Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 295
1.
Front Immunol ; 15: 1382638, 2024.
Article En | MEDLINE | ID: mdl-38715601

Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.


CD4-Positive T-Lymphocytes , CD40 Ligand , Lung , Memory B Cells , Streptococcus pneumoniae , Animals , CD40 Ligand/metabolism , CD40 Ligand/immunology , Mice , Streptococcus pneumoniae/immunology , Lung/immunology , Lung/pathology , Lung/microbiology , CD4-Positive T-Lymphocytes/immunology , Memory B Cells/immunology , Memory B Cells/metabolism , Pneumococcal Infections/immunology , Mice, Inbred C57BL , Immunologic Memory , Chemokine CXCL13/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Disease Models, Animal , Signal Transduction , Lymphocyte Activation/immunology
2.
Biochem Biophys Res Commun ; 712-713: 149943, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38640733

Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that link plasma membrane proteins to the cortical cytoskeleton and thus regulate diverse cellular processes. Mutations in the human moesin gene cause a primary immunodeficiency called X-linked moesin-associated immunodeficiency (X-MAID), which may be complicated by an autoimmune phenotype with kidney involvement. We previously reported that moesin-deficient mice exhibit lymphopenia similar to that of X-MAID and develop a lupus-like autoimmune phenotype with age. However, the mechanism through which moesin defects cause kidney pathology remains obscure. Here, we characterized immune cell infiltration and chemokine expression in the kidney of moesin-deficient mice. We found accumulation of CD4+ T and CD11b+ myeloid cells and high expression of CXCL13, whose upregulation was detected before the onset of overt nephritis. CD4+ T cell population contained IFN-γ-producing effectors and expressed the CXCL13 receptor CXCR5. Among myeloid cells, Ly6Clo patrolling monocytes and MHCIIlo macrophages markedly accumulated in moesin-deficient kidneys and expressed high CXCL13 levels, implicating the CXCL13-CXCR5 axis in nephritis development. Functionally, Ly6Clo monocytes from moesin-deficient mice showed reduced migration toward sphingosine 1-phosphate. These findings suggest that moesin plays a role in regulating patrolling monocyte homeostasis, and that its defects lead to nephritis associated with accumulation of CXCL13-producing monocytes and macrophages.


Chemokine CXCL13 , Microfilament Proteins , Monocytes , Animals , Monocytes/metabolism , Monocytes/immunology , Monocytes/pathology , Microfilament Proteins/genetics , Microfilament Proteins/deficiency , Microfilament Proteins/metabolism , Chemokine CXCL13/metabolism , Chemokine CXCL13/genetics , Mice , Mice, Inbred C57BL , Lupus Nephritis/pathology , Lupus Nephritis/metabolism , Lupus Nephritis/immunology , Lupus Nephritis/genetics , Mice, Knockout , Kidney/pathology , Kidney/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism
3.
Neuroreport ; 35(6): 406-412, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38526919

Chronic postsurgical pain (CPSP) with high incidence negatively impacts the quality of life. X-C motif chemokine 13 (CXCL13) has been associated with postsurgery inflammation and exacerbates neuropathic pain in patients with CPSP. This study was aimed to illustrate the relationship between CXCL13 and nod-like receptor protein-3 (NLRP3), which is also involved in CPSP. A CPSP model was constructed by skin/muscle incision and retraction (SMIR) in right medial thigh, and the rats were divided into three groups: Sham, SMIR, and SMIR + anti-CXCL13 (intrathecally injected with anti-CXCL13 antibody). Then, the paw withdrawal threshold (PWT) score of rats was recorded. Primary rat astrocytes were isolated and treated with recombinant protein CXCL13 with or without NLRP3 inhibitor INF39. The expressions of CXCL13, CXCR5, IL-1ß, IL-18, GFAP, NLRP3, and Caspase-1 p20 were detected by real-time quantitative reverse transcription PCR, western blot, ELISA, immunocytochemistry, and immunofluorescence analyses. The anti-CXCL13 antibody alleviated SMIR-induced decreased PWT and increased expression of GFAP, CXCL13, CXCR5, NLRP3, and Caspase-1 p20 in spinal cord tissues. The production of IL-1ß, IL-18, and expression of CXCL13, CXCR5, GFAP, NLRP3, and Caspase-1 p20 were increased in recombinant protein CXCL13-treated primary rat astrocytes in a dose-dependent manner. Treatment with NLRP3 inhibitor INF39 inhibited the function of recombinant protein CXCL13 in primary rat astrocytes. The CXCL13/CXCR5 signaling could promote neuropathic pain, astrocytes activation, and NLRP3 inflammasome activation in CPSP model rats by targeting NLRP3. NLRP3 may be a potential target for the management of CPSP.


