Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.284
Filter
1.
Biomed Res Int ; 2024: 2860547, 2024.
Article in English | MEDLINE | ID: mdl-39035772

ABSTRACT

Background: In February 2021, a few cases of unusual, severe thrombotic events associated with thrombocytopenia reported after vaccination with ChAdOx1 nCoV-19 (Vaxzevria) or with Johnson & Johnson's Janssen vaccine raise concern about safety. The vaccine-induced thrombotic thrombocytopenia (VITT) has been related to the presence of platelet-activating antibodies directed against platelet Factor 4. Objectives: We investigated VITT subject genetic background by a high-throughput whole exome sequencing (WES) approach in order to investigate VITT genetic predisposition. Methods: Six consecutive patients (females of Caucasian origin with a mean age of 64 years) were referred to the Atherothrombotic Diseases Center (Department of Experimental and Clinical Medicine, Azienda Ospedaliero-Universitaria Careggi, Florence) with a diagnosis of definite VITT underwent WES analysis. WES analysis was performed on the Illumina NextSeq500 platform. Results:WES analysis revealed a total of 140,563 genetic variants. Due to VITT's rare occurrence, we focused attention on rare variants. The global analysis of all high-quality rare variants did not reveal a significant enrichment of mutated genes in biological/functional pathways common to patients analyzed. Afterwards, we focused on rare variants in genes associated with blood coagulation and fibrinolysis, platelet activation and aggregation, integrin-mediated signaling pathway, and inflammation with particular attention to those involved in vascular damage, as well as autoimmune thrombocytopenia. According to ACMG criteria, 47/194 (24.2%) rare variants were classified as uncertain significance variants (VUS), whereas the remaining were likely benign/benign. Conclusion: WES analysis identifies rare variants possibly favoring the prothrombotic state triggered by the exposure to the vaccine. Functional studies and/or extensions to a larger number of patients might allow a more comprehensive definition of these molecular pathways.


Subject(s)
Exome Sequencing , Humans , Middle Aged , Female , Aged , Thrombocytopenia/genetics , Thrombocytopenia/chemically induced , ChAdOx1 nCoV-19/adverse effects , Thrombosis/genetics , Genetic Predisposition to Disease , Platelet Factor 4/genetics , Male , Vaccination/adverse effects
4.
Hum Vaccin Immunother ; 20(1): 2379865, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39056147

ABSTRACT

ChAdOx1-S is a viral vector vaccine developed by AstraZeneca. We aimed to assess the effectiveness of 1 and 2 doses of the ChAdOx1-S vaccine in reducing COVID-19-related in-hospital mortality in individuals with schizophrenia. This is a retrospective cohort study using a nationwide hospital database in Brazil. Individuals diagnosed with COVID-19 and schizophrenia were included in the study. The exposures were 0, 1, and 2 doses of ChAdOx1-S. The outcome of mortality was measured in hazard ratios (HR), calculated using multivariable Cox regression models. The study included 1,929 positive cases of COVID-19 in schizophrenia patients. After adjusting for age, socioeconomic factors, and comorbidities, we observed a significant 55% decrease in the hazard of mortality in the 2-dose vaccination group (HR 0.45, 95% CI: 0.310-0.652) compared to the unvaccinated. Surprisingly, our results did not show any significant reduction in the hazard of mortality in the 1 dose vaccination group (HR 1.278, 95% CI: 0.910-1.795). The effectiveness of two doses of ChAdOx1-S in individuals with schizophrenia aligns with findings from studies on the general population. That one dose was insignificant. Overall, these findings are important for informing public health decisions - prioritizing individuals with schizophrenia for vaccinations and managing acceptance of vaccines.


Subject(s)
COVID-19 , Hospital Mortality , Schizophrenia , Humans , Retrospective Studies , Schizophrenia/mortality , COVID-19/prevention & control , COVID-19/mortality , Male , Female , Middle Aged , Adult , Brazil/epidemiology , SARS-CoV-2/immunology , ChAdOx1 nCoV-19 , Aged , Vaccination , Vaccine Efficacy , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology
5.
PLoS One ; 19(7): e0303113, 2024.
Article in English | MEDLINE | ID: mdl-39074077

