Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.894
1.
Transl Psychiatry ; 14(1): 234, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830866

Prior regional Cerebral Blood Flow (rCBF) studies in Major Depressive Disorder (MDD) have been limited by small, highly selective, non-representative samples that have yielded variable and poorly replicated findings. The aim of this study was to compare rCBF measures in a large, more representative community sample of adults with MDD and healthy control participants. This is a cross-sectional, retrospective multi-site cohort study in which clinical data from 338 patients 18-65 years of age with a primary diagnosis of MDD were retrieved from a central database for 8 privately owned, private-pay outpatient psychiatric centers across the United States. Two 99mTc-HMPAO SPECT brain scans, one at rest and one during performance of a continuous performance task, were acquired as a routine component of their initial clinical evaluation. In total, 103 healthy controls, 18-65 years old and recruited from the community were also assessed and scanned. Depressed patients had significantly higher rCBF in frontal, anterior cingulate, and association cortices, and in basal ganglia, thalamus, and cerebellum, after accounting for significantly higher overall CBF. Depression severity associated positively with rCBF in the basal ganglia, hippocampus, cerebellum, and posterior white matter. Elevated rCBF was especially prominent in women and older patients. Elevated rCBF likely represents pathogenic hypermetabolism in MDD, with its magnitude in direct proportion to depression severity. It is brain-wide, with disproportionate increases in cortical and subcortical attentional networks. Hypermetabolism may be a reasonable target for novel therapeutics in MDD.


Brain , Cerebrovascular Circulation , Depressive Disorder, Major , Technetium Tc 99m Exametazime , Tomography, Emission-Computed, Single-Photon , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/physiopathology , Adult , Female , Male , Middle Aged , Cerebrovascular Circulation/physiology , Cross-Sectional Studies , Young Adult , Retrospective Studies , Adolescent , Brain/diagnostic imaging , Brain/physiopathology , Brain/blood supply , Aged , Radiopharmaceuticals
2.
Sci Rep ; 14(1): 12604, 2024 06 01.
Article En | MEDLINE | ID: mdl-38824230

Pulse wave encephalopathy (PWE) is hypothesised to initiate many forms of dementia, motivating its identification and risk assessment. As candidate pulsatility based biomarkers for PWE, pulsatility index and pulsatility damping have been studied and, currently, do not adequately stratify risk due to variability in pulsatility and spatial bias. Here, we propose a locus-independent pulsatility transmission coefficient computed by spatially tracking pulsatility along vessels to characterise the brain pulse dynamics at a whole-organ level. Our preliminary analyses in a cohort of 20 subjects indicate that this measurement agrees with clinical observations relating blood pulsatility with age, heart rate, and sex, making it a suitable candidate to study the risk of PWE. We identified transmission differences between vascular regions perfused by the basilar and internal carotid arteries attributed to the identified dependence on cerebral blood flow, and some participants presented differences between the internal carotid perfused regions that were not related to flow or pulsatility burden, suggesting underlying mechanical differences. Large populational studies would benefit from retrospective pulsatility transmission analyses, providing a new comprehensive arterial description of the hemodynamic state in the brain. We provide a publicly available implementation of our tools to derive this coefficient, built into pre-existing open-source software.


Cerebrovascular Circulation , Magnetic Resonance Imaging , Pulsatile Flow , Humans , Female , Male , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods , Aged , Middle Aged , Brain/diagnostic imaging , Brain/physiology , Brain/blood supply , Pulse Wave Analysis/methods , Carotid Artery, Internal/diagnostic imaging , Carotid Artery, Internal/physiology , Basilar Artery/diagnostic imaging , Basilar Artery/physiology , Adult
3.
J Biomed Opt ; 29(6): 067001, 2024 Jun.
Article En | MEDLINE | ID: mdl-38826808

Significance: In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain. Aim: Our study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution. Approach: The wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject's head to measure BF at a sampling rate of 80 Hz. Results: Compared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head. Conclusions: Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.


