Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.778
Filter
1.
Sensors (Basel) ; 24(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39124075

ABSTRACT

A low-cost, handheld centrifugal microfluidic system for multiplexed visual detection based on recombinase polymerase amplification (RPA) was developed. A concise centrifugal microfluidic chip featuring four reaction units was developed to run multiplexed RPA amplification in parallel. Additionally, a significantly shrunk-size and cost-effective handheld companion device was developed, incorporating heating, optical, rotation, and sensing modules, to perform multiplexed amplification and visual detection. After one-time sample loading, the metered sample was equally distributed into four separate reactors with high-speed centrifugation. Non-contact heating was adopted for isothermal amplification. A tiny DC motor on top of the chip was used to drive steel beads inside reactors for active mixing. Another small DC motor, which was controlled by an elaborate locking strategy based on magnetic sensing, was adopted for centrifugation and positioning. Visual fluorescence detection was optimized from different sides, including material, surface properties, excitation light, and optical filters. With fluorescence intensity-based visual detection, the detection results could be directly observed through the eyes or with a smartphone. As a proof of concept, the handheld device could detect multiple targets, e.g., different genes of African swine fever virus (ASFV) with the comparable LOD (limit of detection) of 75 copies/test compared to the tube-based RPA.


Subject(s)
Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , African Swine Fever Virus/isolation & purification , African Swine Fever Virus/genetics , Lab-On-A-Chip Devices , Limit of Detection , Centrifugation/instrumentation , Animals , Smartphone , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/economics
2.
Res Vet Sci ; 177: 105367, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098093

ABSTRACT

The advanced-PRF+ (A-PRF+) is a platelet concentrate, showing a higher concentration of growth factors, an increased number of cells and looser structure of the fibrin clot than leukocyte-PRF. A high variability in the size of PRF associated with patients, haematological features and centrifugation protocols was reported. The aims of this study were to evaluate the feasibility of A-PRF+ production in the field and the correlation between haematological parameters, macroscopic and microscopic features in equine A-PRF+. Samples from twenty Standardbred horses (3-7 years) were harvested with glass tubes without anticoagulants, previously heated at 37 °C. Blood samples were centrifugated at 1300 rpm for 8 min with a fixed-angle centrifuge and a horizontal centrifuge in the field, at a temperature of 15-17 °C. Clots were measured and placed on the Wound Box® for a 2-min compression. Membranes were measured and fixed in 10% formalin for histological examination. Clot and membrane surface did not differ between sex and centrifuge. Haematological parameters did not show a significant correlation to clot and membrane size. Membranes obtained from both centrifugation protocols showed a loose fibrin structure and cells evenly distributed throughout the clot. Tubes' warming was effective to obtain A-PRF+ clots from all samples, regardless the environmental temperature. Further studies are needed to evaluate the influence of other blood molecules on the A-PRF+ structure and size.


Subject(s)
Platelet-Rich Fibrin , Animals , Horses/blood , Male , Female , Blood Platelets , Centrifugation/veterinary , Blood Coagulation/physiology
3.
Methods Mol Biol ; 2835: 165-172, 2024.
Article in English | MEDLINE | ID: mdl-39105915

ABSTRACT

Extracellular vesicles (EVs) were once believed to serve as a means of disposing of cellular waste. However, recent discoveries have identified their crucial roles in intercellular communication between neighboring and distant cells. Almost all cell types have now been identified to produce EVs, which play a vital role in transporting cellular cargo. The functional roles of EVs, along with their implications in (patho)physiology of various diseases, are still being explored. In the last decade, the identification of EV roles in pathophysiology, pharmacology, and diagnostics has gained significant interest, albeit the development of universal methods for the isolation and characterization of EVs has been the limiting factor. A further challenge is ensuring that EVs of various size categories, which are thought to be produced via independent cellular mechanisms and often differ in their cargo and physiological purpose, can be separated and studied in isolation.This protocol provides an efficient and accessible method for isolating and characterizing EV samples from conditioned cell culture media. The combination of differential centrifugation and the use of a commercial EV-precipitation kit allows for the rapid isolation of a highly pure sample of EVs separated by size. A microfluidic resistive pulse sensing (MRPS)-based method is then used to quantify the particles, as well as to assess the size distribution of the EV sample. As a result, this protocol provides a reproducible means to isolate and characterize EVs of a variety of sizes from nearly any cultured cells.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Humans , Culture Media, Conditioned , Culture Media/chemistry , Cell Fractionation/methods , Centrifugation/methods , Cell Culture Techniques/methods
4.
Methods Mol Biol ; 2827: 417-433, 2024.
Article in English | MEDLINE | ID: mdl-38985286