ABSTRACT

Understanding SARS-CoV-2 vaccine-induced antibody responses in varied antigenic and serological prior exposures can guide optimal vaccination strategies for enhanced immunogenicity. We evaluated spike (S)-directed IgG, IgM, and IgA antibody optical densities (ODs) and concentrations to the two-dose ChAdOx1-S Oxford-AstraZeneca (ChAdOx1-S, Covishield) SARS-CoV-2 vaccine in 67 Ugandans, categorised by prior infection and baseline S-IgG histories: uninfected and S-IgG-negative (n = 12); previously infected yet S-IgG-negative (n = 17); and previously infected with S-IgG-positive status (n = 38). Antibody dynamics were compared across eight timepoints from baseline till nine months. S-IgG antibodies remained consistently potent across all groups. Individuals with prior infections maintained robust S-IgG levels, underscoring the endurance of hybrid immunity. In contrast, those without prior exposure experienced an initial surge in S-IgG after the primary dose but no subsequent significant increase post-boost. However, they reached levels parallel to the previously exposed groups. S-IgM levels remained moderate, while S-IgA persisted in individuals with prior antigen exposure. ChAdOx1-S, Covishield vaccine elicited robust and sustained antibody responses in recipients, irrespective of their initial immune profiles. Hybrid immunity showed higher responses, aligning with global observations. Early post-vaccination antibody levels could predict long-term immunity, particularly in individuals without virus exposure. These findings can inform vaccine strategies and pandemic management.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , ChAdOx1 nCoV-19 , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Male , Female , Adult , ChAdOx1 nCoV-19/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibody Formation/immunology , Middle Aged , Young Adult , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunoglobulin A/blood , Immunoglobulin A/immunology , Vaccination , East African People
6.
Nat Commun ; 15(1): 6085, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085208

ABSTRACT

The first dose of COVID-19 vaccines led to an overall reduction in cardiovascular events, and in rare cases, cardiovascular complications. There is less information about the effect of second and booster doses on cardiovascular diseases. Using longitudinal health records from 45.7 million adults in England between December 2020 and January 2022, our study compared the incidence of thrombotic and cardiovascular complications up to 26 weeks after first, second and booster doses of brands and combinations of COVID-19 vaccines used during the UK vaccination program with the incidence before or without the corresponding vaccination. The incidence of common arterial thrombotic events (mainly acute myocardial infarction and ischaemic stroke) was generally lower after each vaccine dose, brand and combination. Similarly, the incidence of common venous thrombotic events, (mainly pulmonary embolism and lower limb deep venous thrombosis) was lower after vaccination. There was a higher incidence of previously reported rare harms after vaccination: vaccine-induced thrombotic thrombocytopenia after first ChAdOx1 vaccination, and myocarditis and pericarditis after first, second and transiently after booster mRNA vaccination (BNT-162b2 and mRNA-1273). These findings support the wide uptake of future COVID-19 vaccination programs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Cardiovascular Diseases , Vaccination , Adult , Aged , Female , Humans , Male , Middle Aged , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/adverse effects , BNT162 Vaccine/adverse effects , BNT162 Vaccine/administration & dosage , Cardiovascular Diseases/epidemiology , ChAdOx1 nCoV-19/administration & dosage , ChAdOx1 nCoV-19/adverse effects , Cohort Studies , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , England/epidemiology , Immunization, Secondary/adverse effects , Incidence , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Myocarditis/epidemiology , Myocarditis/etiology , Pulmonary Embolism/epidemiology , Pulmonary Embolism/etiology , Thrombosis/epidemiology , Thrombosis/etiology , Vaccination/adverse effects , Adolescent , Young Adult , Aged, 80 and over
7.
J Korean Med Sci ; 39(21): e174, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38832478

ABSTRACT

BACKGROUND: Although guidelines recommend vaccination for individuals who have recovered from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to prevent reinfection, comprehensive evaluation studies are limited. We aimed to evaluate vaccine effectiveness against SARS-CoV-2 reinfection according to the primary vaccination status, booster vaccination status, and vaccination methods used. METHODS: This population-based case-control study enrolled all SARS-CoV-2-infected patients in Seoul between January 2020 and February 2022. Individuals were categorized into case (reinfection) and control (no reinfection) groups. Data were analyzed using conditional logistic regression after adjusting for underlying comorbidities using multiple regression. RESULTS: The case group included 7,678 participants (average age: 32.26 years). In all vaccinated individuals, patients who received the first and second booster doses showed reduced reinfection rates compared with individuals who received basic vaccination (odds ratio [OR] = 0.605, P < 0.001 and OR = 0.002, P < 0.001). Patients who received BNT162b2 or mRNA-1273, NVX-CoV2373 and heterologous vaccination showed reduced reinfection rates compared with unvaccinated individuals (OR = 0.546, P < 0.001; OR = 0.356, P < 0.001; and OR = 0.472, P < 0.001). However, the ChAdOx1-S or Ad26.COV2.S vaccination group showed a higher reinfection rate than the BNT162b2 or mRNA-1273 vaccination group (OR = 4.419, P < 0.001). CONCLUSION: In SARS-CoV-2-infected individuals, completion of the basic vaccination series showed significant protection against reinfection compared with no vaccination. If the first or second booster vaccination was received, the protective effect against reinfection was higher than that of basic vaccination; when vaccinated with BNT162b2 or mRNA-1273 only or heterologous vaccination, the protective effect was higher than that of ChAdOx1-S or Ad26.COV2.S vaccination only.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Reinfection , SARS-CoV-2 , Vaccine Efficacy , Humans , Male , Female , Case-Control Studies , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , Adult , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , BNT162 Vaccine/immunology , Middle Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Reinfection/prevention & control , Reinfection/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Young Adult , Vaccination , ChAdOx1 nCoV-19 , Aged
8.
J Infect ; 89(2): 106205, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897242