Cerebrovascular Circulation , Equipment Design , Spectrum Analysis , Humans , Cerebrovascular Circulation/physiology , Spectrum Analysis/instrumentation , Cost-Benefit Analysis , Reproducibility of Results , Wearable Electronic Devices , Signal-To-Noise Ratio , Lasers , Brain/blood supply , Brain/diagnostic imaging , Brain/physiology , Laser Speckle Contrast Imaging/instrumentation
4.
Neuron ; 112(9): 1378-1380, 2024 May 01.
Article En | MEDLINE | ID: mdl-38697020

Adequate reperfusion after ischemic stroke is a major determinant of functional outcome yet remains unpredictable and insufficient for most survivors. In this issue of Neuron, Binder et al.1 identify leptomeningeal collaterals (LMCs) in mice and human patients as a key factor in regulating reperfusion and hemorrhagic transformation following stroke.


Collateral Circulation , Reperfusion , Stroke , Humans , Animals , Stroke/physiopathology , Collateral Circulation/physiology , Mice , Ischemic Stroke/physiopathology , Cerebrovascular Circulation/physiology , Meninges/blood supply , Brain Ischemia/physiopathology
6.
J Cardiothorac Surg ; 19(1): 302, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811972

BACKGROUND: To assess whether retrograde cerebral perfusion reduces neurological injury and mortality in patients undergoing surgery for acute type A aortic dissection. METHODS: Single-center, retrospective, observational study including all patients undergoing acute type A aortic dissection repair with deep hypothermic circulatory arrest between January 1998 and December 2022 with or without the adjunct of retrograde cerebral perfusion. 515 patients were included: 257 patients with hypothermic circulatory arrest only and 258 patients with hypothermic circulatory arrest and retrograde cerebral perfusion. The primary endpoints were clinical neurological injury, embolic lesions, and watershed lesions. Multivariable logistic regression was performed to identify independent predictors of the primary outcomes. Survival analysis was performed using Kaplan-Meier estimates. RESULTS: Clinical neurological injury and embolic lesions were less frequent in patients with retrograde cerebral perfusion (20.2% vs. 28.4%, p = 0.041 and 13.7% vs. 23.4%, p = 0.010, respectively), but there was no significant difference in the occurrence of watershed lesions (3.0% vs. 6.1%, p = 0.156). However, after multivariable logistic regression, retrograde cerebral perfusion was associated with a significant reduction of clinical neurological injury (OR: 0.60; 95% CI 0.36-0.995, p = 0.049), embolic lesions (OR: 0.55; 95% CI 0.31-0.97, p = 0.041), and watershed lesions (OR: 0.25; 95%CI 0.07-0.80, p = 0.027). There was no significant difference in 30-day mortality (12.8% vs. 11.7%, p = ns) or long-term survival between groups. CONCLUSION: In this study, we showed that the addition of retrograde cerebral perfusion during hypothermic circulatory arrest in the setting of acute type A aortic dissection repair reduced the risk of clinical neurological injury, embolic lesions, and watershed lesions.


Aortic Dissection , Cerebrovascular Circulation , Circulatory Arrest, Deep Hypothermia Induced , Perfusion , Humans , Aortic Dissection/surgery , Female , Male , Circulatory Arrest, Deep Hypothermia Induced/methods , Retrospective Studies , Middle Aged , Perfusion/methods , Cerebrovascular Circulation/physiology , Aged , Postoperative Complications/prevention & control , Aortic Aneurysm, Thoracic/surgery
7.
Top Spinal Cord Inj Rehabil ; 30(2): 78-95, 2024.
Article En | MEDLINE | ID: mdl-38799609