ABSTRACT

In situ RT-PCR presents advantages over other expression analysis methods due to its rapid processing and low-cost equipment. However, this technique is not without its challenges. A protocol based on a capsule made from centrifuge tubes that offers advantages over slides is presented. This capsule protects histological sections from drying out, and its easy assembly reduces time pauses between incubations. In addition, the container size where the sample is deposited allows the addition and withdrawal of the different solutions. The capsule does not need previous sealing after each incubation, and, above all, it is a low-cost and accessible material. A guideline for tissue sectioning using a cryostat that offers advantages over other sectioning methods is also described.


Subject(s)
Centrifugation , Reverse Transcriptase Polymerase Chain Reaction , Centrifugation/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Plants/genetics , RNA, Plant/genetics
5.
BMC Cancer ; 24(1): 888, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048943

ABSTRACT

Respiratory failure, intracranial hemorrhage and infection were more common in hyperleukocytic acute myeloid leukemia patients than in non-hyperleukocytic leukemia patients. Compared with non-apheresis treatment, the white blood cells decreased significantly and the infection rate decreased after apheresis treatment. However, the treatment time of leukapheresis in patients with hyperleukocytic leukemia is very long, while it is more damaging to cells. In this study, which conducted a retrospective analysis on patients with hyperleukocytic acute myeloid leukemia, the process of centrifugation of normal cells and patients' cells by apheresis machine was simulated in vitro. Through selecting 5 healthy persons and 11 patients with hyperleukocytic acute myeloid leukemia, extracting their blood samples and performing in vitro centrifugation at different speeds or duration, we observed the changes of the numbers and morphology of peripheral blood cells in healthy people and patients, so as to explore the optimal centrifugation parameters during leukapheresis. The cells obtained by the optimal centrifugation parameters were cryopreserved and two groups of mice (10 mice in each group) were used to establish leukemia animal models. Through the research, it is found that when the centrifugal speed is below 6000 rpm, the damage to blood cells in healthy people and in patients with hyperleukocytic leukemia is not obvious. When the centrifugal speed is above 6000 rpm, the platelets will be damaged significantly. The cells obtained under the optimal centrifugation parameters can be successfully cryopreserved and used to establish leukemia animal models. This study is of great significance for improving the efficiency and reducing the side effects of leukapheresis, and is helpful to improve the treatment of white blood cells reduction.


Subject(s)
Leukapheresis , Leukemia, Myeloid, Acute , Humans , Leukapheresis/methods , Animals , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/blood , Mice , Male , Retrospective Studies , Female , Centrifugation/methods , Adult , Middle Aged , Disease Models, Animal
6.
J Vis Exp ; (209)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39037257

ABSTRACT

Plants are a newly developing eukaryotic expression system being explored to produce therapeutic proteins. Purification of recombinant proteins from plants is one of the most critical steps in the production process. Typically, proteins were purified from total soluble proteins (TSP), and the presence of miscellaneous intracellular proteins and cytochromes poses challenges for subsequent protein purification steps. Moreover, most therapeutic proteins like antigens and antibodies are secreted to obtain proper glycosylation, and the presence of incompletely modified proteins leads to inconsistent antigen or antibody structures. This work introduces a more effective method to obtain highly purified recombinant proteins from the plant apoplastic space. The recombinant Green fluorescent protein (GFP) is engineered to be secreted into the apoplast of Nicotiana benthamiana and is then extracted using an infiltration-centrifugation method. The GFP-His from the extracted apoplast is then purified by nickel affinity chromatography. In contrast to the traditional methods from TSP, purification from the apoplast produces highly purified recombinant proteins. This represents an important technological improvement for plant production systems.


