharm Dev Technol ; 26(6): 634-646, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33843423

ABSTRACT

A combination of doxorubicin (DOX) and small interfering RNA (siRNA) is proven effective for the reverse of multidrug resistance. However, rapid degradation and poor cellular internalization of siRNA hinder their synergistic action. To improve the combination effect, asparagine-glycine-arginine peptide (NGR) -modified nanobubbles (NBs) containing cell-penetrating peptide (CPP) decorated DOX and CPP decorated c-myc siRNA were constructed. Diameters of these NBs were about 245 nm and zeta potentials were about -3 mV. Encapsulation efficiencies (EE) of DOX exceeded 80%. Release of DOX could be triggered by ultrasound (US) since above 80% DOX was released from NBs after sonication while less than 5% DOX was discharged without treatment of US. These NBs were considered stable during 24 h since the decrease of particle size was no more than 10 nm, variances of EE were less than 5%, and changes of transmission (ΔT) were less than 3%. More drugs in formulation decorated with CPP and NGR were accumulated in the tumor when combined with sonication. The evident synergistic action of DOX, siRNA, NBs, and US was verified in mice with strong antitumor efficacy. Taken together, NGR-modified NBs containing CPP-DOX and CPP-siRNA are able to realize time- and spatial-controlled drug delivery and show potential application prospects.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Doxorubicin/administration & dosage , Drug Delivery Systems/methods , Nanoparticles/administration & dosage , Oligopeptides/administration & dosage , RNA, Small Interfering/administration & dosage , Animals , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , RNA, Small Interfering/genetics , Tumor Burden/drug effects , Tumor Burden/physiology
15.
Peptides ; 141: 170542, 2021 07.
Article in English | MEDLINE | ID: mdl-33794283

ABSTRACT

A new class of peptides, cyclic cell-penetrating peptides (CPPs), has great potential for delivering a vast variety of therapeutics intracellularly for treating diverse ailments. CPPs have been used previously; however, their further use is limited due to instability, toxicity, endosomal degradation, and insufficient cellular penetration. Cyclic CPPs are being investigated in delivering therapeutics to treat various ailments, including multi-drug resistant microbial infections, HIV, and cancer. They can act as a carrier for a variety of cargos and target intracellularly. Approximately 40 cyclic peptides-based therapeutics are available in the market, and annually one cyclic peptide-based drug enters the market. Numerous research and review articles have been published in the last decade about linear and cyclic peptides separately. This review is the first to provide a comprehensive deliberation about cationic and amphipathic cyclic CPPs. Herein, we highlights their structures, significant advantages, translocation mechanisms, and delivery application in the area of biomedical sciences.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Cell-Penetrating Peptides/pharmacokinetics , Peptides, Cyclic/administration & dosage , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cell-Penetrating Peptides/chemistry , Endosomes/drug effects , HIV Infections/drug therapy , Humans , Neoplasms/drug therapy , Peptides, Cyclic/classification
16.
Mol Ther ; 29(5): 1744-1757, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33545360

ABSTRACT

Cardiovascular disease is the leading cause of death and disability worldwide. Effective delivery of cell-selective therapies that target atherosclerotic plaques and neointimal growth while sparing the endothelium remains the Achilles heel of percutaneous interventions. The current study utilizes synthetic microRNA switch therapy that self-assembles to form a compacted, nuclease-resistant nanoparticle <200 nM in size when mixed with cationic amphipathic cell-penetrating peptide (p5RHH). These nanoparticles possess intrinsic endosomolytic activity that requires endosomal acidification. When administered in a femoral artery wire injury mouse model in vivo, the mRNA-p5RHH nanoparticles deliver their payload specifically to the regions of endothelial denudation and not to the lungs, liver, kidney, or spleen. Moreover, repeated administration of nanoparticles containing a microRNA switch, consisting of synthetically modified mRNA encoding for the cyclin-dependent kinase inhibitor p27Kip1 that contains one complementary target sequence of the endothelial cell-specific miR-126 at its 5' UTR, drastically reduced neointima formation after wire injury and allowed for vessel reendothelialization. This cell-selective nanotherapy is a valuable tool that has the potential to advance the fight against neointimal hyperplasia and atherosclerosis.


