Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.363
Filter
1.
Virology ; 598: 110193, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39096773

ABSTRACT

This study assesses different IBV vaccination regimens in broiler chickens using commercially available live attenuated GI-23 (Egyptian-VAR2) and GI-1 (H120) vaccines. Vaccines were administered at 1, 14 days of age, or both. The ciliostasis test, following wild-type VAR2 challenge at 28 days of age, indicated that classic H120+VAR2 at one day old followed by the VAR2 vaccine at 14 days of age provided the highest level of protection (89.58%). Similarly, administering VAR2 at 1 day of age and classic H120 at 14 days of age demonstrated substantial protection (85.42%). Conversely, administering only classic H120 and VAR2 at one day old resulted in the lowest protection level (54.17%). Tracheal virus shedding quantification and assessment of trachea and kidney degenerative changes were significantly lower in vaccinated groups compared to the unvaccinated-challenged group. In conclusion, a carefully planned vaccination regimen based on homologous vaccination offers the most effective clinical protection in broiler chickens.


Subject(s)
Chickens , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Vaccines, Attenuated , Viral Vaccines , Animals , Infectious bronchitis virus/immunology , Infectious bronchitis virus/genetics , Chickens/virology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Coronavirus Infections/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccination/veterinary , Virus Shedding , Trachea/virology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Vaccine Efficacy
2.
Arch Virol ; 169(9): 175, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117748

ABSTRACT

Newcastle disease virus (NDV), an avian paramyxovirus, causes major economic losses in the poultry industry worldwide. NDV strains are classified as avirulent, moderately virulent, or virulent according to the severity of the disease they cause. In order to gain a deeper understanding of the molecular mechanisms of virus-host interactions, we conducted Illumina HiSeq-based RNA-Seq analysis on chicken embryo fibroblast (DF1) cells during the first 24 hours of infection with NDV strain Komarov. Comparative analysis of uninfected DF1 cells versus NDV-infected DF1 cells at 6, 12, and 24 h postinfection identified 462, 459, and 410 differentially expressed genes, respectively. The findings revealed an increase in the expression of genes linked to the MAPK signalling pathway in the initial stages of NDV infection. This overexpression potentially aids viral multiplication while hindering pathogen detection and subsequent immune responses from the host. Our findings provide initial insights into the early responses of DF1 cells to NDV infection.


Subject(s)
Chickens , Fibroblasts , Gene Expression Profiling , Host-Pathogen Interactions , Newcastle Disease , Newcastle disease virus , Newcastle disease virus/genetics , Newcastle disease virus/pathogenicity , Newcastle disease virus/physiology , Animals , Newcastle Disease/virology , Newcastle Disease/immunology , Chickens/virology , Fibroblasts/virology , Host-Pathogen Interactions/genetics , Chick Embryo , Cell Line , Transcriptome , Poultry Diseases/virology , Poultry Diseases/genetics , Virus Replication/genetics
3.
Virol J ; 21(1): 177, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107806

ABSTRACT

BACKGROUND: Reticuloendotheliosis virus (REV), a member of the family Retroviridae, is a hot area of research, and a previous study showed that exosomes purified from REV-positive semen were not blocked by REV-specific neutralizing antibodies and established productive infections. METHODS: To further verify the infectivity of exosomes from REV-infected cells, we isolated and purified exosomes from REV-infected DF-1 cells and identified them using Western blot and a transmission electron microscope. We then inoculated 7-day-old embryonated eggs, 1-day-old chicks and 23-week-old hens with and without antibody treatment. REV was administered simultaneously as a control. RESULTS: In the absence of antibodies, the results indicated that REV-exosomes and REV could infect chicks, resulting in viremia and viral shedding, compared with the infection caused by REV, REV-exosomes reduced the hatching rate and increased mortality after hatching, causing severe growth inhibition and immune organ damage in 1-day-old chicks; both REV and REV-exosomes also could infect hens, however, lead to transient infection. In the presence of antibodies, REV-exosomes were not blocked by REV-specific neutralizing antibodies and infected 7-day-old embryonated eggs. However, REV could not infect 1-day-old chicks and 23-week-old hens. CONCLUSION: In this study, we compared the infectious ability of REV-exosomes and REV, REV-exosomes could escape from REV-specific neutralizing antibodies in embryonated eggs, providing new insights into the immune escape mechanism of REV.