Chemokine CXCL13 , NLR Family, Pyrin Domain-Containing 3 Protein , Neuralgia , Pain, Postoperative , Receptors, CXCR5 , Animals , Rats , Astrocytes/metabolism , Caspases , Chemokine CXCL13/metabolism , Interleukin-18 , Neuralgia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pain, Postoperative/metabolism , Rats, Sprague-Dawley , Receptors, CXCR5/metabolism , Recombinant Proteins
4.
J Gastroenterol ; 59(6): 442-456, 2024 06.
Article En | MEDLINE | ID: mdl-38499886

BACKGROUND: Nodular gastritis (NG) is characterized by marked antral lymphoid follicle formation, and is a strong risk factor for diffuse-type gastric cancer in adults. However, it is unknown whether aberrant DNA methylation, which is induced by atrophic gastritis (AG) and is a risk for gastric cancer, is induced by NG. Here, we analyzed methylation induction by NG. METHODS: Gastric mucosal samples were obtained from non-cancerous antral tissues of 16 NG and 20 AG patients with gastric cancer and 5 NG and 6 AG patients without, all age- and gender-matched. Genome-wide methylation analysis and expression analysis were conducted by a BeadChip array and RNA-sequencing, respectively. RESULTS: Clustering analysis of non-cancerous antral tissues of NG and AG patients with gastric cancer was conducted using methylation levels of 585 promoter CpG islands (CGIs) of methylation-resistant genes, and a large fraction of NG samples formed a cluster with strong methylation induction. Promoter CGIs of CDH1 and DAPK1 tumor-suppressor genes were more methylated in NG than in AG. Notably, methylation levels of these genes were also higher in the antrum of NG patients without cancer. Genes related to lymphoid follicle formation, such as CXCL13/CXCR5 and CXCL12/CXCR4, had higher expression in NG, and genes involved in DNA demethylation TET2 and IDH1, had only half the expression in NG. CONCLUSIONS: Severe aberrant methylation, involving multiple tumor-suppressor genes, was induced in the gastric antrum and body of patients with NG, in accordance with their high gastric cancer risk.


CpG Islands , DNA Methylation , Gastric Mucosa , Gastritis, Atrophic , Stomach Neoplasms , Humans , Male , Female , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Middle Aged , Aged , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , CpG Islands/genetics , Gastritis, Atrophic/genetics , Proto-Oncogene Proteins/genetics , Promoter Regions, Genetic , Cadherins/genetics , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Chemokine CXCL13/genetics , Chemokine CXCL13/metabolism , Dioxygenases/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Adult , DNA-Binding Proteins/genetics , Gastritis/genetics , Pyloric Antrum/pathology , Pyloric Antrum/metabolism , Risk Factors
5.
Gastroenterology ; 166(6): 1069-1084, 2024 Jun.
Article En | MEDLINE | ID: mdl-38445519

BACKGROUND & AIMS: Although the presence of tertiary lymphoid structures (TLS) correlates with positive responses to immunotherapy in many solid malignancies, the mechanism by which TLS enhances antitumor immunity is not well understood. The present study aimed to investigate the underlying cross talk circuits between B cells and tissue-resident memory T (Trm) cells within the TLS and to understand their role in the context of immunotherapy. METHODS: Immunostaining and H&E staining of TLS and chemokine (C-X-C motif) ligand 13 (CXCL13)+ cluster of differentiation (CD)103+CD8+ Trm cells were performed on tumor sections from patients with gastric cancer (GC). The mechanism of communication between B cells and CXCL13+CD103+CD8+ Trm cells was determined in vitro and in vivo. The effect of CXCL13+CD103+CD8+ Trm cells in suppressing tumor growth was evaluated through anti-programmed cell death protein (PD)-1 therapy. RESULTS: The presence of TLS and CXCL13+CD103+CD8+ Trm cells in tumor tissues favored a superior response to anti-PD-1 therapy in patients with GC. Additionally, our research identified that activated B cells enhanced CXCL13 and granzyme B secretion by CD103+CD8+ Trm cells. Mechanistically, B cells facilitated the glycolysis of CD103+CD8+ Trm cells through the lymphotoxin-α/tumor necrosis factor receptor 2 (TNFR2) axis, and the mechanistic target of rapamycin signaling pathway played a critical role in CD103+CD8+ Trm cells glycolysis during this process. Moreover, the presence of TLS and CXCL13+CD103+CD8+ Trm cells correlated with potent responsiveness to anti-PD-1 therapy in a TNFR2-dependent manner. CONCLUSIONS: This study further reveals a crucial role for cellular communication between TLS-associated B cell and CXCL13+CD103+CD8+ Trm cells in antitumor immunity, providing valuable insights into the potential use of the lymphotoxin-α/TNFR2 axis within CXCL13+CD103+CD8+ Trm cells for advancing immunotherapy strategies in GC.


Antigens, CD , B-Lymphocytes , CD8-Positive T-Lymphocytes , Chemokine CXCL13 , Immune Checkpoint Inhibitors , Integrin alpha Chains , Memory T Cells , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Tertiary Lymphoid Structures , Chemokine CXCL13/metabolism , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/drug effects , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/therapy , Stomach Neoplasms/drug therapy , Antigens, CD/metabolism , Integrin alpha Chains/metabolism , Integrin alpha Chains/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , Animals , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Granzymes/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Immunologic Memory , Signal Transduction/immunology , Tumor Microenvironment/immunology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Mice , Immunotherapy/methods , Cell Line, Tumor
6.
JCI Insight ; 9(8)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38478516