ABSTRACT

BACKGROUND: A BCG booster vaccination administered via the respiratory mucosa may establish protective immune responses at the primary site of Mycobacterium tuberculosis infection. The primary objective of this trial was to compare the safety and immunogenicity of inhaled versus intramuscular administered ChAdOx1-85A. METHODS: We conducted a single-centre, randomised, double-blind, controlled phase 1 study (Swiss National Clinical Trials Portal number SNCTP000002920). After a dose-escalation vaccination in nine BCG-vaccinated healthy adults, a dose of 1 × 1010 vp of ChAdOx1-85A was administered to twenty BCG-vaccinated adults that were randomly allocated (1:1) into two groups: aerosol ChAdOx1-85A with intramuscular saline placebo or intramuscular ChAdOx1-85A with aerosol saline placebo, using block randomisation. A control group of ten BCG-naïve adults received aerosol ChAdOx1-85A at the same dose. Primary outcomes were solicited and unsolicited adverse events (AEs) up to day 16 post-vaccination and Serious AEs (SAEs) up to 24 weeks; secondary outcomes were cell-mediated and humoral immune responses in blood and bronchoalveolar lavage (BAL) samples. FINDINGS: Both vaccination routes were well tolerated with no SAEs. Intramuscular ChAdOx1-85A was associated with more local AEs (mostly pain at the injection site) than aerosol ChAdOx1-85A. Systemic AEs occurred in all groups, mainly fatigue and headaches, without differences between groups. Respiratory AEs were not different between BCG-vaccinated groups. Aerosol ChAdOx1-85A vaccination induced Ag85A BAL and systemic cellular immune responses with compartmentalisation of the immune responses: aerosol ChAdOx1-85A induced stronger BAL cellular responses, particularly IFNγ/IL17+CD4+ T cells; intramuscular ChAdOx1-85A induced stronger systemic cellular and humoral responses. INTERPRETATION: Inhaled ChAdOx1-85A was well-tolerated and induced lung mucosal and systemic Ag85A-specific T-cell responses. These data support further evaluation of aerosol ChAdOx1-85A and other viral vectors as a BCG-booster vaccination strategy.


Subject(s)
Tuberculosis Vaccines , Humans , Male , Injections, Intramuscular , Adult , Female , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/adverse effects , Double-Blind Method , Administration, Inhalation , Young Adult , Aerosols , ChAdOx1 nCoV-19/administration & dosage , Vaccination/methods , Mycobacterium tuberculosis/immunology , Tuberculosis/prevention & control , Tuberculosis/immunology , Middle Aged , Immunization, Secondary/methods , BCG Vaccine/administration & dosage , BCG Vaccine/immunology , BCG Vaccine/adverse effects , Immunity, Cellular , Immunity, Humoral , Antibodies, Bacterial/blood , Immunogenicity, Vaccine
9.
Public Health ; 233: 60-64, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850602

ABSTRACT

OBJECTIVE: To examine the effectiveness of one dose of the COVID-19 vaccine on care-home residents. STUDY DESIGN: Natural experiment. METHODS: We compared the effectiveness of single doses of Pfizer/BioNTech BNT162b2 (effective at 10 days) and AstraZeneca ChAdOx1 (effective at 14 days) vaccines in vaccinated and control (unvaccinated) homes. Using routine data, all care-homes reporting COVID-19 outbreaks between 11/12/2020 and 12/3/2021 in a sub-region of North West England were included. RESULTS: Of 126 care-homes (4042 residents), with outbreaks, 55 (44%, 1686 residents) reported onset dates before vaccination commenced; 38 (30%, 1304 residents) reported onset < 10 (BNT162b2) and < 14 days (ChAdOx1) after vaccine administration; and 33 (26%, 1052 residents) reported onset > 10 (BNT162b2) and > 14 (ChAdOx1) days after vaccination. Eighty-nine (71%) homes used ChAdOx1 vaccine. A single dose of vaccine before the outbreak onset significantly lowered the risk of symptoms (reduced by 48%), positivity (by 65%), hospitalisation (by 68%), and death (by 81%). Some vaccine effectiveness was also noted in care-homes that received one dose of vaccine within 10-14 days of outbreak onset. The number needed to vaccinate to prevent one resident from COVID-19-related hospitalisation was 34, and death was 17. CONCLUSIONS: This real-world, natural experiment adds to the evidence of COVID-19 vaccine effectiveness from different studies using varying designs. In the context of lockdown's impact on infection rates and on-going care-home outbreaks, a single dose of either ChAdOx1 or BNT162b2 vaccine had a significant impact on reducing COVID-19 related hospitalisation and death in care-home residents. Natural experiments should be used more in public health.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , ChAdOx1 nCoV-19 , Hospitalization , Humans , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/mortality , England/epidemiology , Hospitalization/statistics & numerical data , COVID-19 Vaccines/administration & dosage , Aged , Male , SARS-CoV-2 , Female , Disease Outbreaks/prevention & control , Nursing Homes/statistics & numerical data , Aged, 80 and over
10.
Front Immunol ; 15: 1401728, 2024.
Article in English | MEDLINE | ID: mdl-38827749