Subject(s)
Antibodies, Viral , Chickens , Exosomes , Poultry Diseases , Reticuloendotheliosis virus , Retroviridae Infections , Virus Shedding , Animals , Exosomes/virology , Exosomes/immunology , Antibodies, Viral/immunology , Chickens/virology , Reticuloendotheliosis virus/immunology , Poultry Diseases/virology , Poultry Diseases/transmission , Poultry Diseases/immunology , Retroviridae Infections/virology , Retroviridae Infections/transmission , Retroviridae Infections/immunology , Retroviridae Infections/veterinary , Antibodies, Neutralizing/immunology , Cell Line , Viremia/virology , Female
4.
Viruses ; 16(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39066264

ABSTRACT

The avian influenza virus, particularly the H5N1 strain, poses a significant and ongoing threat to both human and animal health. Recent outbreaks have affected domestic and wild birds on a massive scale, raising concerns about the virus' spread to mammals. This review focuses on the critical role of microRNAs (miRNAs) in modulating pro-inflammatory signaling pathways during the pathogenesis of influenza A virus (IAV), with an emphasis on highly pathogenic avian influenza (HPAI) H5 viral infections. Current research indicates that miRNAs play a significant role in HPAI H5 infections, influencing various aspects of the disease process. This review aims to synthesize recent findings on the impact of different miRNAs on immune function, viral cytopathogenicity, and respiratory viral replication. Understanding these mechanisms is essential for developing new therapeutic strategies to combat avian influenza and mitigate its effects on both human and animal populations.


Subject(s)
Chickens , Influenza A Virus, H5N1 Subtype , Influenza in Birds , MicroRNAs , Virus Replication , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Chickens/virology , Humans , Disease Models, Animal , Influenza, Human/virology , Influenza, Human/immunology , Influenza, Human/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology
5.
Viruses ; 16(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39066292

ABSTRACT

Marek's disease virus (MDV) is an economic concern for the poultry industry due to its poorly understood pathophysiology. Purinergic receptors (PRs) are potential therapeutic targets for viral infections, including herpesviruses, prompting our investigation into their role in MDV pathogenesis. The current study is part of an experimental series analyzing the expression of PRs during MDV infection. To address the early or short-acting P2 PR responses during natural MDV infection, we performed an "exposure" experiment where age-matched chickens were exposed to experimentally infected shedders to initiate natural infection. In addition, select non-PR regulatory gene responses were measured. Two groups of naïve contact chickens (n = 5/breed/time point) from MD-resistant (White Leghorns: WL) and -susceptible (Pure Columbian) chicken lines were housed separately with experimentally infected PC (×PC) and WL (×WL) chickens for 6 or 24 h. Whole lung lavage cells (WLLC) were collected, RNA was extracted, and RT-qPCR assays were used to measure specific PR responses. In addition, other potentially important markers in pathophysiology were measured. Our study revealed that WL chickens exhibited higher P1 PR expression during natural infection. WL chickens also showed higher expression of P1A3 and P2X3 at 6 and 24 h when exposed to PC-infected chickens. P2X5 and P2Y1 showed higher expression at 6 h, while P2Y5 showed higher expression at 6 and 24 h; regardless of the chicken line, PC chickens exhibited higher expression of P2X2, P2Y8, P2Y10, P2Y13, and P2Y14 when exposed to either group of infected chickens. In addition, MDV infection altered the expression of DDX5 in both WL and PC groups exposed to PC-infected birds only. However, irrespective of the source of exposure, BCL2 and ANGPTL4 showed higher expression in both WL and PC. The expression of STAT1A and STAT5A was influenced by time and breed, with major changes observed in STAT5A. CAT and SOD1 expression significantly increased in both WL and PC birds, regardless of the source of infection. GPX1 and GPX2 expression also increased in both WL and PC, although overall lower expression was observed in PC chickens at 24 h compared to 6 h. Our data suggest systemic changes in the host during early infection, indicated by the altered expression of PRs, DDX5, BCL2, ANGPTL4, and other regulatory genes during early MDV infection. The relative expression of these responses in PC and WL chickens suggests they may play a key role in their response to natural MDV infection in the lungs and long-term pathogenesis and survival.