Background: Spinal cord injuries (SCI) often result in cardiovascular issues, increasing the risk of stroke and cognitive deficits. Objectives: This study assessed cerebrovascular reactivity (CVR) using functional magnetic resonance imaging (fMRI) during a hypercapnic challenge in SCI participants compared to noninjured controls. Methods: Fourteen participants were analyzed (n = 8 with SCI [unless otherwise noted], median age = 44 years; n = 6 controls, median age = 33 years). CVR was calculated through fMRI signal changes. Results: The results showed a longer CVR component (tau) in the grey matter of SCI participants (n = 7) compared to controls (median difference = 3.0 s; p < .05). Time since injury (TSI) correlated negatively with steady-state CVR in the grey matter and brainstem of SCI participants (RS = -0.81, p = .014; RS = -0.84, p = .009, respectively). Lower steady-state CVR in the brainstem of the SCI group (n = 7) correlated with lower diastolic blood pressure (RS = 0.76, p = .046). Higher frequency of hypotensive episodes (n = 7) was linked to lower CVR outcomes in the grey matter (RS = -0.86, p = .014) and brainstem (RS = -0.89, p = .007). Conclusion: Preliminary findings suggest a difference in the dynamic CVR component, tau, between the SCI and noninjured control groups, potentially explaining the higher cerebrovascular health burden in SCI individuals. Exploratory associations indicate that longer TSI, lower diastolic blood pressure, and more hypotensive episodes may lead to poorer CVR outcomes. However, further research is necessary to establish causality and support these observations.


Cerebrovascular Circulation , Magnetic Resonance Imaging , Spinal Cord Injuries , Humans , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/complications , Male , Adult , Female , Middle Aged , Cerebrovascular Circulation/physiology , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Brain Stem/physiopathology , Brain Stem/diagnostic imaging
9.
Comput Biol Med ; 176: 108563, 2024 Jun.
Article En | MEDLINE | ID: mdl-38761498

Boundary conditions (BCs) is one pivotal factor influencing the accuracy of hemodynamic predictions on intracranial aneurysms (IAs) using computational fluid dynamics (CFD) modeling. Unfortunately, a standard procedure to secure accurate BCs for hemodynamic modeling does not exist. To bridge such a knowledge gap, two representative patient-specific IA models (Case-I and Case-II) were reconstructed and their blood flow velocity waveforms in the internal carotid artery (ICA) were measured by ultrasonic techniques and modeled by discrete Fourier transform (DFT). Then, numerical investigations were conducted to explore the appropriate number of samples (N) for DFT modeling to secure the accurate BC by comparing a series of hemodynamic parameters using in-vitro validated CFD modeling. Subsequently, a comprehensive comparison in hemodynamic characteristics under patient-specific BCs and a generalized BC based on a one-dimensional (1D) model was conducted to reinforce the understanding that a patient-specific BC is pivotal for accurate hemodynamic risk evaluations on IA pathophysiology. In addition, the influence of the variance of heart rate/cardiac pulsatile period on hemodynamic characteristics in IA models was studied preliminarily. The results showed that N ≥ 16 for DFT model is a decent choice to secure the proper BC profile to calculate time-averaged hemodynamic parameters, while more data points such as N ≥ 36 can ensure the accuracy of instantaneous hemodynamic predictions. In addition, results revealed the generalized BC could overestimate or underestimate the hemodynamic risks on IAs significantly; thus, patient-specific BCs are highly recommended for hemodynamic modeling for IA risk evaluation. Furthermore, this study discovered the variance of heart rate has rare influences on hemodynamic characteristics in both instantaneous and time-averaged parameters under the assumption of an identical blood flow rate.