Both anaplastic thyroid cancer (ATC) and papillary thyroid cancer (PTC) originate from thyroid follicular epithelial cells, but ATC has a significantly worse prognosis and shows resistance to conventional therapies. However, clinical trials found that immunotherapy works better in ATC than late-stage PTC. Here, we used single-cell RNA sequencing (scRNA-Seq) to generate a single-cell atlas of thyroid cancer. Differences in ATC and PTC tumor microenvironment components (including malignant cells, stromal cells, and immune cells) leading to the polarized prognoses were identified. Intriguingly, we found that CXCL13+ T lymphocytes were enriched in ATC samples and might promote the development of early tertiary lymphoid structure (TLS). Last, murine experiments and scRNA-Seq analysis of a treated patient's tumor demonstrated that famitinib plus anti-PD-1 antibody could advance TLS in thyroid cancer. We displayed the cellular landscape of ATC and PTC, finding that CXCL13+ T cells and early TLS might make ATC more sensitive to immunotherapy.


Chemokine CXCL13 , Immunotherapy , Thyroid Cancer, Papillary , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Carcinoma, Anaplastic/immunology , Animals , Mice , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Thyroid Neoplasms/therapy , Thyroid Neoplasms/genetics , Immunotherapy/methods , Chemokine CXCL13/metabolism , Chemokine CXCL13/genetics , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Single-Cell Analysis , Prognosis , T-Lymphocytes/immunology , Female , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Male
7.
Front Immunol ; 14: 1253766, 2023.
Article En | MEDLINE | ID: mdl-37936696

Introduction: Brown adipose tissue (BAT) is mainly responsible for mammalian non-shivering thermogenesis and promotes energy expenditure. Meanwhile, similar to white adipose tissue (WAT), BAT also secretes a variety of adipokines to regulate metabolism through paracrine, autocrine, or endocrine ways. The chemokine C-X-C motif chemokine ligand-13 (CXCL13), a canonical B cell chemokine, functions in inflammation and tumor-related diseases. However, the role of CXCL13 in the adipose tissues is unclear. Methods: The expression of CXCL13 in BAT and subcutaneous white adipose tissue (SWAT) of mice under cold stimulation were detected. Local injection of CXCL13 into BAT of normal-diet and high-fat-diet induced obese mice was used to detect thermogenesis and determine cold tolerance. The brown adipocytes were treated with CXCL13 alone or in the presence of macrophages to determine the effects of CXCL13 on thermogenic and inflammation related genes expression in vitro. Results: In this study, we discovered that the expression of CXCL13 in the stromal cells of brown adipose tissue significantly elevated under cold stimulation. Overexpression of CXCL13 in the BAT via local injection could increase energy expenditure and promote thermogenesis in obese mice. Mechanically, CXCL13 could promote thermogenesis via recruiting M2 macrophages in the BAT and, in the meantime, inhibiting pro-inflammatory factor TNFα level. Discussion: This study revealed the novel role of adipose chemokine CXCL13 in the regulation of BAT activity and thermogenesis.


Adipose Tissue, Brown , Chemokine CXCL13 , Animals , Mice , Adipose Tissue, Brown/metabolism , Chemokine CXCL13/metabolism , Macrophages/metabolism , Mammals , Mice, Obese , Thermogenesis/genetics
8.
Front Immunol ; 14: 1221532, 2023.
Article En | MEDLINE | ID: mdl-37520560

Introduction: Tumour-reactive T cells producing the B-cell attractant chemokine CXCL13, in solid tumours, promote development of tertiary lymphoid structures (TLS) and are associated with improved prognosis and responsiveness to checkpoint immunotherapy. Cancer associated fibroblasts are the dominant stromal cell type in non-small cell lung cancer (NSCLC) where they co-localise with T cells and can influence T cell activation and exhaustion. We questioned whether CAF directly promote CXCL13-production during T cell activation. Methods: We characterised surface markers, cytokine production and transcription factor expression in CXCL13-producing T cells in NSCLC tumours and paired non-cancerous lung samples using flow cytometry. We then assessed the influence of human NSCLC-derived primary CAF lines on T cells from healthy donors and NSCLC patients during activation in vitro measuring CXCL13 production and expression of cell-surface markers and transcription factors by flow cytometry. Results: CAFs significantly increased the production of CXCL13 by both CD4+ and CD8+ T cells. CAF-induced CXCL13-producing cells lacked expression of CXCR5 and BCL6 and displayed a T peripheral helper cell phenotype. Furthermore, we demonstrate CXCL13 production by T cells is induced by TGF-ß and limited by IL-2. CAF provide TGF-ß during T cell activation and reduce availability of IL-2 both directly (by reducing the capacity for IL-2 production) and indirectly, by expanding a population of activated Treg. Inhibition of TGF-ß signalling prevented both CAF-driven upregulation of CXCL13 and Treg expansion. Discussion: Promoting CXCL13 production represents a newly described immune-regulatory function of CAF with the potential to shape the immune infiltrate of the tumour microenvironment both by altering the effector-function of tumour infiltrating T-cells and their capacity to attract B cells and promote TLS formation.


Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Transforming Growth Factor beta , Cancer-Associated Fibroblasts/metabolism , CD8-Positive T-Lymphocytes , Interleukin-2 , Tumor Microenvironment , Chemokine CXCL13/metabolism
9.
J Neuroinflammation ; 20(1): 109, 2023 May 08.
Article En | MEDLINE | ID: mdl-37158939

BACKGROUND: Complex regional pain syndrome type-I (CRPS-I) causes excruciating pain that affect patients' life quality. However, the mechanisms underlying CRPS-I are incompletely understood, which hampers the development of target specific therapeutics. METHODS: The mouse chronic post-ischemic pain (CPIP) model was established to mimic CRPS-I. qPCR, Western blot, immunostaining, behavioral assay and pharmacological methods were used to study mechanisms underlying neuroinflammation and chronic pain in spinal cord dorsal horn (SCDH) of CPIP mice. RESULTS: CPIP mice developed robust and long-lasting mechanical allodynia in bilateral hindpaws. The expression of inflammatory chemokine CXCL13 and its receptor CXCR5 was significantly upregulated in ipsilateral SCDH of CPIP mice. Immunostaining revealed CXCL13 and CXCR5 was predominantly expressed in spinal neurons. Neutralization of spinal CXCL13 or genetic deletion of Cxcr5 (Cxcr5-/-) significantly reduced mechanical allodynia, as well as spinal glial cell overactivation and c-Fos activation in SCDH of CPIP mice. Mechanical pain causes affective disorder in CPIP mice, which was attenuated in Cxcr5-/- mice. Phosphorylated STAT3 co-expressed with CXCL13 in SCDH neurons and contributed to CXCL13 upregulation and mechanical allodynia in CPIP mice. CXCR5 coupled with NF-κB signaling in SCDH neurons to trigger pro-inflammatory cytokine gene Il6 upregulation, contributing to mechanical allodynia. Intrathecal CXCL13 injection produced mechanical allodynia via CXCR5-dependent NF-κB activation. Specific overexpression of CXCL13 in SCDH neurons is sufficient to induce persistent mechanical allodynia in naïve mice. CONCLUSIONS: These results demonstrated a previously unidentified role of CXCL13/CXCR5 signaling in mediating spinal neuroinflammation and mechanical pain in an animal model of CRPS-I. Our work suggests that targeting CXCL13/CXCR5 pathway may lead to novel therapeutic approaches for CRPS-I.


Chemokine CXCL13 , Chronic Pain , Receptors, CXCR5 , Reflex Sympathetic Dystrophy , Animals , Mice , Chemokine CXCL13/metabolism , Disease Models, Animal , Hyperalgesia , Neuroinflammatory Diseases , NF-kappa B , Spinal Cord Dorsal Horn , Receptors, CXCR5/metabolism
10.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article En | MEDLINE | ID: mdl-37047294

Foot-and-mouth disease (FMD) is one of the most contagious livestock diseases in the world, posing a constant global threat to the animal trade and national economies. The chemokine C-X-C motif chemokine ligand 13 (CXCL13), a biomarker for predicting disease progression in some diseases, was recently found to be increased in sera from mice infected with FMD virus (FMDV) and to be associated with the progression and severity of the disease. However, it has not yet been determined which cells are involved in producing CXCL13 and the signaling pathways controlling CXCL13 expression in these cells. In this study, the expression of CXCL13 was found in macrophages and T cells from mice infected with FMDV, and CXCL13 was produced in bone-marrow-derived macrophages (BMDMs) by activating the nuclear factor-kappaB (NF-κB) and JAK/STAT pathways following FMDV infection. Interestingly, CXCL13 concentration was decreased in sera from interleukin-10 knock out (IL-10-/-) mice or mice blocked IL-10/IL-10R signaling in vivo after FMDV infection. Furthermore, CXCL13 was also decreased in IL-10-/- BMDMs and BMDMs treated with anti-IL-10R antibody following FMDV infection in vitro. Lastly, it was demonstrated that IL-10 regulated CXCL13 expression via JAK/STAT rather than the NF-κB pathway. In conclusion, the study demonstrated for the first time that macrophages and T cells were the cellular sources of CXCL13 in mice infected with FMDV; CXCL13 was produced in BMDMs via NF-κB and JAK/STAT pathways; and IL-10 promoted CXCL13 expression in BMDMs via the JAK/STAT pathway.


Foot-and-Mouth Disease Virus , Mice , Animals , NF-kappa B/metabolism , Signal Transduction , Interleukin-10/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Macrophages/metabolism , Chemokine CXCL13/metabolism
11.
J Hematol Oncol ; 15(1): 144, 2022 10 10.
Article En | MEDLINE | ID: mdl-36217194