Subject(s)
Chickens , Lung , Marek Disease , Receptors, Purinergic , Animals , Chickens/virology , Marek Disease/virology , Marek Disease/metabolism , Lung/virology , Lung/metabolism , Receptors, Purinergic/metabolism , Receptors, Purinergic/genetics , Poultry Diseases/virology , Poultry Diseases/metabolism , Poultry Diseases/genetics , Herpesvirus 2, Gallid/physiology , Disease Resistance/genetics , Disease Susceptibility
6.
Viruses ; 16(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39066308

ABSTRACT

In January 2020, increased mortality was reported in a small broiler breeder flock in County Fermanagh, Northern Ireland. Gross pathological findings included coelomitis, oophoritis, salpingitis, visceral gout, splenomegaly, and renomegaly. Clinical presentation included inappetence, pronounced diarrhoea, and increased egg deformation. These signs, in combination with increased mortality, triggered a notifiable avian disease investigation. High pathogenicity avian influenza virus (HPAIV) was not suspected, as mortality levels and clinical signs were not consistent with HPAIV. Laboratory investigation demonstrated the causative agent to be a low-pathogenicity avian influenza virus (LPAIV), subtype H6N1, resulting in an outbreak that affected 15 premises in Northern Ireland. The H6N1 virus was also associated with infection on 13 premises in the Republic of Ireland and six in Great Britain. The close genetic relationship between the viruses in Ireland and Northern Ireland suggested a direct causal link whereas those in Great Britain were associated with exposure to a common ancestral virus. Overall, this rapidly spreading outbreak required the culling of over 2 million birds across the United Kingdom and the Republic of Ireland to stamp out the incursion. This report demonstrates the importance of investigating LPAIV outbreaks promptly, given their substantial economic impacts.


Subject(s)
Chickens , Disease Outbreaks , Farms , Influenza A virus , Influenza in Birds , Poultry Diseases , Poultry , Animals , Influenza in Birds/epidemiology , Influenza in Birds/virology , Disease Outbreaks/veterinary , United Kingdom/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Ireland/epidemiology , Chickens/virology , Influenza A virus/pathogenicity , Influenza A virus/genetics , Influenza A virus/classification , Poultry/virology , Phylogeny
7.
Viruses ; 16(7)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39066330

ABSTRACT

Avian leukosis viruses (ALVs) include a group of avian retroviruses primarily associated with neoplastic diseases in poultry, commonly referred to as avian leukosis. Belonging to different subgroups based on their envelope properties, ALV subgroups A, B, and J (ALV-A, ALV-B, and ALV-J) are the most widespread in poultry populations. Early identification and removal of virus-shedding birds from infected flocks are essential for the ALVs' eradication. Therefore, the development of rapid, accurate, simple-to-use, and cost effective on-site diagnostic methods for the detection of ALV subgroups is very important. Cas13a, an RNA-guided RNA endonuclease that cleaves target single-stranded RNA, also exhibits non-specific endonuclease activity on any bystander RNA in close proximity. The distinct trans-cleavage activity of Cas13 has been exploited in the molecular diagnosis of multiple pathogens including several viruses. Here, we describe the development and application of a highly sensitive Cas13a-based molecular test for the specific detection of proviral DNA of ALV-A, B, and J subgroups. Prokaryotically expressed LwaCas13a, purified through ion exchange and size-exclusion chromatography, was combined with recombinase polymerase amplification (RPA) and T7 transcription to establish the SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) molecular detection system for the detection of proviral DNA of ALV-A/B/J subgroups. This novel method that needs less sample input with a short turnaround time is based on isothermal detection at 37 °C with a color-based lateral flow readout. The detection limit of the assay for ALV-A/B/J subgroups was 50 copies with no cross reactivity with ALV-C/D/E subgroups and other avian oncogenic viruses such as reticuloendotheliosis virus (REV) and Marek's disease virus (MDV). The development and evaluation of a highly sensitive and specific visual method of detection of ALV-A/B/J nucleic acids using CRISPR-Cas13a described here will help in ALV detection in eradication programs.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , CRISPR-Cas Systems , DNA, Viral , Proviruses , Avian Leukosis Virus/genetics , Avian Leukosis Virus/isolation & purification , Avian Leukosis Virus/classification , Animals , Proviruses/genetics , Proviruses/isolation & purification , Avian Leukosis/virology , Avian Leukosis/diagnosis , DNA, Viral/genetics , Poultry Diseases/virology , Poultry Diseases/diagnosis , Chickens/virology , Sensitivity and Specificity , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism
8.
Sci Rep ; 14(1): 16021, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38992055