Subject(s)
Chromatography, Affinity , Green Fluorescent Proteins , Nicotiana , Nicotiana/genetics , Nicotiana/chemistry , Nicotiana/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/biosynthesis , Chromatography, Affinity/methods , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Centrifugation/methods , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/biosynthesis
7.
Sci Rep ; 14(1): 15206, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956329

ABSTRACT

The study investigated the effects of temperature and centrifugation time on the efficacy of removing uncured resin from 3D-printed clear aligners. Using a photo-polymerizable polyurethane resin (Tera Harz TC-85, Graphy Inc., Seoul, Korea), aligners were printed and subjected to cleaning processes using isopropyl alcohol (IPA) or centrifugation (g-force 27.95g) at room temperature (RT, 23 °C) and high temperature (HT, 55 °C) for 2, 4, and 6 min. The control group received no treatment (NT). Cleaning efficiency was assessed through rheological analysis, weight measurement, transparency evaluation, SEM imaging, 3D geometry evaluation, stress relaxation, and cell viability tests. Results showed increased temperature and longer centrifugation times significantly reduced aligner viscosity, weight (P < 0.05), and transmittance. IPA-cleaned aligners exhibited significantly lower transparency and rougher surfaces in SEM images. All groups met ISO biocompatibility standards in cytotoxicity tests. The NT group had higher root mean square (RMS) values, indicating greater deviation from the original design. Stress relaxation tests revealed over 95% recovery in all groups after 60 min. The findings suggest that a 2-min HT centrifugation process effectively removes uncured resin without significantly impacting the aligners' physical and optical properties, making it a clinically viable option.


Subject(s)
Centrifugation , Printing, Three-Dimensional , Temperature , Resins, Synthetic/chemistry , Polyurethanes/chemistry , Cell Survival/drug effects , Materials Testing , Humans , Animals
8.
Physiol Rep ; 12(13): e16034, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949844

ABSTRACT

This study compared the joint kinematics between the front squat (FS) conducted in the upright (natural gravity) position and in the supine position on a short arm human centrifuge (SAHC). Male participants (N = 12) with no prior experience exercising on a centrifuge completed a FS in the upright position before (PRE) and after (POST) a FS exercise conducted on the SAHC while exposed to artificial gravity (AG). Participants completed, in randomized order, three sets of six repetitions with a load equal to body weight or 1.25 × body weight for upright squats, and 1 g and 1.25 g at the center of gravity (COG) for AG. During the terrestrial squats, the load was applied with a barbell. Knee (left/right) and hip (left/right) flexion angles were recorded with a set of inertial measurement units. AG decreased the maximum flexion angle (MAX) of knees and hips as well as the range of motion (ROM), both at 1 and 1.25 g. Minor adaptation was observed between the first and the last repetition performed in AG. AG affects the ability to FS in naïve participants by reducing MAX, MIN and ROM of the knees and hip.


Subject(s)
Centrifugation , Exercise , Knee Joint , Range of Motion, Articular , Humans , Male , Range of Motion, Articular/physiology , Biomechanical Phenomena , Adult , Knee Joint/physiology , Exercise/physiology , Young Adult , Hip Joint/physiology , Posture/physiology , Gravity, Altered
9.
In Vitro Cell Dev Biol Anim ; 60(7): 732-739, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833208

ABSTRACT

Genetic mosaicism, characterized by multiple genotypes within an individual, is considered an obstacle to CRISPR/Cas9 genome editing in animal models. Despite the various strategies for minimizing mosaic mutations, no definitive methods exist to eliminate them. This study aimed to enhance gene editing efficiency in porcine zygotes using CRISPR/Cas9, which targets specific genes through centrifugation and zona pellucida removal before electroporation. Centrifugation at 2000 × g did not adversely affect blastocyst formation rates in zygotes electroporated with gRNA targeting the GGTA1 gene; instead, it led to increased total and monoallelic mutation rates compared with control zygotes without centrifugation. However, the groups had no significant differences in biallelic mutation rates. In zygotes electroporated with gRNA targeting the CMAH gene, centrifugation treatments exceeding 1000 × g significantly increased both biallelic mutation rates and mutation efficiency. The combination of centrifugation and zona pellucida removal did not have a detrimental effect on blastocyst formation rates. It led to a higher rate of double biallelic mutations in embryos targeting both GGTA1 and CMAH compared to embryos without centrifugation treatment. In summary, our results demonstrate that pre-electroporation treatments, including centrifugation and zona pellucida removal, positively influenced the reduction of mosaic mutations, with the effectiveness of centrifugation depending on the specific gRNA used.