Hemodynamics , Intracranial Aneurysm , Models, Cardiovascular , Intracranial Aneurysm/physiopathology , Intracranial Aneurysm/diagnostic imaging , Humans , Hemodynamics/physiology , Blood Flow Velocity/physiology , Ultrasonography/methods , Male , Carotid Artery, Internal/physiopathology , Carotid Artery, Internal/diagnostic imaging , Cerebrovascular Circulation/physiology , Fourier Analysis , Computer Simulation , Female
10.
Neurosurg Rev ; 47(1): 222, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758384

To assess whether monitoring brain tissue oxygen partial pressure (PbtO2) or employing intracranial pressure (ICP)/cerebral perfusion pressure (CCP)-guided management improves patient outcomes, including mortality, hospital length of stay (LOS), mean daily ICP and mean daily CCP during the intensive care unit(ICU)stay. We searched the Web of Science, EMBASE, PubMed, Cochrane Library, and MEDLINE databases until December 12, 2023. Prospective randomized controlled and cohort studies were included. A meta-analysis was performed for the primary outcome measure, mortality, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eleven studies with a total of 37,492 patients were included. The mortality in the group with PbtO2 was 29.0% (odds ratio: 0.73;95% confidence interval [CI]:0.56-0.96; P = 0.03; I = 55%), demonstrating a significant benefit. The overall hospital LOS was longer in the PbtO2 group than that in the ICP/CPP group (mean difference:2.03; 95% CI:1.03-3.02; P<0.0001; I = 39%). The mean daily ICP in the PbtO2 monitoring group was lower than that in the ICP/CPP group (mean difference:-1.93; 95% CI: -3.61 to -0.24; P = 0.03; I = 41%). Moreover, PbtO2 monitoring did not improve the mean daily CPP (mean difference:2.43; 95%CI: -1.39 to 6.25;P = 0.21; I = 56%).Compared with ICP/CPP monitoring, PbtO2 monitoring reduced the mortality and the mean daily ICP in patients with severe traumatic brain injury; however, no significant effect was noted on the mean daily CPP. In contrast, ICP/CPP monitoring alone was associated with a short hospital stay.


Brain Injuries, Traumatic , Brain , Intracranial Pressure , Oxygen , Humans , Brain Injuries, Traumatic/mortality , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/therapy , Cerebrovascular Circulation/physiology , Intracranial Pressure/physiology , Length of Stay , Monitoring, Physiologic/methods , Oxygen/metabolism , Oxygen/blood , Partial Pressure , Prognosis
11.
Sci Rep ; 14(1): 11915, 2024 05 24.
Article En | MEDLINE | ID: mdl-38789499

Speckle contrast optical spectroscopy (SCOS) is an emerging camera-based technique that can measure human cerebral blood flow (CBF) with high signal-to-noise ratio (SNR). At low photon flux levels typically encountered in human CBF measurements, camera noise and nonidealities could significantly impact SCOS measurement SNR and accuracy. Thus, a guide for characterizing, selecting, and optimizing a camera for SCOS measurements is crucial for the development of next-generation optical devices for monitoring human CBF and brain function. Here, we provide such a guide and illustrate it by evaluating three commercially available complementary metal-oxide-semiconductor cameras, considering a variety of factors including linearity, read noise, and quantization distortion. We show that some cameras that are well-suited for general intensity imaging could be challenged in accurately quantifying spatial contrast for SCOS. We then determine the optimal operating parameters for the preferred camera among the three and demonstrate measurement of human CBF with this selected low-cost camera. This work establishes a guideline for characterizing and selecting cameras as well as for determining optimal parameters for SCOS systems.


Cerebrovascular Circulation , Signal-To-Noise Ratio , Spectrum Analysis , Humans , Cerebrovascular Circulation/physiology , Spectrum Analysis/methods , Spectrum Analysis/instrumentation , Brain/diagnostic imaging , Brain/physiology , Brain/blood supply
12.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38771245

Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.