ABSTRACT

Environmental conditions profoundly impact the health, welfare, and productivity of laying hens in commercial poultry farming. We investigated the association between microclimate variations, production indices, and histopathological responses to accidental Newcastle disease virus (NDV) infection within a controlled closed-house system. The study was conducted over seven months in a laying hen facility in Cairo, Egypt. Microclimate measurements included temperature, relative humidity (RH%), air velocity (AV), and the temperature humidity index (THI) that were obtained from specific locations on the front and back sides of the facility. Productivity indices, including the egg production percentage (EPP), egg weight (EW), average daily feed intake, and feed conversion ratio, were assessed monthly. During an NDV outbreak, humoral immune responses, gross pathology, and histopathological changes were evaluated. The results demonstrated significant (p < 0.05) variations in EPP and EW between the front and back sides except in April and May. AV had a significant (p = 0.006) positive effect (Beta = 0.346) on EW on the front side. On the back side, AV had a significant (p = 0.001) positive effect (Beta = 0.474) on EW, while it negatively influenced (p = 0.027) EPP (Beta = - 0.281). However, temperature, RH%, and THI had no impact and could not serve as predictors for EPP or EW on either farm side. The humoral immune response to NDV was consistent across microclimates, highlighting the resilience of hens. Histopathological examination revealed characteristic NDV-associated lesions, with no significant differences between the microclimates. This study underscores the significance of optimizing microclimate conditions to enhance laying performance by providing tailored environmental management strategies based on seasonal variations, ensuring consistent airflow, particularly near cooling pads and exhaust fans, and reinforcing the importance of biosecurity measures under field challenges with continuous monitoring and adjustment.


Subject(s)
Chickens , Newcastle Disease , Newcastle disease virus , Poultry Diseases , Animals , Newcastle Disease/virology , Chickens/virology , Female , Newcastle disease virus/physiology , Poultry Diseases/virology , Egypt , Microclimate , Temperature
9.
Vet Microbiol ; 295: 110163, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959807

ABSTRACT

Avian influenza virus (AIV) infection and vaccination against live attenuated infectious bronchitis virus (aIBV) are frequent in poultry worldwide. Here, we evaluated the clinical effect of H9N2 subtype AIV and QX genotype aIBV co-infection in specific-pathogen-free (SPF) white leghorn chickens and explored the potential mechanisms underlying the observed effects using by 4D-FastDIA-based proteomics. The results showed that co-infection of H9N2 AIV and QX aIBV increased mortality and suppressed the growth of SPF chickens. In particular, severe lesions in the kidneys and slight respiratory signs similar to the symptoms of virulent QX IBV infection were observed in some co-infected chickens, with no such clinical signs observed in single-infected chickens. The replication of H9N2 AIV was significantly enhanced in both the trachea and kidneys, whereas there was only a slight effect on the replication of the QX aIBV. Proteomics analysis showed that the IL-17 signaling pathway was one of the unique pathways enriched in co-infected chickens compared to single infected-chickens. A series of metabolism and immune response-related pathways linked with co-infection were also significantly enriched. Moreover, co-infection of the two pathogens resulted in the enrichment of the negative regulation of telomerase activity. Collectively, our study supports the synergistic effect of the two pathogens, and pointed out that aIBV vaccines might increased IBV-associated lesions due to pathogenic co-infections. Exacerbation of the pathogenicity and mortality in H9N2 AIV and QX aIBV co-infected chickens possibly occurred because of an increase in H9N2 AIV replication, the regulation of telomerase activity, and the disturbance of cell metabolism and the immune system.


Subject(s)
Chickens , Coinfection , Coronavirus Infections , Infectious bronchitis virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Chickens/virology , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/genetics , Infectious bronchitis virus/pathogenicity , Infectious bronchitis virus/genetics , Coinfection/virology , Coinfection/veterinary , Influenza in Birds/virology , Poultry Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Specific Pathogen-Free Organisms , Virus Replication , Vaccines, Attenuated/immunology , Genotype , Virulence , Proteomics , Kidney/virology , Kidney/pathology
10.
PLoS One ; 19(7): e0307100, 2024.
Article in English | MEDLINE | ID: mdl-39012858