Subject(s)
CRISPR-Cas Systems , Centrifugation , Electroporation , Gene Editing , Animals , Gene Editing/methods , Swine , Electroporation/methods , CRISPR-Cas Systems/genetics , Embryo, Mammalian/metabolism , Zona Pellucida/metabolism , Zygote/metabolism , Blastocyst/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , Mutation/genetics , Galactosyltransferases
10.
J Dent ; 147: 105102, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852693

ABSTRACT

OBJECTIVES: To investigate the impact of a centrifugation method on the surface characteristics, flexural properties, and cytotoxicity of an additively manufactured denture base polymer. METHODS: The tested specimens were prepared by digital light processing (DLP). A centrifugation method (CENT) was used to remove the residual uncured resin. In addition, the specimens were post-processed with different post-rinsing solutions: isopropanol (IPA), ethanol (EtOH), and tripropylene glycol monomethyl ether (TPM), respectively. A commercial heat-polymerized polymethyl methacrylate was used as a reference (REF). First, the values of surface topography, arithmetical mean height (Sa), and root mean square height (Sq) were measured. Next, flexural strength (FS) and modulus were evaluated. Finally, cytotoxicity was assessed using an extract test. The data were statistically analyzed using a one-way analysis of variance, followed by Tukey's multiple comparison test for post-hoc analysis. RESULTS: The Sa value in the CENT group was lower than in the IPA, EtOH, TPM, and REF groups (p < 0.001). Moreover, the CENT group had lower Sq values than other groups (p < 0.001). The centrifugation method showed a higher FS value (80.92 ± 8.65 MPa) than the EtOH (61.71 ± 12.25 MPa, p < 0.001) and TPM (67.01 ± 9.751 MPa, p = 0.027), while affecting IPA (72.26 ± 8.80 MPa, p = 0.268) and REF (71.39 ± 10.44 MPa, p = 0.231). Also, the centrifugation method showed no evident cytotoxic effects. CONCLUSIONS: The surfaces treated with a centrifugation method were relatively smooth. Simultaneously, the flexural strength of denture base polymers was enhanced through centrifugation. Finally, no evident cytotoxic effects could be observed from different post-processing procedures. CLINICAL SIGNIFICANCE: The centrifugation method could optimize surface quality and flexural strength of DLP-printed denture base polymers without compromising cytocompatibility, offering an alternative to conventional rinsing post-processing.


Subject(s)
Centrifugation , Denture Bases , Materials Testing , Polymers , Polymethyl Methacrylate , Printing, Three-Dimensional , Surface Properties , Polymethyl Methacrylate/chemistry , Polymers/chemistry , Flexural Strength , Animals , Mice , Ethanol , 2-Propanol/chemistry , Dental Materials/chemistry , Elastic Modulus , Humans
11.
Auris Nasus Larynx ; 51(4): 733-737, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838426

ABSTRACT

OBJECTIVE: In Japan, intravenous injection of a 7 % solution of sodium bicarbonate (NaHCO3) had been originally developed to inhibit motion sickness and then have long been used to treat vertigo. Previously, we reported that Fos-positive neurons appear in the amygdala after hypergravity stimulation in rats. In the present study, we examined whether injection of 7 % NaHCO3 inhibits hypergravity-induced Fos expression in the neurons in the central nucleus of the amygdala in rats. METHODS: Rats were exposed to 2 G hypergravity in an animal centrifuge device for 3 h. A solution of 7 % NaHCO3 at a dose of 4 mM/kg was injected intraperitoneally before 2 G hypergraviy. Fos-positive neurons in the amygdala were stained immunohistochemically. RESULTS: The number of Fos-positive neurons in the central nucleus of the amygdala was significantly increased after 2 G hypergravity in rats that received no drugs or saline, compared to that in rats exposed only to the noise of the centrifuge and received 7 % NaHCO3 solution. The number of Fos-positive neurons in the central nucleus of the amygdala after 2 G hypergravity was significantly decreased in rats that received 7 % NaHCO3 solution, compared to that in rats that received no drugs or saline. CONCLUSION: Since Fos expression is a marker of activated neurons, the present findings suggest that hypergravity activates the amygdala and that administration of 7 % NaHCO3 suppresses hypergravity-induced activation of the amygdala. Hypergravity disturbs spatial orientation to produce motion sickness and the amygdala is involved in fear response. Recently, Ziemann et al. suggested that fear-evoking stimuli reduce the pH in the amygdala to activate it, leading to induction of fear behavior and that administering HCO3- attenuates fear behavior [Cell 2009; 139: 1012-1021]. Therefore, it is possible that hypergravity reduces the pH in the amygdala to activate it, thereby inducing the fear associated with motion sickness and that administration of 7 % NaHCO3 increases the brain pH thereby suppressing hypergravity-induced activation of the amygdala and inhibiting the fear associated with motion sickness. In patients with vertigo, 7 % NaHCO3 therapy may increase the brain pH thereby suppressing the activation of the amygdala and inhibiting the fear associated with vertigo to elicit a beneficial clinical effect.