ABSTRACT

Background: Immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now widespread; however, the degree of cross-immunity between SARS-CoV-2 and endemic, seasonal human coronaviruses (HCoVs) remains unclear. Methods: SARS-CoV-2 and HCoV cross-immunity was evaluated in adult participants enrolled in a US sub-study in the phase III, randomized controlled trial (NCT04516746) of AZD1222 (ChAdOx1 nCoV-19) primary-series vaccination for one-year. Anti-HCoV spike-binding antibodies against HCoV-229E, HCoV-HKU1, HCoV-OC43, and HCoV-NL63 were evaluated in participants following study dosing and, in the AZD1222 group, after a non-study third-dose booster. Timing of SARS-CoV-2 seroconversion (assessed via anti-nucleocapsid antibody levels) and incidence of COVID-19 were evaluated in those who received AZD1222 primary-series by baseline anti-HCoV titers. Results: We evaluated 2,020/21,634 participants in the AZD1222 group and 1,007/10,816 in the placebo group. At the one-year data cutoff (March 11, 2022) mean duration of follow up was 230.9 (SD: 106.36, range: 1-325) and 94.3 (74.12, 1-321) days for participants in the AZD1222 (n = 1,940) and placebo (n = 962) groups, respectively. We observed little elevation in anti-HCoV humoral titers post study-dosing or post-boosting, nor evidence of waning over time. The occurrence and timing of SARS-CoV-2 seroconversion and incidence of COVID-19 were not largely impacted by baseline anti-HCoV titers. Conclusion: We found limited evidence for cross-immunity between SARS-CoV-2 and HCoVs following AZD1222 primary series and booster vaccination. Susceptibility to future emergence of novel coronaviruses will likely persist despite a high prevalence of SARS-CoV-2 immunity in global populations.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , ChAdOx1 nCoV-19 , Immunity, Humoral , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , ChAdOx1 nCoV-19/immunology , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Male , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Middle Aged , Immunity, Humoral/drug effects , Cross Reactions/immunology , Seasons , Young Adult , Vaccination , Double-Blind Method
11.
J Korean Med Sci ; 39(24): e190, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915282

ABSTRACT

BACKGROUND: Cancer patients have an increased risk of cardiovascular outcomes and are susceptible to coronavirus disease 2019 (COVID-19) infection. We aimed to assess the cardiovascular safety of COVID-19 vaccination for cancer patients in South Korea. METHODS: We conducted a self-controlled case series study using the K-COV-N cohort (2018-2021). Patients with cancer aged 12 years or older who experienced cardiovascular outcomes were identified. Cardiovascular outcomes were defined as myocardial infarction, stroke, venous thromboembolism (VTE), myocarditis, or pericarditis, and the risk period was 0-28 days after receiving each dose of COVID-19 vaccines. A conditional Poisson regression model was used to calculate the incidence rate ratio (IRR) with 95% confidence interval (CI). RESULTS: Among 318,105 patients with cancer, 4,754 patients with cardiovascular outcomes were included. The overall cardiovascular risk was not increased (adjusted IRR, 0.99 [95% CI, 0.90-1.08]) during the whole risk period. The adjusted IRRs of total cardiovascular outcomes during the whole risk period according to the vaccine type were 1.07 (95% CI, 0.95-1.21) in the mRNA vaccine subgroup, 0.99 (95% CI, 0.83-1.19) in the ChAdOx1 nCoV-19 vaccine subgroup, and 0.86 (95% CI, 0.68-1.10) in the mix-matched vaccination subgroup. However, in the analysis of individual outcome, the adjusted IRR of myocarditis was increased to 11.71 (95% CI, 5.88-23.35) during the whole risk period. In contrast, no increased risk was observed for other outcomes, such as myocardial infarction, stroke, VTE, and pericarditis. CONCLUSION: For cancer patients, COVID-19 vaccination demonstrated an overall safe profile in terms of cardiovascular outcomes. However, caution is required as an increased risk of myocarditis following COVID-19 vaccination was observed in this study.