ABSTRACT

The outbreak of clade 2.3.4.4b H5 highly pathogenic avian influenza (HPAI) in North America that started in 2021 has increased interest in applying vaccination as a strategy to help control and prevent the disease in poultry. Two commercially available vaccines based on the recombinant herpes virus of turkeys (rHVT) vector were tested against a recent North American clade 2.3.4.4b H5 HPAI virus isolate: A/turkey/Indiana/22-003707-003/2022 H5N1 in specific pathogen free white leghorn (WL) chickens and commercial broiler chickens. One rHVT-H5 vaccine encodes a hemagglutinin (HA) gene designed by the computationally optimized broadly reactive antigen method (COBRA-HVT vaccine). The other encodes an HA gene of a clade 2.2 virus (2.2-HVT vaccine). There was 100% survival of both chicken types COBRA-HVT vaccinated groups and in the 2.2-HVT vaccinated groups there was 94.8% and 90% survival of the WL and broilers respectively. Compared to the 2.2-HVT vaccinated groups, WL in the COBRA-HVT vaccinated group shed significantly lower mean viral titers by the cloacal route and broilers shed significantly lower titers by the oropharyngeal route than broilers. Virus titers detected in oral and cloacal swabs were otherwise similar among both vaccine groups and chicken types. To assess antibody-based tests to identify birds that have been infected after vaccination (DIVA-VI), sera collected after the challenge were tested with enzyme-linked lectin assay-neuraminidase inhibition (ELLA-NI) for N1 neuraminidase antibody detection and by commercial ELISA for detection of antibodies to the NP protein. As early as 7 days post challenge (DPC) 100% of the chickens were positive by ELLA-NI. ELISA was less sensitive with a maximum of 75% positive at 10DPC in broilers vaccinated with 2.2-HVT. Both vaccines provided protection from challenge to both types of chickens and ELLA-NI was sensitive at identifying antibodies to the challenge virus therefore should be evaluated further for DIVA-VI.


Subject(s)
Chickens , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Animals , Chickens/virology , Chickens/immunology , Influenza in Birds/prevention & control , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , North America , Vaccination , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology , Herpesvirus 1, Meleagrid/immunology , Herpesvirus 1, Meleagrid/genetics
11.
Appl Microbiol Biotechnol ; 108(1): 414, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985204

ABSTRACT

Airborne animal viral pathogens can rapidly spread and become a global threat, resulting in substantial socioeconomic and health consequences. To prevent and control potential epidemic outbreaks, accurate, fast, and affordable point-of-care (POC) tests are essential. As a proof-of-concept, we have developed a molecular system based on the loop-mediated isothermal amplification (LAMP) technique for avian metapneumovirus (aMPV) detection, an airborne communicable agent mainly infecting turkeys and chickens. For this purpose, a colorimetric system was obtained by coupling the LAMP technique with specific DNA-functionalized AuNPs (gold nanoparticles). The system was validated using 50 different samples (pharyngeal swabs and tracheal tissue) collected from aMPV-infected and non-infected chickens and turkeys. Viral detection can be achieved in about 60 min with the naked eye, with 100% specificity and 87.88% sensitivity for aMPV. In summary, this novel molecular detection system allows suitable virus testing in the field, with accuracy and limit of detection (LOD) values highly close to qRT-PCR-based diagnosis. Furthermore, this system can be easily scalable to a platform for the detection of other viruses, addressing the current gap in the availability of POC tests for viral detection in poultry farming. KEY POINTS: •aMPV diagnosis using RT-LAMP is achieved with high sensitivity and specificity. •Fifty field samples have been visualized using DNA-nanoprobe validation. •The developed system is a reliable, fast, and cost-effective option for POCT.


Subject(s)
Chickens , Gold , Metapneumovirus , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Paramyxoviridae Infections , Poultry Diseases , Sensitivity and Specificity , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Animals , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/economics , Chickens/virology , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/economics , Paramyxoviridae Infections/diagnosis , Paramyxoviridae Infections/veterinary , Paramyxoviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Gold/chemistry , Turkeys , Metal Nanoparticles/chemistry , Limit of Detection , Colorimetry/methods , DNA, Viral/genetics
12.
Viruses ; 16(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39066205

ABSTRACT

Marek's disease (MD), caused by the Marek's disease virus (MDV), is a common infectious tumor disease in chickens and was the first neoplastic disease preventable by vaccination. However, the vaccine cannot completely prevent virulent MDV infections, allowing both the vaccine and virulent MDV to coexist in the same chicken for extended periods. This study aims to investigate the changes in viral load of the very virulent strain Md5 and the rHVT-IBD vaccine in different chicken tissues using a real-time PCR assay. The results showed that the rHVT-IBD vaccine significantly reduced the viral load of MDV-Md5 in different organs, while the load of rHVT-IBD was significantly increased when co-infected with Md5. Additionally, co-infection with Md5 and rHVT-IBD in chickens not only changed the original viral load of both viruses but also affected the positive rate of Md5 at 14 days post-vaccination. The positive rate decreased from 100% to 14.29% (feather tips), 0% (skin), 33.33% (liver), 16.67% (spleen), 28.57% (thymus), 33.33% (bursa), and 66.67% (PBL), respectively. This study enhances our understanding of the interactions between HVT vector vaccines and very virulent MDV in chickens and provides valuable insights for the future development of MD vaccines.