Subject(s)
Hypergravity , Neurons , Sodium Bicarbonate , Vertigo , Animals , Rats , Male , Neurons/drug effects , Neurons/metabolism , Sodium Bicarbonate/pharmacology , Amygdala/metabolism , Amygdala/drug effects , Central Amygdaloid Nucleus/drug effects , Central Amygdaloid Nucleus/metabolism , Rats, Wistar , Proto-Oncogene Proteins c-fos/metabolism , Immunohistochemistry , Centrifugation
12.
Theriogenology ; 226: 194-201, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38909434

ABSTRACT

Single Layer Centrifugation (SLC) through a low density colloid offers an alternative solution to antibiotic use in boar semen extenders, with lower costs compared to high density colloids. The aim of this study was to explore the reproductive performance of sows when using SLC-prepared semen doses without antibiotics, employing low density Porcicoll to prepare semen doses for artificial insemination in a commercial swine herd in Thailand. Ejaculates were divided into two equal parts to create insemination doses, with each dose containing 3000 × 106 sperm/80 ml for intra-uterine insemination in individual sows. The sows were inseminated twice, with the interval between the two inseminations ranging from 8 to 16 h. The CONTROL group consisted of 206 semen doses treated with antibiotics, prepared for insemination in 103 sows, while the SLC group comprised 194 SLC-prepared semen doses without antibiotics for inseminating 97 sows. Fertility and fecundity traits, including non-return rate, conception rate, farrowing rate, and litter traits (i.e., the total number of piglets born per litter, number of piglets born alive per litter, number of stillborn piglets, and number of mummified fetuses), were compared between groups. Furthermore, data on piglet characteristics, including live-born and stillborn piglets (i.e., the prevalence of stillbirth (yes, no), birth weight, crown-rump length, body mass index (BMI), and ponderal index (PI)), were determined. No significant differences in non-return rate (75.7 % vs. 77.3 %), conception rate (73.8 % vs. 73.2 %), and farrowing rate (71.8 % vs. 73.2 %) were observed between the CONTROL and SLC groups, respectively (P > 0.05). Nevertheless, the total number of piglets born per litter in the SLC group was higher than in the CONTROL group (14.6 ± 0.9 vs. 12.3 ± 0.6, respectively, P = 0.049). Interestingly, the prevalence of stillbirth in the SLC group was lower than in the CONTROL group (6.2 % vs. 11.6 %, respectively, P < 0.001). Moreover, the newborn piglets in the SLC group exhibited higher birth weight and BMI compared to those in the CONTROL group (1.36 ± 0.03 vs. 1.26 ± 0.02 kg, P = 0.005, and 18.3 ± 0.3 vs. 17.3 ± 0.2 kg/m2, P = 0.003). In conclusion, employing sperm doses after SLC through a low density colloid in artificial insemination within a commercial breeding operation did not have a detrimental impact on either fertility or fecundity traits but showed potential benefits in increasing the total number of piglets born per litter. Moreover, improvements were observed in the birth weight and body indexes of piglets, and the percentage of stillbirths was reduced. Our findings introduce new possibilities for antibiotic alternatives in semen extenders to reduce the risk of antimicrobial resistance in the swine industry. Additionally, they provide compelling reproductive outcomes supporting the integration of SLC-prepared semen doses into artificial insemination practices.