Subject(s)
COVID-19 Vaccines , COVID-19 , Neoplasms , SARS-CoV-2 , Humans , Male , Female , Republic of Korea/epidemiology , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , COVID-19/epidemiology , Middle Aged , Aged , SARS-CoV-2/isolation & purification , Adult , Myocardial Infarction/etiology , Myocardial Infarction/epidemiology , Cardiovascular Diseases/etiology , Vaccination/adverse effects , Myocarditis/etiology , ChAdOx1 nCoV-19 , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control , Stroke/etiology , Stroke/epidemiology , Young Adult , Adolescent , Pericarditis/etiology , Pericarditis/epidemiology
12.
Int J Infect Dis ; 145: 107080, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38701913

ABSTRACT

OBJECTIVES: To explore whether COVID-19 vaccination protects against hospital admission by preventing infections and severe disease. METHODS: We leveraged the UK Biobank and studied associations of COVID-19 vaccination (BioNTech-BNT162b2 or Oxford-AstraZeneca-ChAdOx1) with hospitalizations from cardiovascular and other selected diseases (N = 393,544; median follow-up = 54 days among vaccinated individuals). Multivariable Cox, Poisson regression, propensity score matching, and inverse probability treatment weighting analyses were performed. We also performed adjustment using prescription-time distribution matching, and prior event rate ratio. RESULTS: We observed that COVID-19 vaccination (at least one dose), compared with no vaccination, was associated with reduced short-term risks of hospitalizations from stroke (hazard ratio [HR] = 0.178, 95% confidence interval [CI]: 0.127-0.250, P = 1.50e-23), venous thromboembolism (HR = 0.426, CI: 0.270-0.673, P = 2.51e-4), dementia (HR = 0.114, CI: 0.060-0.216; P = 2.24e-11), non-COVID-19 pneumonia (HR = 0.108, CI: 0.080-0.145; P = 2.20e-49), coronary artery disease (HR = 0.563, CI: 0.416-0.762; P = 2.05e-4), chronic obstructive pulmonary disease (HR = 0.212, CI: 0.126-0.357; P = 4.92e-9), type 2 diabetes (HR = 0.216, CI: 0.096-0.486, P = 2.12e-4), heart failure (HR = 0.174, CI: 0.118-0.256, P = 1.34e-18), and renal failure (HR = 0.415, CI: 0.255-0.677, P = 4.19e-4), based on standard Cox regression models. Among the previously mentioned results, reduced hospitalizations for stroke, heart failure, non-COVID-19 pneumonia, and dementia were consistently observed across regression, propensity score matching/inverse probability treatment weighting, prescription-time distribution matching, and prior event rate ratio. The results for two-dose vaccination were similar. CONCLUSIONS: Taken together, this study provides further support to the safety and benefits of COVID-19 vaccination, and such benefits may extend beyond reduction of infection risk or severity per se. However, causal relationship cannot be concluded and further studies are required.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Cardiovascular Diseases , Hospitalization , Humans , Hospitalization/statistics & numerical data , Male , United Kingdom/epidemiology , Female , COVID-19/prevention & control , COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Middle Aged , Aged , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , BNT162 Vaccine/administration & dosage , SARS-CoV-2 , Biological Specimen Banks , ChAdOx1 nCoV-19 , Vaccination , Stroke/epidemiology , Stroke/prevention & control , UK Biobank
13.
Front Immunol ; 15: 1403784, 2024.
Article in English | MEDLINE | ID: mdl-38807602

ABSTRACT

Introduction: Given the limited number of patients in Latin America who have received a booster dose against the COVID-19, it remains crucial to comprehend the effectiveness of different vaccine combinations as boosters in real-world scenarios. This study aimed to assess the real-life efficacy of seven different vaccine schemes against COVID-19, including BNT162b2, ChAdOx1-S, Gam-COVID-Vac, and CoronaVac as primary schemes with either BNT162b2 or ChAdOx1-S as booster vaccines. Methods: In this multicentric longitudinal observational study, participants from Mexico and Argentina were followed for infection and SARS-CoV-2 Spike 1-2 IgG antibodies during their primary vaccination course and for 185 days after the booster dose. Results: A total of 491 patients were included, and the booster dose led to an overall increase in the humoral response for all groups. Patients who received BNT162b2 exhibited the highest antibody levels after the third dose, while those with primary Gam-COVID-Vac maintained a higher level of antibodies after six months. Infection both before vaccination and after the booster dose, and Gam-COVIDVac + BNT162b2 combination correlated with higher antibody titers. Discussion: The sole predictor of infection in the six-month follow-up was a prior COVID-19 infection before the vaccination scheme, which decreased the risk of infection, and all booster vaccine combinations conveyed the same amount of protection.


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Humans , Argentina , COVID-19/prevention & control , COVID-19/immunology , Male , Female , SARS-CoV-2/immunology , Middle Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , Mexico , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Adult , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Follow-Up Studies , Aged , Longitudinal Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Vaccine Efficacy , ChAdOx1 nCoV-19/immunology , Vaccines, Synthetic
14.
JCO Glob Oncol ; 10: e2300458, 2024 May.
Article in English | MEDLINE | ID: mdl-38781552