Brain , Cerebrovascular Circulation , Magnetic Resonance Imaging , Rest , Humans , Male , Female , Adult , Cerebrovascular Circulation/physiology , Reproducibility of Results , Rest/physiology , Brain/diagnostic imaging , Brain/physiology , Brain/blood supply , Young Adult , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Psychomotor Performance/physiology , Circadian Rhythm/physiology , Arousal/physiology
13.
Neurosurg Rev ; 47(1): 223, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758245

OBJECTIVE: Delayed cerebral ischemia (DCI) is a potentially reversible adverse event after aneurysmal subarachnoid hemorrhage (aSAH), when early detected and treated. Computer tomography perfusion (CTP) is used to identify the tissue at risk for DCI. In this study, the predictive power of early CTP was compared with that of blood distribution on initial CT for localization of tissue at risk for DCI. METHODS: A consecutive patient cohort with aSAH treated between 2012 and 2020 was retrospectively analyzed. Blood distribution on CT was semi-quantitatively assessed with the Hijdra-score. The vessel territory with the most surrounding blood and the one with perfusion deficits on CTP performed on day 3 after ictus were considered to be at risk for DCI, respectively. RESULTS: A total of 324 patients were included. Delayed infarction occurred in 17% (56/324) of patients. Early perfusion deficits were detected in 82% (46/56) of patients, 85% (39/46) of them developed infarction within the predicted vessel territory at risk. In 46% (25/56) a vessel territory at risk was reliably determined by the blood distribution. For the prediction of DCI, blood amount/distribution was inferior to CTP. Concerning the identification of "tissue at risk" for DCI, a combination of both methods resulted in an increase of sensitivity to 64%, positive predictive value to 58%, and negative predictive value to 92%. CONCLUSIONS: Regarding the DCI-prediction, early CTP was superior to blood amount/distribution, while a consideration of subarachnoid blood distribution may help identify the vessel territories at risk for DCI in patients without early perfusion deficits.


Brain Ischemia , Subarachnoid Hemorrhage , Tomography, X-Ray Computed , Humans , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/diagnostic imaging , Male , Female , Middle Aged , Brain Ischemia/etiology , Aged , Tomography, X-Ray Computed/methods , Retrospective Studies , Adult , Cerebrovascular Circulation/physiology , Perfusion Imaging/methods
14.
Eur J Med Res ; 29(1): 289, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760844

OBJECTIVE: To explore the imaging and transcranial Doppler cerebral blood flow characteristics of cerebrovascular fenestration malformation and its relationship with the occurrence of ischemic cerebrovascular disease. METHODS: A retrospective analysis was conducted on the imaging data of 194 patients with cerebrovascular fenestration malformation who visited the Heyuan People's Hospital from July 2021 to July 2023. The location and morphology of the fenestration malformation blood vessels as well as the presence of other cerebrovascular diseases were analyzed. Transcranial Doppler cerebral blood flow detection data of patients with cerebral infarction and those with basilar artery fenestration malformation were also analyzed. RESULTS: A total of 194 patients with cerebral vascular fenestration malformation were found. Among the artery fenestration malformation, basilar artery fenestration was the most common, accounting for 46.08% (94/194). 61 patients (31.44%) had other vascular malformations, 97 patients (50%) had cerebral infarction, of which 30 were cerebral infarction in the fenestrated artery supply area. 28 patients with cerebral infarction in the fenestrated artery supply area received standardized antiplatelet, lipid-lowering and plaque-stabilizing medication treatment. During the follow-up period, these patients did not experience any symptoms of cerebral infarction or transient ischemic attack again. There were no differences in peak systolic flow velocity and end diastolic flow velocity, pulsatility index and resistance index between the ischemic stroke group and the no ischemic stroke group in patients with basal artery fenestration malformation (P > 0.05). CONCLUSION: Cerebrovascular fenestration malformation is most common in the basilar artery. Cerebrovascular fenestration malformation may also be associated with other cerebrovascular malformations. Standardized antiplatelet and statin lipid-lowering and plaque-stabilizing drugs are suitable for patients with cerebral infarction complicated with fenestration malformation. The relationship between cerebral blood flow changes in basilar artery fenestration malformation and the occurrence of ischemic stroke may not be significant.