Subject(s)
Insemination, Artificial , Semen , Animals , Insemination, Artificial/veterinary , Insemination, Artificial/methods , Female , Swine/physiology , Pregnancy , Male , Semen/drug effects , Centrifugation/veterinary , Centrifugation/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Semen Preservation/veterinary , Semen Preservation/methods , Tropical Climate , Reproduction/drug effects
13.
Microbiol Spectr ; 12(8): e0063824, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38940589

ABSTRACT

Many methods are being tried for rapid and accurate identification of sepsis-causing microorganisms. We analyzed the performance of three different preparation methods [MBT Sepsityper IVD Kit (Bruker Daltonics GmbH, Germany), sodium dodecyl sulfate (SDS) lysis, and differential centrifugation with protein extraction (Centrifugation +PE)] and compared in standard and Sepsityper modules of the Bruker Biotyper MALDI-TOF MS for direct identification of bacteria from 240 positive blood culture bottles of BACTEC FX (Becton Dickinson, USA). By using the standard module, correct identification at species level (score ≥2) was done in 46.7% of the samples with SDS lysis, 44.2% with centrifugation +PE, and 25.4% with the Sepsityper kit. These ratios at the genus level (score range 1.70-1.99) were 34.6%, 31.3%, and 32.5%, respectively. With SDS lysis (195), more bacteria were identified correctly than centrifugation +PE (181) and the Sepsityper kit (139). A statistically significant difference was found between SDS and the Sepsityper kit and Centrifugation +PE and the Sepsityper kit (P < 0.001, both). By using the Sepsityper module, correct identification at species level (score ≥1.8) was determined in 74.2% of the samples with SDS lysis and centrifugation +PE each and 55% with the Sepsityper kit. These ratios at the genus level (score range 1.60-1.79) were 16.3%, 10%, and 19.2%, respectively. SDS lysis (217) had significantly higher identification rates than centrifugation +PE (202) and the Sepsityper kit (178) (P = 0.028 and P < 0.001). A statistically significant difference was also observed between centrifugation +PE and the Sepsityper kit (P < 0.001). Best performance was obtained with SDS lysis among the methods. Although better performance was achieved by using Sepsityper software module, risk of misidentification should not be ignored. IMPORTANCE: Sepsis is a life-threatening condition, and rapid and accurate identification of the causative microorganisms from blood cultures is crucial for timely and effective treatment. Although there are many studies on direct identification from blood cultures with MALDI-TOF MS, further standardization is still needed. In our study, we analyzed the performance of three different preparation methods and compared by using two analysis modules of the Bruker Biotyper MALDI-TOF MS for direct identification of bacteria from numerous positive blood culture bottles. The literature reports a limited number of studies that compare different preparation methods for direct blood culture identification, processing a large number of blood samples concurrently and evaluating the same samples as in our study. Moreover, although SDS is used very frequently in medical laboratories, there are few studies on direct identification from blood culture bottles. In our study, the highest correct identification rate was observed with the SDS method.


Subject(s)
Bacteria , Blood Culture , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Humans , Blood Culture/methods , Bacteria/isolation & purification , Bacteria/classification , Sepsis/diagnosis , Sepsis/microbiology , Bacteriological Techniques/methods , Bacteremia/diagnosis , Bacteremia/microbiology , Centrifugation/methods
14.
BMC Res Notes ; 17(1): 153, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835056

ABSTRACT

OBJECTIVE: Fourth-generation HIV Ag/Ab Combo assay is used for HIV screening of blood for transfusion in developing countries, however, the sensitivity of the assay is questionable during the acute phase of HIV infection. Thus, the study aimed to determine the effect of combining centrifugation with HIV-1 virion lysis on the sensitivity of the fourth-generation HIV Ag/Ab combo assay. RESULTS: When the 50 HIV-1 antibody-negative samples were run on the fourth-generation HIV Ag/Ab combo assay, 8 (16%) were positive following centrifugation, 13 (26%) were positive following lysis while 25 (50%) were positive after combining centrifugation with HIV-1 virion lysis.


Subject(s)
Centrifugation , HIV Antibodies , HIV Infections , HIV-1 , Sensitivity and Specificity , Virion , HIV-1/immunology , HIV-1/physiology , Humans , Centrifugation/methods , HIV Infections/diagnosis , HIV Infections/virology , HIV Infections/immunology , HIV Infections/blood , HIV Antibodies/blood , HIV Antibodies/immunology , Virion/isolation & purification , Virion/immunology , HIV Antigens/immunology , HIV Antigens/blood
15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 577-583, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38932545

ABSTRACT

Red blood cells are destroyed when the shear stress in the blood pump exceeds a threshold, which in turn triggers hemolysis in the patient. The impeller design of centrifugal blood pumps significantly influences the hydraulic characteristics and hemolytic properties of these devices. Based on this premise, the present study employs a multiphase flow approach to numerically simulate centrifugal blood pumps, investigating the performance of pumps with varying numbers of blades and blade deflection angles. This analysis encompassed the examination of flow field characteristics, hydraulic performance, and hemolytic potential. Numerical results indicated that the concentration of red blood cells and elevated shear stresses primarily occurred at the impeller and volute tongue, which drastically increased the risk of hemolysis in these areas. It was found that increasing the number of blades within a certain range enhanced the hydraulic performance of the pump but also raised the potential for hemolysis. Moreover, augmenting the blade deflection angle could improve the hemolytic performance, particularly in pumps with a higher number of blades. The findings from this study can provide valuable insights for the structural improvement and performance enhancement of centrifugal blood pumps.