Subject(s)
Chickens , Coinfection , Marek Disease Vaccines , Marek Disease , Poultry Diseases , Viral Load , Animals , Marek Disease/virology , Marek Disease/prevention & control , Marek Disease/immunology , Chickens/virology , Coinfection/virology , Coinfection/veterinary , Poultry Diseases/virology , Poultry Diseases/prevention & control , Marek Disease Vaccines/immunology , Marek Disease Vaccines/genetics , Virulence , Herpesvirus 1, Meleagrid/immunology , Herpesvirus 1, Meleagrid/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/genetics , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/immunology , Herpesvirus 2, Gallid/pathogenicity , Vaccination , Genetic Vectors/genetics
13.
Viruses ; 16(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39066218

ABSTRACT

Avian orthoreviruses have become a global challenge to the poultry industry, causing significant economic impacts on commercial poultry. Avian reoviruses (ARVs) are resistant to heat, proteolytic enzymes, a wide range of pH values, and disinfectants, so keeping chicken farms free of ARV infections is difficult. This review focuses on the global prevalence of ARVs and associated clinical signs and symptoms. The most common signs and symptoms include tenosynovitis/arthritis, malabsorption syndrome, runting-stunting syndrome, and respiratory diseases. Moreover, this review also focused on the characterization of ARVs in genotypic clusters (I-VI) and their relation to tissue tropism or viral distribution. The prevailing strains of ARV in Africa belong to all genotypic clusters (GCs) except for GC VI, whereas all GCs are present in Asia and the Americas. In addition, all ARV strains are associated with or belong to GC I-VI in Europe. Moreover, in Oceania, only GC V and VI are prevalent. This review also showed that, regardless of the genotypic cluster, tenosynovitis/arthritis was the predominant clinical manifestation, indicating its universal occurrence across all clusters. Globally, most avian reovirus infections can be prevented by vaccination against four major strains: S1133, 1733, 2408, and 2177. Nevertheless, these vaccines may not a provide sufficient defense against field isolates. Due to the increase in the number of ARV variants, classical vaccine approaches are being developed depending on the degree of antigenic similarity between the vaccine and field strains, which determines how successful the vaccination will be. Moreover, there is a need to look more closely at the antigenic and pathogenic properties of reported ARV strains. The information acquired will aid in the selection of more effective vaccine strains in combination with biosecurity and farm management methods to prevent ARV infections.


Subject(s)
Genotype , Orthoreovirus, Avian , Poultry Diseases , Reoviridae Infections , Orthoreovirus, Avian/genetics , Orthoreovirus, Avian/classification , Animals , Poultry Diseases/virology , Poultry Diseases/epidemiology , Reoviridae Infections/veterinary , Reoviridae Infections/epidemiology , Reoviridae Infections/virology , Phylogeny , Chickens/virology , Prevalence , Poultry/virology
14.
Arch Virol ; 169(7): 155, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951272

ABSTRACT

Given the high prevalence of avian leukosis virus subgroup K (ALV-K) in chickens in China, the positive rate of ALV-K in local chickens in Henan province was investigated, and the genetic region encoding the glycoprotein gp85 of isolates from positive chickens was analyzed. The positive rate of ALV-K in local chickens in Henan was found to be 87.2% (41/47). Phylogenetic analysis of gp85 sequences revealed six clusters that differed in their host range regions (hr1 and hr2) and variable regions (vr1, vr2, and vr3). Evidence of recombination of hr1, hr2, vr1, vr2, and vr3 was observed between the different clusters. The isolate HN23LS02 appears to have obtained its hr1 and hr2 regions from separate lineages via recombination but without having a significant affect on the replication capacity of the virus.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Chickens , Host Specificity , Phylogeny , Poultry Diseases , Recombination, Genetic , Viral Envelope Proteins , Animals , Avian Leukosis Virus/genetics , Avian Leukosis Virus/classification , Avian Leukosis Virus/isolation & purification , Chickens/virology , Avian Leukosis/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Poultry Diseases/virology , China
15.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38980150

ABSTRACT

Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) wild-type (wt) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both wt and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the wt virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for in vitro replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.