ABSTRACT

PURPOSE: Corticosteroids are known to diminish immune response ability, which is generally used in routine premedication for chemotherapy. The intersecting of timeframe between the corticosteroid's duration of action and peak COVID-19 vaccine efficacy could impair vaccine immunogenicity. Thus, inquiring about corticosteroids affecting the efficacy of vaccines to promote effective immunity in this population is needed. METHODS: This was a prospective longitudinal observational cohort study that enrolled patients with solid cancer classified into dexamethasone- and nondexamethasone-receiving groups. All participants were immunized with two doses of ChAdOx1 nCoV-19 or CoronaVac vaccines. This study's purpose was to compare corticosteroid's effect on immunogenicity responses to the SARS-CoV-2 S protein in patients with cancer after two doses of COVID-19 vaccine in the dexamethasone and nondexamethasone group. Secondary outcomes included the postimmunization anti-spike (S) immunoglobin G (IgG) seroconversion rate, the association of corticosteroid dosage, time duration, and immunogenicity level. RESULTS: Among the 161 enrolled patients with solid cancer, 71 and 90 were in the dexamethasone and nondexamethasone groups, respectively. The median anti-S IgG titer after COVID-19 vaccination in the dexamethasone group was lower than that in the nondexamethasone group with a statistically significant difference (47.22 v 141.09 U/mL, P = .035). The anti-S IgG seroconversion rate was also significantly lower in the dexamethasone group than in the nondexamethasone group (93.83% v 80.95%, P = .023). The lowest median anti-SARS-CoV-2 IgG titer level at 7.89 AU/mL was observed in patients with the highest dose of steroid group (≥37 mg of dexamethasone cumulative dose throughout the course of chemotherapy [per course]) and patients who were injected with COVID-19 vaccines on the same day of receiving dexamethasone, 25.41 AU/mL. CONCLUSION: Patients with solid cancer vaccinated against COVID-19 disease while receiving dexamethasone had lower immunogenicity responses than those who got vaccines without dexamethasone. The direct association between the immunogenicity level and steroid dosage, as well as length of duration from vaccination to dexamethasone, was observed.


Subject(s)
COVID-19 Vaccines , COVID-19 , Dexamethasone , Immunogenicity, Vaccine , Neoplasms , SARS-CoV-2 , Humans , Male , Neoplasms/immunology , Neoplasms/drug therapy , Female , Middle Aged , COVID-19/immunology , COVID-19/prevention & control , Prospective Studies , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged , SARS-CoV-2/immunology , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Longitudinal Studies , Antibodies, Viral/blood , Antibodies, Viral/immunology , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/administration & dosage , Adult , Immunoglobulin G/blood , Immunoglobulin G/immunology , ChAdOx1 nCoV-19/immunology , Spike Glycoprotein, Coronavirus/immunology
15.
Nat Commun ; 15(1): 3822, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802362

ABSTRACT

The risk-benefit profile of COVID-19 vaccination in children remains uncertain. A self-controlled case-series study was conducted using linked data of 5.1 million children in England to compare risks of hospitalisation from vaccine safety outcomes after COVID-19 vaccination and infection. In 5-11-year-olds, we found no increased risks of adverse events 1-42 days following vaccination with BNT162b2, mRNA-1273 or ChAdOX1. In 12-17-year-olds, we estimated 3 (95%CI 0-5) and 5 (95%CI 3-6) additional cases of myocarditis per million following a first and second dose with BNT162b2, respectively. An additional 12 (95%CI 0-23) hospitalisations with epilepsy and 4 (95%CI 0-6) with demyelinating disease (in females only, mainly optic neuritis) were estimated per million following a second dose with BNT162b2. SARS-CoV-2 infection was associated with increased risks of hospitalisation from seven outcomes including multisystem inflammatory syndrome and myocarditis, but these risks were largely absent in those vaccinated prior to infection. We report a favourable safety profile of COVID-19 vaccination in under-18s.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , ChAdOx1 nCoV-19 , Hospitalization , SARS-CoV-2 , Vaccination , Humans , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/complications , Child , Female , England/epidemiology , Male , Child, Preschool , Adolescent , SARS-CoV-2/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Hospitalization/statistics & numerical data , Vaccination/adverse effects , Myocarditis/epidemiology , 2019-nCoV Vaccine mRNA-1273 , Systemic Inflammatory Response Syndrome/epidemiology , Optic Neuritis/epidemiology , Epilepsy/epidemiology
16.
Lancet Rheumatol ; 6(6): e339-e351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734019