Cerebrovascular Circulation , Humans , Female , Male , Middle Aged , Cerebrovascular Circulation/physiology , Adult , Retrospective Studies , Aged , Ultrasonography, Doppler, Transcranial/methods , Blood Flow Velocity , Adolescent , Brain Ischemia/physiopathology , Brain Ischemia/etiology , Brain Ischemia/diagnostic imaging , Cerebrovascular Disorders/physiopathology , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/diagnostic imaging , Young Adult , Cerebral Infarction/physiopathology , Cerebral Infarction/etiology , Cerebral Infarction/diagnostic imaging
15.
J Med Invest ; 71(1.2): 92-101, 2024.
Article En | MEDLINE | ID: mdl-38735731

This study aimed to investigate blood flow dynamics in the bilateral prefrontal cortex during silent and oral reading using near-infrared spectroscopy (NIRS). The subjects were 40 right-handed university students (20.5±1.8 years old, 20 men and 20 women). After completing the NIRS measurements, the subjects were asked to rate their level of proficiency in silent and oral reading, using a 5-point Likert scale. During oral reading, the left lateral prefrontal cortex (Broca's area) was significantly more active than the right side. During silent reading, prefrontal cortex activity was lower than that during oral reading, and there was no significant difference between both sides of the brain. A significant negative correlation was found between the change in oxy-hemoglobin (oxy-Hb) concentration in the left and right lateral prefrontal cortex during silent reading and silent reading speed. In addition, students with lower self-reported reading proficiency had significantly greater changes in oxy-Hb concentrations in the left and right lateral prefrontal cortex during silent/oral reading than did students with higher self-reported reading proficiency. Reading task assessment using NIRS may be useful for identifying language lateralization and Broca's area. The results demonstrate that NIRS is useful for assessing effortful reading and may be used to diagnose developmental dyslexia in children. J. Med. Invest. 71 : 92-101, February, 2024.


Prefrontal Cortex , Reading , Spectroscopy, Near-Infrared , Humans , Prefrontal Cortex/blood supply , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Male , Female , Young Adult , Oxyhemoglobins/analysis , Oxyhemoglobins/metabolism , Cerebrovascular Circulation/physiology , Adult
16.
J Headache Pain ; 25(1): 84, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773396

BACKGROUND: Prior neuroimaging studies on vestibular migraine (VM) have extensively certified the functional and structural alterations in multiple brain regions and networks. However, few studies have assessed the cerebral blood flow (CBF) in VM patients using arterial spin labeling (ASL). The present study aimed to investigate CBF and functional connectivity (FC) alterations in VM patients during interictal periods. METHODS: We evaluated 52 VM patients and 46 healthy controls (HC) who received resting-state pseudo-continuous ASL and functional magnetic resonance imaging (fMRI) scanning. Comparisons of voxel-based CBF and seed-based FC were performed between the two groups. Brain regions showed significant group differences in CBF analyses were chosen as seeds in FC analyses. Additionally, the associations between abnormal imaging results and clinical features were explored. RESULTS: Compared with HC, VM patients showed higher normalized CBF in the right precentral gyrus (PreCG), left postcentral gyrus (PostCG), left superior frontal gyrus and bilateral insular (p < 0.05, FDR corrected). Furthermore, VM patients exhibited increased FC between the right PreCG and areas of the left PostCG, left cuneus and right lingual gyrus (p < 0.05, FDR corrected). In addition, we observed decreased FC between the left insular and regions of the left thalamus and right anterior cingulate cortex, as well as increased FC between the left insular and right fusiform gyrus in VM patients (p < 0.05, FDR corrected). Moreover, these variations in brain perfusion and FC were significantly correlated with multiple clinical features including frequency of migraine symptoms, frequency of vestibular symptoms and disease duration of VM (all p < 0.05). CONCLUSIONS: Patients with VM during interictal period showed hyperperfusion and abnormal resting-state FC in brain regions potentially contributed to disrupted multi-sensory and autonomic processing, as well as impaired ocular motor control, pain modulation and emotional regulation. Our study provided novel insights into the complex neuropathology of VM from a CBF perspective.