Subject(s)
Equipment Design , Heart-Assist Devices , Hemolysis , Stress, Mechanical , Humans , Heart-Assist Devices/adverse effects , Erythrocytes/cytology , Centrifugation , Computer Simulation
16.
PLoS One ; 19(6): e0306061, 2024.
Article in English | MEDLINE | ID: mdl-38941321

ABSTRACT

To improve the accuracy of modal analysis for a four-stage centrifugal-pump rotor system with a balancing disc based on the concentrated-mass analytical method, a simplified concentrated mass mathematical model and an ANSYS simulation model are established. The results from these two models are compared to determine factors that cause significant differences in the mode shapes. Subsequently, an optimized mathematical model based on the corrected mass moment of an inertia matrix and stiffness correction coefficients is proposed, and the effectiveness of this optimized mathematical model is validated using a four-stage centrifugal pump with back blades. The results show that the natural frequencies obtained from the ANSYS simulations are consistently higher than those obtained using the analytical method. The simplification of the moment of inertia at the impeller and balancing disc contributes primarily to the calculated errors. The optimized mathematical model reduces the errors in the natural frequencies from 12.96%, 12.13%, 9.96%, 5.85%, and 8.74% to 2.45%, 1.56%, 0.65%, 5.34%, and 2.28%, respectively. The optimization of natural frequencies offers better performance at lower-order modes, whereas its effects on higher-order modes are less significant. The optimization method is applicable to centrifugal pumps with back blades and reduces the error in theoretical calculations, based on reductions in the concentrated mass from 13.11%, 12.85%, 9.91%, and 7.2% to 3.7%, 3.86%, 0.57%, and 2.87%, respectively, thus further confirming the feasibility of the optimized model design.


Subject(s)
Centrifugation , Models, Theoretical , Centrifugation/instrumentation , Centrifugation/methods , Computer Simulation , Equipment Design
17.
Biosensors (Basel) ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38920584

ABSTRACT

The µTAS/LOC, a highly integrated microsystem, consolidates multiple bioanalytical functions within a single chip, enhancing efficiency and precision in bioanalysis and biomedical operations. Microfluidic centrifugation, a key component of LOC devices, enables rapid capture and enrichment of tiny objects in samples, improving sensitivity and accuracy of detection and diagnosis. However, microfluidic systems face challenges due to viscosity dominance and difficulty in vortex formation. Acoustic-based centrifugation, particularly those using surface acoustic waves (SAWs), have shown promise in applications such as particle concentration, separation, and droplet mixing. However, challenges include accurate droplet placement, energy loss from off-axis positioning, and limited energy transfer from low-frequency SAW resonators, restricting centrifugal speed and sample volume. In this work, we introduce a novel ring array composed of eight Lamb wave resonators (LWRs), forming an Ultra-Fast Centrifuge Tunnel (UFCT) in a microfluidic system. The UFCT eliminates secondary vortices, concentrating energy in the main vortex and maximizing acoustic-to-streaming energy conversion. It enables ultra-fast centrifugation with a larger liquid capacity (50 µL), reduced power usage (50 mW) that is one order of magnitude smaller than existing devices, and greater linear speed (62 mm/s), surpassing the limitations of prior methods. We demonstrate successful high-fold enrichment of 2 µm and 10 µm particles and explore the UFCT's potential in tissue engineering by encapsulating cells in a hydrogel-based micro-organ with a ring structure, which is of great significance for building more complex manipulation platforms for particles and cells in a bio-compatible and contactless manner.