Subject(s)
Chickens , Ferrets , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Turkeys , Animals , Turkeys/virology , Influenza in Birds/virology , Influenza in Birds/transmission , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/pathogenicity , Chickens/virology , Virulence , China/epidemiology , Poultry Diseases/virology , Poultry Diseases/transmission , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Virus Shedding , Virus Replication , Zoonoses/virology , Influenza, Human/virology , Influenza, Human/transmission
16.
Vet Microbiol ; 296: 110188, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018942

ABSTRACT

H9N2 avian influenza virus (AIV), one of the predominant subtypes circulating in the poultry industry, inflicts substantial economic damage. Mutations in the hemagglutinin (HA) and neuraminidase (NA) proteins of H9N2 frequently alter viral antigenicity and replication. In this paper, we analyzed the HA genetic sequences and antigenic properties of 26 H9N2 isolates obtained from chickens in China between 2012 and 2019. The results showed that these H9N2 viruses all belonged to h9.4.2.5, and were divided into two clades. We assessed the impact of amino acid substitutions at HA sites 145, 149, 153, 164, 167, 168, and 200 on antigenicity, and found that a mutation at site 164 significantly modified antigenic characteristics. Amino acid variations at sites 145, 153, 164 and 200 affected virus's hemagglutination and the growth kinetics in mammalian cells. These results underscore the critical need for ongoing surveillance of the H9N2 virus and provide valuable insights for vaccine development.


Subject(s)
Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/immunology , Animals , Chickens/virology , Influenza in Birds/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , China , Amino Acid Substitution , Poultry Diseases/virology , Mutation , Antigens, Viral/immunology , Antigens, Viral/genetics , Virus Replication , Phylogeny , Neuraminidase/genetics , Neuraminidase/immunology , Amino Acids/genetics
17.
Virulence ; 15(1): 2379371, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39014540

ABSTRACT

The economic losses caused by high pathogenicity (HP) avian influenza viruses (AIV) in the poultry industry worldwide are enormous. Although chickens and turkeys are closely related Galliformes, turkeys are thought to be a bridging host for the adaptation of AIV from wild birds to poultry because of their high susceptibility to AIV infections. HPAIV evolve from low pathogenicity (LP) AIV after circulation in poultry through mutations in different viral proteins, including the non-structural protein (NS1), a major interferon (IFN) antagonist of AIV. At present, it is largely unknown whether the virulence determinants of HPAIV are the same in turkeys and chickens. Previously, we showed that mutations in the NS1 of HPAIV H7N1 significantly reduced viral replication in chickens in vitro and in vivo. Here, we investigated the effect of NS1 on the replication and virulence of HPAIV H7N1 in turkeys after inoculation with recombinant H7N1 carrying a naturally truncated wild-type NS1 (with 224 amino-acid "aa" in length) or an extended NS1 with 230-aa similar to the LP H7N1 ancestor. There were no significant differences in multiple-cycle viral replication or in the efficiency of NS1 in blocking IFN induction in the cell culture. Similarly, all viruses were highly virulent in turkeys and replicated at similar levels in various organs and swabs collected from the inoculated turkeys. These results suggest that NS1 does not play a role in the virulence or replication of HPAIV H7N1 in turkeys and further indicate that the genetic determinants of HPAIV differ in these two closely related galliform species.


Subject(s)
Chickens , Influenza A Virus, H7N1 Subtype , Influenza in Birds , Turkeys , Viral Nonstructural Proteins , Viral Tropism , Virus Replication , Animals , Turkeys/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Influenza in Birds/virology , Influenza A Virus, H7N1 Subtype/genetics , Influenza A Virus, H7N1 Subtype/pathogenicity , Chickens/virology , Virulence , Poultry Diseases/virology
18.
mBio ; 15(8): e0031524, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38953352

ABSTRACT

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that causes deadly lymphomas in chickens. In chickens, up to 50% of all peripheral T cells are gamma delta (γδ) T cells. Until now, their role in MDV pathogenesis and tumor formation remains poorly understood. To investigate the role of γδ T cells in MDV pathogenesis, we infected recently generated γδ T cell knockout chickens with very virulent MDV. Strikingly, disease and tumor incidence were highly increased in the absence of γδ T cells, indicating that γδ T cells play an important role in the immune response against MDV. In the absence of γδ T cells, virus replication was drastically increased in the thymus and spleen, which are potential sites of T cell transformation. Taken together, our data provide the first evidence that γδ T cells play an important role in the pathogenesis and tumor formation of this highly oncogenic herpesvirus.IMPORTANCEGamma delta (γδ) T cells are the most abundant T cells in chickens, but their role in fighting pathogens remains poorly understood. Marek's disease virus (MDV) is an important veterinary pathogen, that causes one of the most frequent cancers in animals and is used as a model for virus-induced tumor formation. Our study revealed that γδ T cells play a crucial role in combating MDV, as disease and tumor incidence drastically increased in the absence of these cells. γδ T cells restricted virus replication in the key lymphoid organs, thereby decreasing the likelihood of causing tumors and disease. This study provides novel insights into the role of γδ T cells in the pathogenesis of this highly oncogenic virus.