Cerebrovascular Circulation , Magnetic Resonance Imaging , Migraine Disorders , Spin Labels , Humans , Female , Male , Migraine Disorders/physiopathology , Migraine Disorders/diagnostic imaging , Adult , Cerebrovascular Circulation/physiology , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Brain/blood supply , Vestibular Diseases/physiopathology , Vestibular Diseases/diagnostic imaging
17.
Orphanet J Rare Dis ; 19(1): 212, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773534

BACKGROUND: Brain injury in hereditary hemoglobinopathies is commonly attributed to anemia-related relative hypoperfusion in terms of impaired oxygen blood supply. Supratentorial and infratentorial vascular watershed regions seem to be especially vulnerable, but data are very scarce. AIMS: We investigated a large beta-thalassemia sample with arterial spin labeling in order to characterize regional perfusion changes and their correlation with phenotype and anemia severity. METHODS: We performed a multicenter single-scanner cross-sectional 3T-MRI study analyzing non-invasively the brain perfusion in 54 transfusion-dependent thalassemia (TDT), 23 non-transfusion-dependent thalassemia (NTDT) patients and 56 Healthy Controls (HC). Age, hemoglobin levels, and cognitive functioning were recorded. RESULTS: Both TDT and NTDT patients showed globally increased brain perfusion values compared to healthy controls, while no difference was found between patient subgroups. Using age and sex as covariates and scaling the perfusion maps for the global cerebral blood flow, beta-thalassemia patients showed relative hyperperfusion in supratentorial/infratentorial watershed regions. Perfusion changes correlated with hemoglobin levels (p = 0.013) and were not observed in the less severely anemic patients (hemoglobin level > 9.5 g/dL). In the hyperperfused regions, white matter density was significantly decreased (p = 0.0003) in both patient subgroups vs. HC. In NTDT, white matter density changes correlated inversely with full-scale Intelligence Quotient (p = 0.007) while in TDT no correlation was found. CONCLUSION: Relative hyperperfusion of watershed territories represents a hemodynamic hallmark of beta-thalassemia anemia challenging previous hypotheses of brain injury in hereditary anemias. A careful management of anemia severity might be crucial for preventing structural white matter changes and subsequent long-term cognitive impairment.


Brain , Cerebrovascular Circulation , Magnetic Resonance Imaging , beta-Thalassemia , Humans , beta-Thalassemia/physiopathology , beta-Thalassemia/pathology , Male , Female , Adult , Cross-Sectional Studies , Brain/pathology , Brain/diagnostic imaging , Young Adult , Cerebrovascular Circulation/physiology , Adolescent , Middle Aged , Child
18.
Nature ; 629(8013): 810-818, 2024 May.
Article En | MEDLINE | ID: mdl-38778234

Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.


Blood Flow Velocity , Brain , Cerebrovascular Circulation , Ultrasonography , Humans , Blood Flow Velocity/physiology , Brain/blood supply , Brain/diagnostic imaging , Brain/physiology , Cerebrovascular Circulation/physiology , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Medical Errors , Signal-To-Noise Ratio , Skin , Skull , Sleepiness/physiology , Ultrasonography/instrumentation , Ultrasonography/methods , Adult
19.
Clin Neurol Neurosurg ; 241: 108289, 2024 06.
Article En | MEDLINE | ID: mdl-38692117