BACKGROUND: We assessed the mechanism by which multiple myeloma (MM) shapes the bone marrow (BM) microenvironment and affects MΦ polarization. METHODS: In vivo xenograft model of BM-disseminated human myeloma, as well as analysis of MM cell lines, stromal components, and primary samples from patients with MM, was utilized. RESULTS: Analysis of the BM from MM-bearing mice inoculated with human CXCR4-expressing RPMI8226 cells revealed a significant increase in M2 MΦ cell numbers (p < 0.01). CXCL13 was one of the most profoundly increased factors upon MM growth with increased levels in the blood of MM-bearing animals. Myeloid cells were the main source of the increased murine CXCL13 detected in MM-infiltrated BM. MM cell lines induced CXCL13 and concurrent expression of M2 markers (MERTK, CD206, CD163) in co-cultured human MΦ in vitro. Interaction with MΦ reciprocally induced CXCL13 expression in MM cell lines. Mechanistically, TGFß signaling was involved in CXCL13 induction in MM cells, while BTK signaling was implicated in MM-stimulated increase of CXCL13 in MΦ. Recombinant CXCL13 increased RANKL expression and induced TRAP+ osteoclast (OC) formation in vitro, while CXCL13 neutralization blocked these activities. Moreover, mice inoculated with CXCL13-silenced MM cells developed significantly lower BM disease. Reduced tumor load correlated with decreased numbers of M2 MΦ in BM, decreased bone disease, and lower expression of OC-associated genes. Finally, higher levels of CXCL13 were detected in the blood and BM samples of MM patients in comparison with healthy individuals. CONCLUSIONS: Altogether, our findings suggest that bidirectional interactions of MΦ with MM tumor cells result in M2 MΦ polarization, CXCL13 induction, and subsequent OC activation, enhancing their ability to support bone resorption and MM progression. CXCL13 may thus serve as a potential novel target in MM.


Chemokine CXCL13 , Macrophages , Multiple Myeloma , Animals , Chemokine CXCL13/metabolism , Humans , Macrophages/metabolism , Mice , Multiple Myeloma/pathology , Transforming Growth Factor beta/metabolism , Tumor Microenvironment , c-Mer Tyrosine Kinase/metabolism
12.
Curr Pharm Des ; 28(34): 2842-2854, 2022.
Article En | MEDLINE | ID: mdl-36045515

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes significant physical and psychological damage. Although researchers have gained a better understanding of the mechanisms of RA, there are still difficulties in diagnosing and treating RA. We applied a data mining approach based on machine learning algorithms to explore new RA biomarkers and local immune cell status. METHODS: We extracted six RA synovial microarray datasets from the GEO database and used bioinformatics to obtain differentially expressed genes (DEGs) and associated functional enrichment pathways. In addition, we identified potential RA diagnostic markers by machine learning strategies and validated their diagnostic ability for early RA and established RA, respectively. Next, CIBERSORT and ssGSEA analyses explored alterations in synovium-infiltrating immune cell subpopulations and immune cell functions in the RA synovium. Moreover, we examined the correlation between biomarkers and immune cells to understand their immune-related molecular mechanisms in the pathogenesis of RA. RESULTS: We obtained 373 DEGs (232 upregulated and 141 downregulated genes) between RA and healthy controls. Enrichment analysis revealed a robust correlation between RA and immune response. Comprehensive analysis indicated PSMB9, CXCL13, and LRRC15 were possible potential markers. PSMB9 (AUC: 0.908, 95% CI: 0.853-0.954) and CXCL13 (AUC: 0.890, 95% CI: 0.836-0.937) also showed great diagnostic ability in validation dataset. Infiltrations of 16 kinds of the immune cell were changed, with macrophages being the predominant infiltrating cell type. Most proinflammatory pathways in immune cell function were activated in RA. The correlation analysis found the strongest positive correlation between CXCL13 and plasma cells, PSMB9, and macrophage M1. CONCLUSION: There is a robust correlation between RA and local immune response. The immune-related CXCL13 and PSMB9 were identified as potential diagnostic markers for RA based on a machine learning approach. Further in-depth exploration of the target genes and associated immune cells can deepen the understanding of RA pathophysiological processes and provide new insights into diagnosing and treating RA.


Arthritis, Rheumatoid , Humans , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/genetics , Biomarkers , Chemokine CXCL13/genetics , Chemokine CXCL13/metabolism , Computational Biology , Machine Learning , Membrane Proteins/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology
13.
J Neuroinflammation ; 19(1): 173, 2022 Jul 04.
Article En | MEDLINE | ID: mdl-35787714

BACKGROUND: Adult microglia rely on self-renewal through division to repopulate and sustain their numbers. However, with aging, microglia display morphological and transcriptional changes that reflect a heightened state of neuroinflammation. This state threatens aging neurons and other cells and can influence the progression of Alzheimer's disease (AD). In this study, we sought to determine whether renewing microglia through a forced partial depletion/repopulation method could attenuate AD pathology in the 3xTg and APP/PS1 mouse models. METHODS: We pharmacologically depleted the microglia of two cohorts of 21- to 22-month-old 3xTg mice and one cohort of 14-month-old APP/PS1 mice using PLX5622 formulated in chow for 2 weeks. Following depletion, we returned the mice to standard chow diet for 1 month to allow microglial repopulation. We assessed the effect of depletion and repopulation on AD pathology, microglial gene expression, and surface levels of homeostatic markers on microglia using immunohistochemistry, single-cell RNAseq and flow cytometry. RESULTS: Although we did not identify a significant impact of microglial repopulation on amyloid pathology in either of the AD models, we observed differential changes in phosphorylated-Tau epitopes after repopulation in the 3xTg mice. We provide evidence that repopulated microglia in the hippocampal formation exhibited changes in the levels of homeostatic microglial markers. Lastly, we identified novel subpopulations of microglia by performing single-cell RNAseq analysis on CD45int/+ cells from hippocampi of control and repopulated 3xTg mice. In particular, one subpopulation induced after repopulation is characterized by heightened expression of Cxcl13. CONCLUSION: Overall, we found that depleting and repopulating microglia causes overexpression of microglial Cxcl13 with disparate effects on Tau and amyloid pathologies.