Subject(s)
Chickens , Herpesvirus 2, Gallid , Marek Disease , Virus Replication , Animals , Chickens/virology , Marek Disease/virology , Marek Disease/immunology , Herpesvirus 2, Gallid/pathogenicity , Herpesvirus 2, Gallid/immunology , Herpesvirus 2, Gallid/genetics , Spleen/immunology , Spleen/virology , Spleen/pathology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Intraepithelial Lymphocytes/immunology , Thymus Gland/immunology , Thymus Gland/virology , Thymus Gland/pathology , T-Lymphocytes/immunology , Poultry Diseases/virology , Poultry Diseases/immunology
19.
J Virol ; 98(7): e0083024, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38940559

ABSTRACT

Viruses have evolved a range of strategies to utilize or manipulate the host's cellular translational machinery for efficient infection, although the mechanisms by which infectious bronchitis virus (IBV) manipulates the host translation machinery remain unclear. In this study, we firstly demonstrate that IBV infection causes host shutoff, although viral protein synthesis is not affected. We then screened 23 viral proteins, and identified that more than one viral protein is responsible for IBV-induced host shutoff, the inhibitory effects of proteins Nsp15 were particularly pronounced. Ribosome profiling was used to draw the landscape of viral mRNA and cellular genes expression model, and the results showed that IBV mRNAs gradually dominated the cellular mRNA pool, the translation efficiency of the viral mRNAs was lower than the median efficiency (about 1) of cellular mRNAs. In the analysis of viral transcription and translation, higher densities of RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) reads were observed for structural proteins and 5' untranslated regions, which conformed to the typical transcriptional characteristics of nested viruses. Translational halt events and the number of host genes increased significantly after viral infection. The translationally paused genes were enriched in translation, unfolded-protein-related response, and activation of immune response pathways. Immune- and inflammation-related mRNAs were inefficiently translated in infected cells, and IBV infection delayed the production of IFN-ß and IFN-λ. Our results describe the translational landscape of IBV-infected cells and demonstrate new strategies by which IBV induces host gene shutoff to promote its replication. IMPORTANCE: Infectious bronchitis virus (IBV) is a γ-coronavirus that causes huge economic losses to the poultry industry. Understanding how the virus manipulates cellular biological processes to facilitate its replication is critical for controlling viral infections. Here, we used Ribo-seq to determine how IBV infection remodels the host's biological processes and identified multiple viral proteins involved in host gene shutoff. Immune- and inflammation-related mRNAs were inefficiently translated, the translation halt of unfolded proteins and immune activation-related genes increased significantly, benefitting IBV replication. These data provide new insights into how IBV modulates its host's antiviral responses.


Subject(s)
Chickens , Coronavirus Infections , Host-Pathogen Interactions , Infectious bronchitis virus , Protein Biosynthesis , Ribosomes , Virus Replication , Infectious bronchitis virus/physiology , Infectious bronchitis virus/genetics , Animals , Ribosomes/metabolism , Coronavirus Infections/virology , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Host-Pathogen Interactions/genetics , Chickens/virology , RNA, Viral/genetics , RNA, Viral/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Poultry Diseases/virology , Poultry Diseases/immunology , Poultry Diseases/genetics , Cell Line , Humans
20.
Vet Microbiol ; 295: 110136, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875877

ABSTRACT

This study aimed to analyze the species and abundance of viruses carried by avian species in live poultry markets. In 2022, we collected 196 bird samples from two representative live poultry markets in Guangdong, China, of which 147 were randomly selected for metatranscriptome sequencing to construct a metatranscriptome library. This analysis yielded 17 viral families. Statistical analysis of the virus abundance of the six libraries showed that Picornaviridae, Retroviridae, Coronaviridae, and Othomyxoviridae were more abundant in the J1, J2, and J3 libraries, and Coronaviridae, Retroviridae, and Faviviridae were more abundant in the Y1, Y2, and E1 libraries. Finally, samples were screened using nested PCR and three viruses were identified. The positive results combined with high-throughput sequencing abundance data showed a positive correlation between virus abundance and the number of positive samples. This study provides scientific data to support the diagnosis and prevention of avian viral diseases.


Subject(s)
High-Throughput Nucleotide Sequencing , Poultry Diseases , Poultry , Viruses , Animals , High-Throughput Nucleotide Sequencing/veterinary , China/epidemiology , Poultry/virology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Chickens/virology
SELECTION OF CITATIONS
SEARCH DETAIL