OBJECTIVE: Transcranial Doppler ultrasound (TDUS), computed tomography angiography (CTA), and transcranial Doppler ultrasound to detect cerebral blood flow are among the adjunctive tests in diagnosing brain death. This study aimed to investigate the effectiveness of orbital doppler ultrasound (ODUS). METHODS: This prospective, single-blind study included 66 patients for whom brain death was to be diagnosed. Primary outcome measures were ODUS measurements, Ophthalmic artery peak systolic velocity (PSV), end-diastolic velocity (EDV), and resistive indices (RI) measurements recorded during the brain death determination process. Secondary outcome measures were computed tomography angio (CTA), transcranial Doppler ultrasound (TDUS), and demographic data. RESULTS: This study investigating the effectiveness of ODUS in diagnosing brain death provided diagnostic success with 100% sensitivity and 93% specificity compared to CT angiography. It was noted that anatomical variations may limit its use. CONCLUSION: ODUS was found to have high sensitivity and specificity in the diagnosis of clinical brain death. It may assist in early prognostic assessment and shorten patient follow-up and diagnostic processes.


Brain Death , Ultrasonography, Doppler, Transcranial , Humans , Brain Death/diagnostic imaging , Brain Death/diagnosis , Male , Female , Middle Aged , Single-Blind Method , Adult , Prospective Studies , Ultrasonography, Doppler, Transcranial/methods , Aged , Computed Tomography Angiography/methods , Young Adult , Ophthalmic Artery/diagnostic imaging , Sensitivity and Specificity , Cerebrovascular Circulation/physiology , Adolescent , Orbit/diagnostic imaging , Orbit/blood supply
20.
Crit Care Explor ; 6(5): e1083, 2024 May.
Article En | MEDLINE | ID: mdl-38694846

OBJECTIVES: This prospective cohort study aimed to investigate changes in intracranial pressure (ICP) and cerebral hemodynamics in infants with congenital heart disease undergoing the Glenn procedure, focusing on the relationship between superior vena cava pressure and estimated ICP. DESIGN: A single-center prospective cohort study. SETTING: The study was conducted in a cardiac center over 4 years (2019-2022). PATIENTS: Twenty-seven infants with congenital heart disease scheduled for the Glenn procedure were included in the study, and detailed patient demographics and primary diagnoses were recorded. INTERVENTIONS: Transcranial Doppler (TCD) ultrasound examinations were performed at three time points: baseline (preoperatively), postoperative while ventilated (within 24-48 hr), and at discharge. TCD parameters, blood pressure, and pulmonary artery pressure were measured. MEASUREMENTS AND MAIN RESULTS: TCD parameters included systolic flow velocity, diastolic flow velocity (dFV), mean flow velocity (mFV), pulsatility index (PI), and resistance index. Estimated ICP and cerebral perfusion pressure (CPP) were calculated using established formulas. There was a significant postoperative increase in estimated ICP from 11 mm Hg (interquartile range [IQR], 10-16 mm Hg) to 15 mm Hg (IQR, 12-21 mm Hg) postoperatively (p = 0.002) with a trend toward higher CPP from 22 mm Hg (IQR, 14-30 mm Hg) to 28 mm Hg (IQR, 22-38 mm Hg) postoperatively (p = 0.1). TCD indices reflected alterations in cerebral hemodynamics, including decreased dFV and mFV and increased PI. Intracranial hemodynamics while on positive airway pressure and after extubation were similar. CONCLUSIONS: Glenn procedure substantially increases estimated ICP while showing a trend toward higher CPP. These findings underscore the intricate interaction between venous pressure and cerebral hemodynamics in infants undergoing the Glenn procedure. They also highlight the remarkable complexity of cerebrovascular autoregulation in maintaining stable brain perfusion under these circumstances.


Cerebrovascular Circulation , Heart Defects, Congenital , Hemodynamics , Intracranial Pressure , Ultrasonography, Doppler, Transcranial , Humans , Infant , Prospective Studies , Female , Male , Intracranial Pressure/physiology , Heart Defects, Congenital/surgery , Heart Defects, Congenital/physiopathology , Heart Defects, Congenital/diagnostic imaging , Cerebrovascular Circulation/physiology , Ultrasonography, Doppler, Transcranial/methods , Hemodynamics/physiology , Cohort Studies , Fontan Procedure , Vena Cava, Superior/physiopathology , Vena Cava, Superior/diagnostic imaging
...