Alzheimer Disease , Chemokine CXCL13/metabolism , Microglia , tau Proteins/metabolism , Alzheimer Disease/pathology , Amyloidogenic Proteins/metabolism , Animals , Humans , Mice , Mice, Transgenic , Microglia/metabolism , Phosphorylation , Plaque, Amyloid/pathology
14.
Cell Biol Int ; 46(9): 1510-1518, 2022 Sep.
Article En | MEDLINE | ID: mdl-35670241

The blood brain barrier (BBB) is a protective border that prevents noxious substances from gaining access to the central nervous system (CNS). CXCL13 is a chemokine from the CXC chemokine family, which has been shown to destroy the barrier function of umbilical vein endothelial cells with its receptor CXCR5. Here, we aimed to investigate the role of CXCL13/CXCR5 signaling axis in BBB. The invasive ability of bEnd.3 cells was determined by the Transwell invasion assay. The barrier integrity of bEnd.3 cells was assessed by detecting trans-endothelial electrical resistance, the permeability to fluorescein isothiocyanate-dextran, and the expression levels of the tight junction protein E-cadherin. Lipopolysaccharide (LPS)-activated microglia promoted invasion and barrier dysfunction, and upregulated CXCR5 and p-p38 expression levels in cocultured bEnd.3 cells. However, the effects of activated microglia were alleviated by knocking down CXCR5 in cocultured bEnd.3 cells. Furthermore, recombinant CXCL13 promoted invasion and barrier dysfunction, and upregulated the expression levels of p-p38 in bEnd.3 cells; however, its effects were abolished by treating bEnd.3 cells with the p38 inhibitor SB203580. Our data tentatively demonstrated that LPS-activated microglial cells may promote invasion and barrier dysfunction in bEnd.3 cells by regulating the CXCL13/CXCR5 axis and p38 signaling.


Blood-Brain Barrier , Chemokine CXCL13 , Endothelial Cells , Microglia , Receptors, CXCR5 , Animals , Brain/metabolism , Chemokine CXCL13/metabolism , Endothelial Cells/metabolism , Lipopolysaccharides , Mice , Microglia/metabolism , Receptors, CXCR5/metabolism
15.
JCI Insight ; 7(12)2022 06 22.
Article En | MEDLINE | ID: mdl-35552285

Tertiary lymphoid structures (TLS) are transient ectopic lymphoid aggregates whose formation might be caused by chronic inflammation states, such as cancer. However, how TLS are induced in the tumor microenvironment (TME) and how they affect patient survival are not well understood. We investigated TLS distribution in relation to tumor infiltrating lymphocytes (TILs) and related gene expression in high-grade serous ovarian cancer (HGSC) specimens. CXCL13 gene expression correlated with TLS presence and the infiltration of T cells and B cells, and it was a favorable prognostic factor for patients with HGSC. Coexistence of CD8+ T cells and B cell lineages in the TME significantly improved the prognosis of HGSC and was correlated with the presence of TLS. CXCL13 expression was predominantly coincident with CD4+ T cells in TLS and CD8+ T cells in TILs, and it shifted from CD4+ T cells to CD21+ follicular DCs as TLS matured. In a mouse ovarian cancer model, recombinant CXCL13 induced TLS and enhanced survival by the infiltration of CD8+ T cells. These results suggest that TLS formation was associated with CXCL13-producing CD4+ T cells and that TLS facilitated the coordinated antitumor response of cellular and humoral immunity in ovarian cancer.


Ovarian Neoplasms , Tertiary Lymphoid Structures , Animals , CD4-Positive T-Lymphocytes/pathology , Chemokine CXCL13/metabolism , Female , Humans , Lymphocytes, Tumor-Infiltrating , Mice , Ovarian Neoplasms/pathology , Prognosis , Tertiary Lymphoid Structures/pathology , Tumor Microenvironment
16.
J Neuroinflammation ; 19(1): 125, 2022 May 27.
Article En | MEDLINE | ID: mdl-35624463