ABSTRACT

BACKGROUND: The humoral and T-cell responses to booster COVID-19 vaccine types in multidisease immunocompromised individuals who do not generate adequate antibody responses to two COVID-19 vaccine doses, is not fully understood. The OCTAVE DUO trial aimed to determine the value of third vaccinations in a wide range of patients with primary and secondary immunodeficiencies. METHODS: OCTAVE-DUO was a prospective, open-label, multicentre, randomised, controlled, phase 3 trial investigating humoral and T-cell responses in patients who are immunocompromised following a third vaccine dose with BNT162b2 or mRNA-1273, and of NVX-CoV2373 for those with lymphoid malignancies. We recruited patients who were immunocompromised from 11 UK hospitals, aged at least 18 years, with previous sub-optimal responses to two doses of SARS-CoV-2 vaccine. Participants were randomly assigned 1:1 (1:1:1 for those with lymphoid malignancies), stratified by disease, previous vaccination type, and anti-spike antibody response following two doses. Individuals with lived experience of immune susceptibility were involved in the study design and implementation. The primary outcome was vaccine-specific immunity defined by anti-SARS-CoV-2 spike antibodies (Roche Diagnostics UK and Ireland, Burgess Hill, UK) and T-cell responses (Oxford Immunotec, Abingdon, UK) before and 21 days after the third vaccine dose analysed by a modified intention-to-treat analysis. The trial is registered with the ISRCTN registry, ISRCTN 15354495, and the EU Clinical Trials Register, EudraCT 2021-003632-87, and is complete. FINDINGS: Between Aug 4, 2021 and Mar 31, 2022, 804 participants across nine disease cohorts were randomly assigned to receive BNT162b2 (n=377), mRNA-1273 (n=374), or NVX-CoV2373 (n=53). 356 (45%) of 789 participants were women, 433 (55%) were men, and 659 (85%) of 775 were White. Anti-SARS-CoV-2 spike antibodies measured 21 days after the third vaccine dose were significantly higher than baseline pre-third dose titres in the modified intention-to-treat analysis (median 1384 arbitrary units [AU]/mL [IQR 4·3-7990·0] compared with median 11·5 AU/mL [0·4-63·1]; p<0·001). Of participants who were baseline low responders, 380 (90%) of 423 increased their antibody concentrations to more than 400 AU/mL. Conversely, 166 (54%) of 308 baseline non-responders had no response after the third dose. Detectable T-cell responses following the third vaccine dose were seen in 494 (80%) of 616 participants. There were 24 serious adverse events (BNT612b2 eight [33%] of 24, mRNA-1273 12 [50%], NVX-CoV2373 four [17%]), two (8%) of which were categorised as vaccine-related. There were seven deaths (1%) during the trial, none of which were vaccine-related. INTERPRETATION: A third vaccine dose improved the serological and T-cell response in the majority of patients who are immunocompromised. Individuals with chronic renal disease, lymphoid malignancy, on B-cell targeted therapies, or with no serological response after two vaccine doses are at higher risk of poor response to a third vaccine dose. FUNDING: Medical Research Council, Blood Cancer UK.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunocompromised Host , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , Female , Male , COVID-19/prevention & control , COVID-19/immunology , Middle Aged , Immunocompromised Host/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Antibodies, Viral/blood , Prospective Studies , Immunization, Secondary , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , T-Lymphocytes/immunology , United Kingdom , ChAdOx1 nCoV-19/immunology
17.
Front Immunol ; 15: 1392477, 2024.
Article in English | MEDLINE | ID: mdl-38774878

ABSTRACT

Introduction: Accumulating evidence indicates the importance of T cell immunity in vaccination-induced protection against severe COVID-19 disease, especially against SARS-CoV-2 Variants-of-Concern (VOCs) that more readily escape from recognition by neutralizing antibodies. However, there is limited knowledge on the T cell responses across different age groups and the impact of CMV status after primary and booster vaccination with different vaccine combinations. Moreover, it remains unclear whether age has an effect on the ability of T cells to cross-react against VOCs. Methods: Therefore, we interrogated the Spike-specific T cell responses in healthy adults of the Dutch population across different ages, whom received different vaccine types for the primary series and/or booster vaccination, using IFNÉ£ ELISpot. Cells were stimulated with overlapping peptide pools of the ancestral Spike protein and different VOCs. Results: Robust Spike-specific T cell responses were detected in the vast majority of participants upon the primary vaccination series, regardless of the vaccine type (i.e. BNT162b2, mRNA-1273, ChAdOx1 nCoV-19, or Ad26.COV2.S). Clearly, in the 70+ age group, responses were overall lower and showed more variation compared to younger age groups. Only in CMV-seropositive older adults (>70y) there was a significant inverse relation of age with T cell responses. Although T cell responses increased in all age groups after booster vaccination, Spike-specific T cell frequencies remained lower in the 70+ age group. Regardless of age or CMV status, primary mRNA-1273 vaccination followed by BNT162b2 booster vaccination showed limited booster effect compared to the BNT162b2/BNT162b2 or BNT162b2/mRNA-1273 primary-booster regimen. A modest reduction in cross-reactivity to the Alpha, Delta and Omicron BA.1, but not the Beta or Gamma variant, was observed after primary vaccination. Discussion: Together, this study shows that age, CMV status, but also the primary-booster vaccination regimen influence the height of the vaccination-induced Spike-specific T cell response, but did not impact the VOC cross-reactivity.