Subject(s)
Atherosclerosis/prevention & control , Cell-Penetrating Peptides/administration & dosage , Cyclin-Dependent Kinase Inhibitor p27/antagonists & inhibitors , Femoral Artery/injuries , MicroRNAs/administration & dosage , Animals , Atherosclerosis/etiology , Cell-Penetrating Peptides/pharmacology , Coronary Restenosis , Disease Models, Animal , Mice , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Nanoparticles , Particle Size , Synthetic Biology
17.
Adv Drug Deliv Rev ; 171: 187-198, 2021 04.
Article in English | MEDLINE | ID: mdl-33561452

ABSTRACT

The number of protein-based drugs is exponentially increasing. However, development of protein therapeutics against intracellular targets is hampered by the lack of efficient cytosolic delivery strategies. In recent years, the use of cell-penetrating peptides has been proposed as a strategy to promote protein internalization. In this article, we provide the reader with a succinct update on the strategies exploited to enable peptide-mediated cytosolic delivery of proteins. First, we analyse the various methods available for delivery. We then describe the most popular and the in vitro assays designed to assess the intracellular distribution of protein cargo.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Cytosol/metabolism , Drug Delivery Systems , Proteins/administration & dosage , Animals
18.
Int J Mol Sci ; 22(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562802

ABSTRACT

Renal ischemia-reperfusion injury (IRI) is involved in the majority of clinical conditions that manifest as renal function deterioration; however, specific treatment for this type of injury is still far from clinical use. Since Toll-like receptor (TLR)-mediated signaling is a key mediator of IRI, we examined the effect of a multiple-TLR-blocking peptide named TLR-inhibitory peptide 1 (TIP1), which exerts the strongest action on TLR4, on renal IRI. We subjected C57BL/6 mice to 23 min of renal pedicle clamping preceded by intraperitoneal injection with a vehicle or TIP1. Sham control mice underwent flank incision only. Mouse kidneys were harvested after 24 h of reperfusion for histology, western blot, RT-PCR, and flow cytometry analysis. Pretreatment with TIP1 lowered the magnitude of elevated plasma creatinine levels and attenuated tubular injury. TIP1 treatment also reduced mRNA expression of inflammatory cytokines and decreased apoptotic cells and oxidative stress in post-ischemic kidneys. In kidneys pretreated with TIP1, the infiltration of macrophages and T helper 17 cells was less abundant than those in the IRI only group. These results suggest that TIP1 has a potential beneficial effect in attenuating the degree of kidney damage induced by IRI.


Subject(s)
Acute Kidney Injury/prevention & control , Cell-Penetrating Peptides/administration & dosage , Reperfusion Injury/prevention & control , Signal Transduction/drug effects , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Animals , Cell-Penetrating Peptides/pharmacology , Creatinine/blood , Cytokines/genetics , Disease Models, Animal , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
19.
Biochim Biophys Acta Proteins Proteom ; 1869(4): 140604, 2021 04.
Article in English | MEDLINE | ID: mdl-33453413

ABSTRACT

The penetration of biological membranes is a prime obstacle for the delivery of pharmaceutical drugs. Cell-penetrating peptide (CPP) is an efficient vehicle that can deliver various cargos across the biological membranes. Since the discovery, CPPs have been rigorously studied to unveil the underlying penetrating mechanism as well as to exploit CPPs for various biomedical applications. This review will focus on the various strategies to overcome current limitations regarding stability, selectivity, and efficacy of CPPs.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Amino Acid Sequence , Cell Membrane/metabolism , Cell-Penetrating Peptides/chemistry , Drug Delivery Systems , Humans , Pore Forming Cytotoxic Proteins/administration & dosage , Pore Forming Cytotoxic Proteins/chemistry
20.
Mol Pharm ; 18(3): 796-806, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33464088

ABSTRACT

The small interference RNA (siRNA)-assisted RNA interference approach in stem cells for differentiating into cell-specific lineages is gaining importance for its therapeutic potential. An effective gene delivery platform is crucial to achieve this goal. In this context, self-fluorescent, cell-penetrating peptide (CPP)-functionalized hydroxyapatite nanoparticles (R8HNPs) were synthesized by a modified sol gel technique. R8HNPs were crystalline, displayed characteristic bands, and exhibited broad emission spectra from 350 to 750 nm corresponding to green and red fluorescence. The biocompatible R8HNPs displayed robust binding with siRNA and excellent uptake in R1 ESCs. This was attributed to functionalization with CPP. Moreover, the R8HNP-complexed siRNA exhibited excellent serum and room temperature stability. The NPs protected the siRNA from sonication, pH, and temperature-induced stress and efficiently delivered siRNA to trigger 80% silencing of a pluripotency marker gene, Oct4, in R1 ESCs at 48 h. The transient downregulation was also observed at the protein level. Our findings demonstrate R8HNPs as a promising delivery agent for siRNA therapeutics with the potential for lineage-specific differentiation and future applications in regenerative medicine.


Subject(s)
Durapatite/chemistry , Mouse Embryonic Stem Cells/drug effects , Nanoparticles/administration & dosage , RNA, Small Interfering/administration & dosage , Animals , Cell Differentiation/drug effects , Cell Line, Tumor , Cell-Penetrating Peptides/administration & dosage , Cell-Penetrating Peptides/chemistry , Down-Regulation/drug effects , Gene Transfer Techniques , Mice , Nanoparticles/chemistry , RNA Interference/drug effects , RNA, Small Interfering/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...