BACKGROUND: Ischemic stroke is a leading cause of mortality worldwide, largely due to the inflammatory response to brain ischemia during post-stroke reperfusion. Despite ongoing intensive research, there have not been any clinically approved drugs targeting the inflammatory component to stroke. Preclinical studies have identified T cells as pro-inflammatory mediators of ischemic brain damage, yet mechanisms that regulate the infiltration and phenotype of these cells are lacking. Further understanding of how T cells migrate to the ischemic brain and facilitate neuronal death during brain ischemia can reveal novel targets for post-stroke intervention. METHODS: To identify the population of T cells that produce IL-21 and contribute to stroke, we performed transient middle cerebral artery occlusion (tMCAO) in mice and performed flow cytometry on brain tissue. We also utilized immunohistochemistry in both mouse and human brain sections to identify cell types and inflammatory mediators related to stroke-induced IL-21 signaling. To mechanistically demonstrate our findings, we employed pharmacological inhibitor anti-CXCL13 and performed histological analyses to evaluate its effects on brain infarct damage. Finally, to evaluate cellular mechanisms of stroke, we exposed mouse primary neurons to oxygen glucose deprivation (OGD) conditions with or without IL-21 and measured cell viability, caspase activity and JAK/STAT signaling. RESULTS: Flow cytometry on brains from mice following tMCAO identified a novel population of cells IL-21 producing CXCR5+ CD4+ ICOS-1+ T follicular helper cells (TFH) in the ischemic brain early after injury. We observed augmented expression of CXCL13 on inflamed brain vascular cells and demonstrated that inhibition of CXCL13 protects mice from tMCAO by restricting the migration and influence of IL-21 producing TFH cells in the ischemic brain. We also illustrate that neurons express IL-21R in the peri-infarct regions of both mice and human stroke tissue in vivo. Lastly, we found that IL-21 acts on mouse primary ischemic neurons to activate the JAK/STAT pathway and induce caspase 3/7-mediated apoptosis in vitro. CONCLUSION: These findings identify a novel mechanism for how pro-inflammatory T cells are recruited to the ischemic brain to propagate stroke damage and provide a potential new therapeutic target for stroke.


Brain Injuries , Brain Ischemia , Stroke , Animals , Brain Injuries/metabolism , Brain Ischemia/metabolism , Chemokine CXCL13/metabolism , Humans , Infarction, Middle Cerebral Artery/pathology , Inflammation Mediators/metabolism , Interleukins , Ischemia/pathology , Janus Kinases/metabolism , Mice , Neurons/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Stroke/pathology
17.
Int Arch Allergy Immunol ; 183(9): 997-1006, 2022.
Article En | MEDLINE | ID: mdl-35526523

PURPOSE: Vascular endothelial hyperpermeability and barrier disruption are involved in the initiation and development of sepsis. M1 macrophages promote inflammation in sepsis by releasing pro-inflammatory cytokines and chemokines. This study was designed to investigate the functional relationships between M1 macrophages and human umbilical vein endothelial cells (HUVECs), as well as the underlying molecular mechanisms. METHODS: HUVECs were co-cultured with THP-1-derived M1 macrophages pretreated with or without rosiglitazone (RSG), a peroxisome proliferator-activated receptor (PPAR)-γ agonist. C-X-C chemokine receptor type (CXCR)5 was knocked down by short hairpin RNA lentivirus. Cecal ligation and puncture were used to induce sepsis in a mouse model. Endothelial permeability was evaluated using transendothelial electrical resistance and fluorescein isothiocyanate (FITC)-dextran assays. RESULTS: Chemokine ligand (CXCL)13 was upregulated in M1 macrophages than M0 macrophages, as well as in the culture medium. In HUVECs co-cultured with M1 macrophages, transendothelial electrical resistance decreased, FITC-dextran flux increased, p38 phosphorylation was strengthened, and the expression of tight junction proteins (zonula occludens protein-1, occludin, and claudin-4) decreased. CXCR5 RNA interference or RSG pretreatment partially reversed these effects. A luciferase reporter assay revealed that CXCL13 was a direct target of PPAR-γ. RSG treatment decreased serum levels of creatinine, blood urea nitrogen, CXCL13, tumor necrosis factor-α, and interleukin-6, downregulated CXCL13 in peritoneal macrophages, and enhanced the survival rate of sepsis mice. CONCLUSION: M1 macrophages induced endothelial hyperpermeability and promoted p38 phosphorylation in sepsis by inhibiting PPAR-γ to increase CXCL13 production. PPAR-γ/CXCL13-CXCR5 signaling could be a promising novel therapeutic target for sepsis.


PPAR gamma , Sepsis , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Chemokine CXCL13/metabolism , Chemokine CXCL13/pharmacology , Endothelial Cells/metabolism , Humans , Macrophages/metabolism , Mice , PPAR gamma/metabolism , Permeability , Phosphorylation , Receptors, CXCR5/metabolism , Sepsis/drug therapy , Sepsis/metabolism
18.
J Control Release ; 343: 303-313, 2022 03.
Article En | MEDLINE | ID: mdl-35104570

Interactions between different cell types in the tumor microenvironment (TME) affect tumor growth. Tumor-associated fibroblasts produce C-X-C motif chemokine ligand 13 (CXCL13) which recruits B cells to the TME. B-cells in the TME differentiate into regulatory B cells (Bregs) (IL-10+CD1d+CD5+CD138+CD19+). We highlight these Breg cells as a new important factor in the modulation of the immunosuppressive TME in different desmoplastic murine tumor models. In addition, CXCL13 also stimulates epithelial-mesenchymal transition (EMT) of the tumor cells. The tumorigenic roles of CXCL13 led us to explore an innovative anti-cancer strategy based on delivering plasmid DNA encoding a CXCL13 trap to reduce Bregs differentiation and normalize EMT, thereby suppressing tumor growth. CXCL13 trap suppressed tumor growth in pancreatic cancer, BRAF-mutant melanoma, and triple-negative breast cancer. In this study, following treatment, the affected tumor remained dormant resulting in prolonged progression-free survival of the host.


B-Lymphocytes, Regulatory , Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Triple Negative Breast Neoplasms , Animals , B-Lymphocytes, Regulatory/metabolism , Chemokine CXCL13/genetics , Chemokine CXCL13/metabolism , Humans , Mice , Pancreatic Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy , Tumor Microenvironment
19.
J Immunol ; 208(5): 1057-1065, 2022 03 01.
Article En | MEDLINE | ID: mdl-35149531

T follicular regulatory (Tfr) cells are a subset of CD4+ T cells that express CXCR5 and migrate into germinal centers (GCs). They regulate GC reactions by communicating with T follicular helper (Tfh) and B cells. TNF inhibitors are used in inflammatory diseases; however, the generation of autoantibodies or anti-drug Abs sometimes causes problems. Because TNFR2 signaling is important for suppressive functions of regulatory T cells, we investigated the role of TNFR2 on human Tfr cells. Tfr cells stimulated with MR2-1 (an anti-TNFR2 agonistic Ab) were analyzed for cell proliferation, Foxp3 expression, and surface molecules. Tfh/B cell proliferation, IgM production, and differentiation in cocultures with MR2-1-stimulated Tfr cells were examined. Tfr cells express a high level of TNFR2. MR2-1 stimulation altered the gene expression profile of Tfr cells. Cell proliferation and Foxp3 expression of Tfr cells were enhanced by MR2-1. MR2-1-stimulated Tfr cells expressed ICOS and Programmed cell death protein 1 and significantly suppressed Tfh/B cell proliferation, IgM production, and B cell differentiation. TNFR2-stimulated Tfr cells retained the migration function according to the CXCL13 gradient. In conclusion, we showed that TNFR2-stiumulated Tfr cells can regulate Tfh and B cells. Aberrant antibody production during TNF inhibitor treatment might be, at least in part, associated with TNFR2 signaling inhibition in Tfr cells. In addition, expansion and maturation of Tfr cells via TNFR2 stimulation in vitro may be useful for a cell-based therapy in inflammatory and autoimmune diseases to control GC reactions.


B-Lymphocytes/immunology , Receptors, Tumor Necrosis Factor, Type II/metabolism , T Follicular Helper Cells/immunology , T-Lymphocytes, Regulatory/immunology , Autoimmune Diseases/therapy , B-Lymphocytes/cytology , B7-H1 Antigen/metabolism , Cell Differentiation/immunology , Cell Movement/immunology , Cell Proliferation , Chemokine CXCL13/metabolism , Forkhead Transcription Factors/biosynthesis , Gene Expression Profiling , Germinal Center/cytology , Humans , Immunoglobulin M/biosynthesis , Inducible T-Cell Co-Stimulator Protein/biosynthesis , Lymphocyte Activation/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptors, CXCR5/metabolism , Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors , Signal Transduction/immunology , Tumor Necrosis Factors/metabolism
20.
J Healthc Eng ; 2022: 5430175, 2022.
Article En | MEDLINE | ID: mdl-35035844

As a common clinical chronic disease, the incidence of diabetes is increasing year by year. According to the latest statistics from the International Diabetes Federation, as of 2019, the global prevalence of diabetes has reached 8.3%. This study aims to investigate the effect of CXCL-13 on the migration ability of human mesenchymal stem cells (hMSCs) and to clarify the specific molecular mechanism of the protective effect of hMSCs on islet B cells. The hMSCs were cultured in high-glucose environment, and the effect of CXCL-13 on the migration ability of hMSCs was determined by Transwell experiment. After coculture of hMSCs and islet B cells, the activity of cells was detected by CCK8 assay, the expression of Ki-67 in cells was detected by RT-PCR, and the expression of P53 was detected by Western blot to investigate the effect of hMSCs on the proliferation and apoptosis of islet B cells. The effect of hMSCs on the function of islet B cells was determined by glucose stimulated insulin secretion experiment. Transwell experiment results showed that CXCL-13 could promote the migration of hMSCs to islet B cells in high-glucose environment. The results of CCK-8 showed that the cell activity in the coculture group was significantly higher than that of the other groups, and RT-PCR showed that the expression of Ki-67 was significantly increased in the coculture group of hMSCs and islet B cells. The results of Western blot showed that the expression of P53 was significantly decreased in the coculture group, and the glucose stimulated insulin secretion test showed that insulin secretion was significantly increased. It was found that after the inhibition of ATK, cell activity was significantly reduced, and apoptosis was significantly increased. Meanwhile, the expression of Ki-67 was inhibited, the expression of P-53 was significantly increased, and insulin secretion was significantly reduced. To sum up, in a high-glucose environment, CXCL-13 effectively promoted the migration of hMSCs, and hMSCs protected the activity and function of islet B cells through Akt signaling pathway.


Chemokine CXCL13/metabolism , Diabetes Mellitus , Mesenchymal Stem Cells , Chemotaxis , Glucose/metabolism , Glucose/pharmacology , Humans , Insulin , Ki-67 Antigen/metabolism , Mesenchymal Stem Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
...