Subject(s)
Centrifugation , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Acoustics
18.
Biosensors (Basel) ; 14(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38920617

ABSTRACT

An integrated and high-throughput device for pathogen detection is crucial in point-of-care testing (POCT), especially for early diagnosis of infectious diseases and preventing the spread of infection. We developed an on-site testing platform that utilizes a centrifugal microfluidic chip and automated device to achieve high-throughput detection. The low-power (<32 W), portable (220 mm × 220 mm × 170 mm, 4 kg) device can complete bacterial lysis, nucleic acid extraction and purification, loop-mediated isothermal amplification (LAMP) reaction, and real-time fluorescence detection. Magnetic beads for nucleic acid adsorption can be mixed by applying electromagnetic fields and centrifugal forces, and the efficiency of nucleic acid extraction is improved by 60% compared to the no-mixing group. The automated nucleic acid extraction process achieves equivalent nucleic acid extraction efficiency in only 40% of the time consumed using the kit protocol. By designing the valve system and disc layout, the maximum speed required for the centrifugal microfluidic chip is reduced to 1500 rpm, greatly reducing the equipment power consumption and size. In detecting E. coli, our platform achieves a limit of detection (LOD) of 102 CFU/mL in 60 min. In summary, our active centrifugal microfluidic platform provides a solution for the integration of complex biological assays on turntables, with great potential in the application of point-of-care diagnosis.


Subject(s)
Lab-On-A-Chip Devices , Nucleic Acid Amplification Techniques , Escherichia coli/isolation & purification , Humans , Biosensing Techniques , Limit of Detection , Centrifugation , Molecular Diagnostic Techniques
19.
Environ Sci Pollut Res Int ; 31(25): 37496-37519, 2024 May.
Article in English | MEDLINE | ID: mdl-38777974

ABSTRACT

The water retention curve (WRC) of municipal solid waste (MSW) is the important hydraulic parameter for the study of unsaturated seepage analysis in landfills. Due to the compressibility and degradability of the waste, the search for a method to quickly and accurately test its water retention curve (WRC) is a current problem that needs to be solved. In this paper, considering the volume change of the waste specimens in test, the test principle of centrifuge testing of WRC is corrected to make it applicable to the testing of waste WRC. In addition, the WRCs of 20 MSW specimens with typical landfill compositions and porosities are measured using the corrected centrifuge test. The effects of compositions and porosities of waste specimens on WRC parameters were analyzed. The results are summarized as follows. Disregarding the height reduction of specimens resulted in overestimated matric suction values and underestimating volume water content values. By comparing uncorrected and corrected values, the maximum difference of the matric suction and volumetric water content reach 233 kPa and 11%, respectively. This study can provide a reference for accurately measuring the WRC of MSW using a centrifuge. For the waste specimen without kitchen and yard waste, composition had less of an effect on the WRC of waste compared to porosity. The effect of the content of the non-absorbable fraction on the residual volumetric water content θr and the parameter nv in the van Genuchten model was significant. The initial porosity n had a great effect on the parameter α.


Subject(s)
Centrifugation , Refuse Disposal , Solid Waste , Water , Water/chemistry , Waste Disposal Facilities , Porosity
20.
Food Chem ; 454: 139715, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38795619

ABSTRACT

Starches-rich and protein-rich cereal samples commonly need tedious sample preparation steps before instrumental analysis. This study developed a miniaturized centrifugal integrated cold-induced phase separation (CIPS) method for convenient sample preparation. A small-sized centrifuge tube (2 mL) and a low-temperature centrifuge, both of which are easily accessible, make up the basic components of the system. Unlike conventional sample preparation methods that need a step-by-step extraction, enrichment, purification, and centrifugation, this centrifugal integrated CIPS method can be performed by a one-step combination protocol under a low-temperature centrifuge. As a proof-of-concept study, satisfactory recoveries and enrichment factors were demonstrated for the extraction of fumonisins and ochratoxins from cereals. A sensitive and selective quantification method was yielded by combining LC-HRMS using tSIM acquisition mode, with good linearity (R2 > 0.998), accuracy (82.9-106.5%), and precision (<13.4%). This strategy is convenient, low-cost, repeatable, and easy to semi-automate, further expanding the extraction potential for other acidic mycotoxins.


Subject(s)
Edible Grain , Food Contamination , Fumonisins , Edible Grain/chemistry , Food Contamination/analysis , Fumonisins/analysis , Fumonisins/isolation & purification , Centrifugation , Proof of Concept Study , Mycotoxins/isolation & purification , Mycotoxins/analysis , Mycotoxins/chemistry , Chromatography, High Pressure Liquid , Phase Separation
SELECTION OF CITATIONS
SEARCH DETAIL