Subject(s)
COVID-19 , Cross Reactions , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Humans , Cross Reactions/immunology , SARS-CoV-2/immunology , Middle Aged , Adult , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Aged , Male , T-Lymphocytes/immunology , Female , Spike Glycoprotein, Coronavirus/immunology , Age Factors , Young Adult , COVID-19 Vaccines/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/prevention & control , Immunization, Secondary , Cytomegalovirus/immunology , BNT162 Vaccine/immunology , Vaccination , 2019-nCoV Vaccine mRNA-1273/immunology , ChAdOx1 nCoV-19/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , Aged, 80 and over
19.
Influenza Other Respir Viruses ; 18(5): e13290, 2024 May.
Article in English | MEDLINE | ID: mdl-38706402

ABSTRACT

BACKGROUND: Priming with ChAdOx1 followed by heterologous boosting is considered in several countries. Nevertheless, analyses comparing the immunogenicity of heterologous booster to homologous primary vaccination regimens and natural infection are lacking. In this study, we aimed to conduct a comparative assessment of the immunogenicity between homologous primary vaccination regimens and heterologous prime-boost vaccination using BNT162b2 or mRNA-1273. METHODS: We matched vaccinated naïve (VN) individuals (n = 673) with partial vaccination (n = 64), primary vaccination (n = 590), and primary series plus mRNA vaccine heterologous booster (n = 19) with unvaccinated naturally infected (NI) individuals with a documented primary SARS-CoV-2 infection (n = 206). We measured the levels of neutralizing total antibodies (NTAbs), total antibodies (TAbs), anti-S-RBD IgG, and anti-S1 IgA titers. RESULTS: Homologous primary vaccination with ChAdOx1 not only showed less potent NTAb, TAb, anti-S-RBD IgG, and anti-S1 IgA immune responses compared to primary BNT162b2 or mRNA-1273 vaccination regimens (p < 0.05) but also showed ~3-fold less anti-S1 IgA response compared to infection-induced immunity (p < 0.001). Nevertheless, a heterologous booster led to an increase of ~12 times in the immune response when compared to two consecutive homologous ChAdOx1 immunizations. Furthermore, correlation analyses revealed that both anti-S-RBD IgG and anti-S1 IgA significantly contributed to virus neutralization among NI individuals, particularly in symptomatic and pauci-symptomatic individuals, whereas among VN individuals, anti-S-RBD IgG was the main contributor to virus neutralization. CONCLUSION: The results emphasize the potential benefit of using heterologous mRNA boosters to increase antibody levels and neutralizing capacity particularly in patients who received primary vaccination with ChAdOx1.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Humans , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , Male , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , SARS-CoV-2/immunology , Adult , 2019-nCoV Vaccine mRNA-1273/immunology , Middle Aged , Immunoglobulin A/blood , Immunoglobulin A/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Young Adult , Follow-Up Studies , Vaccination , Aged , Immunogenicity, Vaccine , Antibody Formation/immunology , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/administration & dosage , Spike Glycoprotein, Coronavirus/immunology
20.
Vaccine ; 42(19): 3953-3960, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38729909

ABSTRACT

INTRODUCTION: The long-term impact of initial immunogenicity induced by different primary COVID-19 vaccine series remains unclear. METHODS: A prospective cohort study was conducted at 10 tertiary hospitals in Korea from March 2021 to September 2022. Immunogenicity assessments included anti-spike protein antibody (Sab), SARS-CoV-2-specific interferon-gamma releasing assay (IGRA), and multiplex cytokine assays for spike protein-stimulated plasma. Spike proteins derived from wild-type SARS-CoV-2 and alpha variant (Spike1) and beta and gamma variant (Spike2) were utilized. RESULTS: A total of 235 healthcare workers who had received a two-dose primary vaccine series of either ChAdOx1 or BNT162b2, followed by a third booster dose of BNT162b2 (166 in the ChAdOx1/ChAdOx1/BNT162b2 (CCB) group and 69 in the BNT162b2/BNT162b2/BNT162b2 (BBB) group, based on the vaccine series) were included. Following the primary vaccine series, the BBB group exhibited significantly higher increases in Sab levels, IGRA responses, and multiple cytokines (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, interleukin (IL)-1ra, IFN-γ, IL-2, IL-4, and IL-10) compared to the CCB group (all P < 0.05). One month after the third BNT162b2 booster, the CCB group showed Sab levels comparable to those of the BBB group, and both groups exhibited lower levels after six months without breakthrough infections (BIs). However, among those who experienced BA.1/2 BIs after the third booster, Sab levels increased significantly more in the BBB group than in the CCB group (P < 0.001). IGRA responses to both Spike1 and Spike2 proteins were significantly stronger in the BBB group than the CCB group after the third booster, while only the Spike2 response were higher after BIs (P = 0.007). The BBB group exhibited stronger enhancement of T-cell cytokines (IL-2, IL-4, and IL-17A) after BIs than in the CCB group (P < 0.05). CONCLUSION: Differences in immunogenicity induced by the two primary vaccine series persisted, modulated by subsequent booster vaccinations and BIs.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , Adult , Female , Humans , Male , Middle Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Breakthrough Infections , ChAdOx1 nCoV-19/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cytokines/blood , Health Personnel , Prospective Studies , Republic of Korea , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL