Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.373
Filter
1.
Rev. biol. trop ; 72(1): e54459, ene.-dic. 2024. tab, graf
Article in Spanish | LILACS, SaludCR | ID: biblio-1559316

ABSTRACT

Resumen Introducción: La biodiversidad se está perdiendo a un ritmo acelerado como resultado del cambio global. Herramientas como los modelos de distribución de especies (MDEs) han sido ampliamente usados para mejorar el conocimiento sobre el estado de conservación de las especies y ayudar a desarrollar estrategias de gestión para mitigar la pérdida de biodiversidad. Objetivo: Determinar cómo la distribución potencial predicha por los MDEs para ocho especies de murciélagos amenazados difiere de los mapas de distribución reportados por la UICN. También, inferir el área de distribución y estado de endemismo de cada especie, y evaluar la importancia de la región tumbesina para su conservación. Métodos: Basados en registros de presencia del rango global de las especies, usamos MDEs para evaluar el estado de conservación de estas ocho especies en la región tumbesina de Ecuador y Perú. Resultados: Las áreas estimadas por los MDEs eran 35-78 % más pequeñas para cuatro especies (Eptesicus innoxius, Lophostoma occidentale, Platalina genovensium y Lonchophylla hesperia) y 26-1 600 % más grandes para tres especies (Amorphochilus schnablii, Promops davisoni y Rhogeessa velilla) que aquellas reportadas por la UICN. Para Tomopeas ravus, el área estimada por el MDE y la UICN fue similar, pero difirió en la distribución espacial. Los MDEs coincidieron con áreas de endemismo informadas por autores previos para E. innoxius, R. velilla y T. ravus, pero fueron diferentes para A. schnablii, P. genovensium, P. davisoni y L. hesperia, debido en parte a las distribuciones proyectadas para estas últimas especies en valles secos interandinos según los MDEs. Conclusiones: La región tumbesina representa una porción significativa (40-96 %) de la distribución predicha de siete de las ocho especies estudiadas, subrayando la importancia de esta región para la conservación de murciélagos. Nuestros resultados muestran las probables distribuciones para estas especies y proporcionan una base importante para identificar vacíos de investigación y desarrollar medidas de conservación para murciélagos amenazados en el punto caliente de biodiversidad de Tumbes.


Abstract Introduction: Biodiversity is being lost at an accelerating rate because of global change. Tools such as species distribution models (SDMs) have been widely used to improve knowledge about species' conservation status and help develop management strategies to mitigate biodiversity loss. SDMs are especially important for species with restricted distributions, such as endemic species. Objective: To determine how potential distribution predicted by SDMs for eight threatened bat species differed from the distribution maps reported by the IUCN. Also, to infer the area of distribution and state of endemism of each specie, and to evaluate the importance of the Tumbesian region for their conservation. Methods: Based on presence records across the species' entire ranges, we used SDMs to assess the conservation status of these eight species in the Tumbesian region of Ecuador and Peru. Results: The areas estimated by SDMs were 35-78 % smaller for four species (Eptesicus innoxius, Lophostoma occidentale, Platalina genovensium and Lonchophylla hesperia) and 26-1 600 % larger for three species (Amorphochilus schnablii, Promops davisoni and Rhogeessa velilla) than those reported by the IUCN. For Tomopeas ravus, the area estimated by the SDM and IUCN was similar but differed in spatial distribution. SDMs coincided with areas of endemism reported by previous authors for E. innoxius, R. velilla, and T. ravus, but were different for A. schnablii, P. genovensium, P. davisoni, and L. hesperia, due in part to projected distributions for these latter species in dry inter-Andean valleys according to the SDMs. Conclusions: The Tumbesian region represents a significant portion (40-96 %) of the predicted distribution of seven of the eight species studied, underscoring the importance of this region for bat conservation. Our results show likely distributions for these species and provide an important basis for identifying research gaps and developing conservation measures for threatened bats in the Tumbes biodiversity hotspot.


Subject(s)
Animals , Chiroptera/classification , Peru , Endangered Species , Ecuador
2.
J Morphol ; 285(8): e21759, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113262

ABSTRACT

Biological variation in the mammalian skull is the product of a series of factors including changes in gene expression, developmental timing, and environmental pressures. When considering the diversity of extant mammalian crania, it is important to understand these mechanisms that contribute to cranial growth and in turn, how differences in cranial morphology have been attained. Various researchers, including Dr. Sue Herring, have proposed a variety of mechanisms to explain the process of cranial growth. This work has set the foundation on which modern analysis of craniofacial morphology happens today. This study focused on the analysis of modularity in three mammalian taxa, all of which exhibit facial reduction. Specifically, we examined facial reduction as a morphological phenomenon through the use of two-module and six-module modularity hypotheses. We recorded three-dimensional coordinate data for 55 cranial landmarks that allowed us to analyze differences in cranial shape in these three taxa (primates n = 88, bats n = 64, dogs n = 81). When assessing modularity within the two-module modularity hypothesis specifically, dogs exhibited the lowest levels of modularity, while bats and primates both showed a slightly more modular covariance structure. We further assessed modularity in the same sample using the Goswami six-module model, where again dogs exhibited a low degree of modularity, with bats and primates being more moderate. We then broke the sample into subsets by analyzing each morphotype separately. We hypothesized that the modularity would be more pronounced in the brachycephalic morphotype. Surprisingly, we found that in brachycephalic dogs, normocephalic dogs, brachycephalic primates, and normocephalic primates, there was a moderate degree of modularity. Brachycephalic bats had a low degree of modularity, while normocephalic bats were the most modular group observed in this study. Based on these results, it is evident that facial reduction is a complex and multifaceted phenomenon with unique morphological changes observed in each of the three taxa studied.


Subject(s)
Chiroptera , Face , Primates , Skull , Animals , Chiroptera/anatomy & histology , Skull/anatomy & histology , Dogs/anatomy & histology , Primates/anatomy & histology , Face/anatomy & histology , Biological Evolution
3.
Adv Exp Med Biol ; 1458: 217-231, 2024.
Article in English | MEDLINE | ID: mdl-39102199

ABSTRACT

Climatic change, which influences population growth and land usage, has been theorized to be linked to the emergence and spread of new viruses like the currently unfolding COVID-19 pandemic. In this chapter, we explain how climate change may have altered the beginning, transmission, and maybe even the sickness consequences of the COVID-19 pandemic. Where possible, we also provide mechanistic explanations for how this may have occurred. We have presented evidence that suggests climate change may have had a role in the establishment and transmission of SARS-CoV-2 infection, and most possibly even in some of its clinical effects. Human activities bringing people into closer contact with bats and animals like pangolins that potentially represent the intermediate hosts, and evidence that climate-induced changes in vegetation are the main reservoir source of coronaviruses for human infection, are among the explanations. Although there are still unsubstantiated indications that the first viral pathogen may have escaped from a laboratory, it is possible that this encounter took place in the field or in marketplaces in the instance of COVID-19. We also present the argument that climate change is working to enhance transmission between diseased and uninfected humans, and this is true regardless of the source of the original development of the disease. Changes in temperature and humidity make it easier for viruses to survive, and the impacts of industrial pollution induce people to cough and sneeze, which releases highly infectious aerosols into the air. These three factors combine to make this a more likely scenario than it would otherwise be. We suggest that changes in climate are contributing to create conditions that are favorable for the development of more severe symptoms of illness. It is more difficult to build the argument for this circumstance, and much of it is indirect. However, climate change has caused some communities to adjust their nutritional habits, both in terms of the quantity of food they eat and the quality of the foods they consume. The effects frequently become apparent as a result of alterations that are imposed on the microbiome of the gut, which, in turn, influence the types of immune responses that are produced. The incidence of comorbidities like diabetes and animal vectors like bats that transmit other illnesses that modify vulnerability to SARS-CoV-2 are also two examples of the factors that have been affected by climate change. In order to curb the development of infectious illnesses caused by new viruses, it is necessary to understand the connection between environmental dynamics and the emergence of new coronaviruses. This knowledge should lead to initiatives aimed at reducing global greenhouse gas emissions.


Subject(s)
COVID-19 , Climate Change , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Humans , SARS-CoV-2/pathogenicity , Animals , Pandemics , Chiroptera/virology
5.
PeerJ ; 12: e17824, 2024.
Article in English | MEDLINE | ID: mdl-39071138

ABSTRACT

Bats are the only mammals capable of powered flight and have correspondingly specialized body plans, particularly in their limb morphology. The origin of bat flight is still not fully understood due to an uninformative fossil record but, from the perspective of a functional transition, it is widely hypothesized that bats evolved from gliding ancestors. Here, we test predictions of the gliding-to-flying hypothesis of the origin of bat flight by using phylogenetic comparative methods to model the evolution of forelimb and hindlimb traits on a dataset spanning four extinct bats and 231 extant mammals with diverse locomotor modes. Our results reveal that gliders exhibit adaptive trait optima (1) toward relatively elongate forelimbs that are intermediate between those of bats and non-gliding arborealists, and (2) toward relatively narrower but not longer hindlimbs that are intermediate between those of non-gliders and bats. We propose an adaptive landscape based on limb length and width optimal trends derived from our modeling analyses. Our results support a hypothetical evolutionary pathway wherein glider-like postcranial morphology precedes a bat-like morphology adapted to powered-flight, setting a foundation for future developmental, biomechanical, and evolutionary research to test this idea.


Subject(s)
Biological Evolution , Chiroptera , Flight, Animal , Forelimb , Phylogeny , Chiroptera/anatomy & histology , Chiroptera/physiology , Animals , Flight, Animal/physiology , Forelimb/anatomy & histology , Forelimb/physiology , Hindlimb/anatomy & histology , Hindlimb/physiology , Fossils , Biomechanical Phenomena
6.
J R Soc Interface ; 21(216): 20230593, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981517

ABSTRACT

Birds, bats and insects have evolved unique wing structures to achieve a wide range of flight capabilities. Insects have relatively stiff and passive wings, birds have a complex and hierarchical feathered structure and bats have an articulated skeletal system integrated with a highly stretchable skin. The compliant skin of the wing distinguishes bats from all other flying animals and contributes to bats' remarkable, highly manoeuvrable flight performance and high energetic efficiency. The structural and functional complexity of the bat wing skin is one of the least understood although important elements of the bat flight anatomy. The wing skin has two unusual features: a discrete array of very soft elastin fibres and a discrete array of skeletal muscle fibres. The latter is intriguing because skeletal muscle is typically attached to bone, so the arrangement of intramembranous muscle in soft skin raises questions about its role in flight. In this paper, we develop a multi-scale chemo-mechanical constitutive model for bat wing skin. The chemo-mechanical model links cross-bridge cycling to a structure-based continuum model that describes the active viscoelastic behaviour of the soft anisotropic skin tissue. Continuum models at the tissue length-scale are valuable as they are easily implemented in commercial finite element codes to solve problems involving complex geometries, loading and boundary conditions. The constitutive model presented in this paper will be used in detailed finite element simulations to improve our understanding of the mechanics of bat flight in the context of wing kinematics and aerodynamic performance.


Subject(s)
Chiroptera , Flight, Animal , Models, Biological , Muscle, Skeletal , Wings, Animal , Animals , Chiroptera/physiology , Chiroptera/anatomy & histology , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Flight, Animal/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/anatomy & histology , Biomechanical Phenomena , Skin Physiological Phenomena
7.
Acta Trop ; 257: 107309, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955321

ABSTRACT

Bats are the second most diverse order of mammals and play a central role in ecosystem dynamics. They are also important reservoirs of potentially zoonotic microorganisms, of which rabies virus is the most lethal among the bat-transmitted zoonotic pathogens. Importantly, recent outbreaks of human rabies have been reported from the Brazilian Amazon. Here we present a survey of bat species and rabies virus (RABV) circulation in a bat assemblage in the Marajó region, northern Brazil. Using data from mist-net captures and bioacoustic sampling, 56 bat species were recorded along the Jacundá River basin over a 10-day expedition in November 2022. For the investigation of RABV, we used the direct fluorescent antibody test (DFAT) and the rapid fluorescent focus inhibition test (RFFIT). In total, 159 bat individuals from 22 species were investigated for RABV. Five adults of the common vampire bat, Desmodus rotundus, showed RABV-specific antibodies in serum samples. Additionally, we report on local residents with injuries caused by D. rotundus bites and the occurrence of colonies of non-hematophagous bats from different species roosting inside human residences. This scenario raises concerns about the risks of new cases of human rabies and other zoonotic diseases associated with bats in the region and highlights the need for epidemiological surveillance and mitigation measures to prevent outbreaks of emerging infectious diseases.


Subject(s)
Antibodies, Viral , Chiroptera , Disease Outbreaks , Rabies virus , Rabies , Zoonoses , Chiroptera/virology , Animals , Brazil/epidemiology , Rabies virus/immunology , Rabies virus/isolation & purification , Rabies virus/classification , Rabies/epidemiology , Rabies/veterinary , Rabies/virology , Humans , Zoonoses/epidemiology , Zoonoses/virology , Antibodies, Viral/blood , Female , Male , Adult , Middle Aged , Adolescent
8.
Viruses ; 16(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39066178

ABSTRACT

Hepatitis B virus (HBV) infection leads to around 800,000 deaths yearly and is considered to be a major public health problem worldwide. However, HBV origins remain poorly understood. Here, we looked for bat HBV (BtHBV) in different bat species in Gabon to investigate the role of these animals as carriers of ancestral hepadnaviruses because these viruses are much more diverse in bats than in other host species. DNA was extracted from 859 bat livers belonging to 11 species collected in caves and villages in the southeast of Gabon and analyzed using PCRs targeting the surface gene. Positive samples were sequenced using the Sanger method. BtHBV DNA was detected in 64 (7.4%) individuals belonging to eight species mainly collected in caves. Thirty-six (36) sequences among the 37 obtained after sequencing were phylogenetically close to the RBHBV strain recently isolated in Gabonese bats, while the remaining sequence was close to a rodent HBV strain isolated in America. The generalized linear mixed model showed that the variable species best explained the occurrence of BtHBV infection in bats. The discovery of a BtHBV strain homologous to a rodent strain in bats raises the possibility that these animals may be carriers of ancestral hepadnaviruses.


Subject(s)
Chiroptera , Genetic Variation , Hepatitis B virus , Hepatitis B , Phylogeny , Chiroptera/virology , Animals , Gabon/epidemiology , Hepatitis B virus/genetics , Hepatitis B virus/classification , Hepatitis B virus/isolation & purification , Prevalence , Hepatitis B/virology , Hepatitis B/epidemiology , Hepatitis B/veterinary , DNA, Viral/genetics , Sequence Analysis, DNA
9.
Viruses ; 16(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39066276

ABSTRACT

Swine acute diarrhoea syndrome coronavirus (SADS-CoV; Coronaviridae, Rhinacovirus) was detected in 2017 in Guangdong Province (China), where it caused high mortality rates in piglets. According to previous studies, SADS-CoV evolved from horseshoe bat reservoirs. Here, we report the first five Rhinacovirus genomes sequenced in horseshoe bats from Vietnam and their comparisons with data published in China. Our phylogenetic analyses provided evidence for four groups: rhinacoviruses from Rhinolphus pusillus bats, including one from Vietnam; bat rhinacoviruses from Hainan; bat rhinacoviruses from Yunnan showing a divergent synonymous nucleotide composition; and SADS-CoV and related bat viruses, including four rhinacoviruses from Vietnam sampled in Rhinolophus affinis and Rhinolophus thomasi. Our phylogeographic analyses showed that bat rhinacoviruses from Dien Bien (Vietnam) share more affinities with those from Yunnan (China) and that the ancestor of SADS-CoVs arose in Rhinolophus affinis circulating in Guangdong. We detected sequencing errors and artificial chimeric genomes in published data. The two SADS-CoV genomes previously identified as recombinant could also be problematic. The reliable data currently available, therefore, suggests that all SADS-CoV strains originate from a single bat source and that the virus has been spreading in pig farms in several provinces of China for at least seven years since the first outbreak in August 2016.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Genome, Viral , Phylogeny , Swine Diseases , Animals , Chiroptera/virology , Vietnam/epidemiology , China/epidemiology , Swine , Swine Diseases/virology , Swine Diseases/epidemiology , Alphacoronavirus/genetics , Alphacoronavirus/classification , Alphacoronavirus/isolation & purification , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Evolution, Molecular , Phylogeography
10.
Viruses ; 16(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39066279

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19 and responsible for the global coronavirus pandemic which started in 2019. Despite exhaustive efforts to trace its origins, including potential links with pangolins and bats, the precise origins of the virus remain unclear. Bats have been recognized as natural hosts for various coronaviruses, including the Middle East respiratory coronavirus (MERS-CoV) and the SARS-CoV. This study presents a comparative analysis of the SARS-CoV-2 nucleocapsid protein (N) interactome in human and bat cell lines. We identified approximately 168 cellular proteins as interacting partners of SARS-CoV-2 N in human cells and 196 cellular proteins as interacting partners with this protein in bat cells. The results highlight pathways and events that are both common and unique to either bat or human cells. Understanding these interactions is crucial to comprehend the reasons behind the remarkable resilience of bats to viral infections. This study provides a foundation for a deeper understanding of host-virus interactions in different reservoirs.


Subject(s)
COVID-19 , Chiroptera , Coronavirus Nucleocapsid Proteins , Phosphoproteins , Proteomics , SARS-CoV-2 , Chiroptera/virology , Humans , SARS-CoV-2/metabolism , Animals , Coronavirus Nucleocapsid Proteins/metabolism , Cell Line , Proteomics/methods , Phosphoproteins/metabolism , COVID-19/virology , COVID-19/metabolism , Host-Pathogen Interactions , Protein Interaction Maps
11.
Viruses ; 16(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39066295

ABSTRACT

Bats, with their virus tolerance, social behaviors, and mobility, are reservoirs for emerging viruses, including coronaviruses (CoVs) known for genetic flexibility. Studying the cophylogenetic link between bats and CoVs provides vital insights into transmission dynamics and host adaptation. Prior research has yielded valuable insights into phenomena such as host switching, cospeciation, and other dynamics concerning the interaction between CoVs and bats. Nonetheless, a distinct gap exists in the current literature concerning a comparative cophylogenetic analysis focused on elucidating the contributions of sequence fragments to the co-evolution between hosts and viruses. In this study, we analyzed the cophylogenetic patterns of 69 host-virus connections. Among the 69 host-virus links examined, 47 showed significant cophylogeny based on ParaFit and PACo analyses, affirming strong associations. Focusing on two proteins, ORF1ab and spike, we conducted a comparative analysis of host and CoV phylogenies. For ORF1ab, the specific window ranged in multiple sequence alignment (positions 520-680, 770-870, 2930-3070, and 4910-5080) exhibited the lowest Robinson-Foulds (RF) distance (i.e., 84.62%), emphasizing its higher contribution in the cophylogenetic association. Similarly, within the spike region, distinct window ranges (positions 0-140, 60-180, 100-410, 360-550, and 630-730) displayed the lowest RF distance at 88.46%. Our analysis identified six recombination regions within ORF1ab (positions 360-1390, 550-1610, 680-1680, 700-1710, 2060-3090, and 2130-3250), and four within the spike protein (positions 10-510, 50-560, 170-710, and 230-730). The convergence of minimal RF distance regions with combination regions robustly affirms the pivotal role of recombination in viral adaptation to host selection pressures. Furthermore, horizontal gene transfer reveals prominent instances of partial gene transfer events, occurring not only among variants within the same host species but also crossing host species boundaries. This suggests a more intricate pattern of genetic exchange. By employing a multifaceted approach, our comprehensive strategy offers a nuanced understanding of the intricate interactions that govern the co-evolutionary dynamics between bat hosts and CoVs. This deeper insight enhances our comprehension of viral evolution and adaptation mechanisms, shedding light on the broader dynamics that propel viral diversity.


Subject(s)
Chiroptera , Coronavirus , Phylogeny , Chiroptera/virology , Animals , Coronavirus/genetics , Coronavirus/classification , Coronavirus/physiology , Evolution, Molecular , Host-Pathogen Interactions/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Host Specificity , Coronavirus Infections/virology
12.
Elife ; 132024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037770

ABSTRACT

Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.


Subject(s)
Chiroptera , Fibroblasts , Chiroptera/metabolism , Humans , Fibroblasts/metabolism , Animals , Metabolomics , Reactive Oxygen Species/metabolism , Proteomics/methods , Cell Line , Oxygen Consumption , Multiomics
13.
Reprod Fertil Dev ; 362024 Jul.
Article in English | MEDLINE | ID: mdl-38991104

ABSTRACT

Context A population of sperm progenitor cells, known as Asingle spermatogonia, has been described in mammalian testes. During division cycles in spermatogenesis, some cells will form part of the Asingle spermatogonia group, while others form primary spermatocytes. Thus, during spermatogenesis, spermatogonia are the progenitor cells of spermatozoa. Aims In this study, we characterise the spermatogonial stem cells (SSCs) in the testicles of Artibeus jamaicensis and Sturnira lilium bats. The knowledge generated from this will contribute to the understanding of the biology of germ cells and the mechanisms of spermatogenesis in mammals, generating information on wildlife species that are important for biodiversity. Methods Testes were analysed by light and electron microscopy. Likewise, the expression of specific factors of stem cells (Oct4 and C-kit), germ cells (Vasa), cell proliferation (pH3 and SCP1) and testicular somatic cells (MIS, 3ßHSD and Sox9) was characterised by immunofluorescence and western blot. Key results The histological analysis enabled the location of type Asingle, Apaired and Aaligned spermatogonia in the periphery of the seminiferous tubules adjacent to Sertoli cells. The expression of genes of stem and germ cells made it possible to corroborate the distribution of the SSCs. Conclusions Results indicate that type Asingle spermatogonia were not randomly distributed, since proliferative activity was detected in groups of cells adjacent to the seminiferous tubules membrane, suggesting the localisation of spermatogonial niches in a specific region of testes. Implications This study provides evidence for the existence of SSCs in the testis of chiropterans that contribute to the renewal of germline progenitor cells to maintain the reproduction of the organisms.


Subject(s)
Chiroptera , Spermatogenesis , Spermatogonia , Testis , Animals , Male , Testis/cytology , Testis/metabolism , Spermatogonia/cytology , Spermatogenesis/physiology , Stem Cells/cytology , Cell Proliferation , Adult Germline Stem Cells/metabolism , Adult Germline Stem Cells/cytology
14.
J Med Virol ; 96(7): e29782, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011762

ABSTRACT

Extracellular vesicles (EVs) are shown to be a novel viral transmission model capable of increasing a virus's tropism. According to our earlier research, cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or transfected with envelope protein plasmids generate a novel type of EVs that are micrometer-sized and able to encase virus particles. Here, we showed the capacity of these EVs to invade various animals both in vitro and in vivo independent of the angiotensin-converting enzyme 2 receptor. First, via macropinocytosis, intact EVs produced from Vero E6 (monkey) cells were able to enter cells from a variety of animals, including cats, dogs, bats, hamsters, and minks, and vice versa. Second, when given to zebrafish with cutaneous wounds, the EVs showed favorable stability in aqueous environments and entered the fish. Moreover, infection of wild-type (WT) mice with heterogeneous EVs carrying SARS-CoV-2 particles led to a strong cytokine response and a notable amount of lung damage. Conversely, free viral particles did not infect WT mice. These results highlight the variety of processes behind viral transmission and cross-species evolution by indicating that EVs may be possible vehicles for SARS-CoV-2 spillover and raising risk concerns over EVs' potential for viral gene transfer.


Subject(s)
COVID-19 , Extracellular Vesicles , SARS-CoV-2 , Animals , Extracellular Vesicles/virology , Extracellular Vesicles/metabolism , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , COVID-19/transmission , COVID-19/virology , Mice , Chlorocebus aethiops , Vero Cells , Humans , Cricetinae , Coronavirus Envelope Proteins/metabolism , Coronavirus Envelope Proteins/genetics , Dogs , Zebrafish/virology , Cats , Chiroptera/virology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics
15.
Nat Commun ; 15(1): 5878, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997292

ABSTRACT

The bat immune system features multiple unique properties such as dampened inflammatory responses and increased tissue protection, explaining their long lifespan and tolerance to viral infections. Here, we demonstrated that body temperature fluctuations corresponding to different physiological states in bats exert a large impact on their antibody repertoires. At elevated temperatures typical for flight, IgG from the bat species Myotis myotis and Nyctalus noctula show elevated antigen binding strength and diversity, recognizing both pathogen-derived antigens and autoantigens. The opposite is observed at temperatures reflecting inactive physiological states. IgG antibodies of human and other mammals, or antibodies of birds do not appear to behave in a similar way. Importantly, diversification of bat antibody specificities results in preferential recognition of damaged endothelial and epithelial cells, indicating an anti-inflammatory function. The temperature-sensitivity of bat antibodies is mediated by the variable regions of immunoglobulin molecules. Additionally, we uncover specific molecular features of bat IgG, such as low thermodynamic stability and implication of hydrophobic interactions in antigen binding as well as high prevalence of polyreactivity. Overall, our results extend the understanding of bat tolerance to disease and inflammation and highlight the link between metabolism and immunity.


Subject(s)
Chiroptera , Immunoglobulin G , Chiroptera/immunology , Animals , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Humans , Temperature , Antibody Specificity/immunology , Antigens/immunology , Autoantigens/immunology , Autoantigens/metabolism
16.
Science ; 385(6705): 194-200, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991070

ABSTRACT

Millions of hibernating bats across North America have died from white-nose syndrome (WNS), an emerging disease caused by a psychrophilic (cold-loving) fungus, Pseudogymnoascus destructans, that invades their skin. Mechanisms of P. destructans invasion of bat epidermis remain obscure. Guided by our in vivo observations, we modeled hibernation with a newly generated little brown bat (Myotis lucifugus) keratinocyte cell line. We uncovered the stealth intracellular lifestyle of P. destructans, which inhibits apoptosis of keratinocytes and spreads through the cells by two epidermal growth factor receptor (EGFR)-dependent mechanisms: active penetration during torpor and induced endocytosis during arousal. Melanin of endocytosed P. destructans blocks endolysosomal maturation, facilitating P. destructans survival and germination after return to torpor. Blockade of EGFR aborts P. destructans entry into keratinocytes.


Subject(s)
Arousal , Ascomycota , Chiroptera , ErbB Receptors , Hibernation , Keratinocytes , Animals , Apoptosis , Ascomycota/physiology , Ascomycota/pathogenicity , Cell Line , Chiroptera/microbiology , Chiroptera/physiology , Endocytosis , ErbB Receptors/metabolism , Keratinocytes/microbiology , Melanins/metabolism
17.
Science ; 385(6705): 142-143, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991085

ABSTRACT

A fungus uses different cell entry strategies, depending on its host's hibernation status.


Subject(s)
Ascomycota , Chiroptera , Hibernation , Host-Pathogen Interactions , Animals , Chiroptera/microbiology , Chiroptera/physiology , Ascomycota/pathogenicity
18.
Vopr Virusol ; 69(3): 255-265, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38996374

ABSTRACT

INTRODUCTION: Bats are natural reservoirs of coronaviruses (Coronaviridae), which have caused three outbreaks of human disease SARS, MERS and COVID-19 or SARS-2 over the past decade. The purpose of the work is to study the diversity of coronaviruses among bats inhabiting the foothills and mountainous areas of the Republics of Dagestan, Altai and the Kemerovo region. MATERIALS AND METHODS: Samples of bat oral swabs and feces were tested for the presence of coronavirus RNA by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: It has been shown that the greater horseshoe bats (Rhinolophus ferrumequinum), inhabiting the Republic of Dagestan, are carriers of two different coronaviruses. One of the two coronaviruses is a member of the Sarbecovius subgenus of the Betacoronavirus genus, which includes the causative agents of SARS and COVID-19. The second coronavirus is assigned to the Decacovirus subgenus of the Alphacoronavirus genus and is most similar to viruses identified among Rhinolophus spp. from European and Middle Eastern countries. In the Altai Republic and Kemerovo region, coronaviruses belonging to the genus Alphacoronavirus, subgenus Pedacovirus, were found in the smooth-nosed bats: Ikonnikov`s bat (Myotis ikonnikovi) and the eastern bat (Myotis petax). The virus from the Altai Republic from M. ikonnikovi is close to viruses from Japan and Korea, as well as viruses from Myotis spp. from European countries. The virus from the Kemerovo region from M. petax groups with coronaviruses from Myotis spp. from Asian countries and is significantly different from coronaviruses previously discovered in the same natural host.


Subject(s)
Chiroptera , Animals , Chiroptera/virology , Siberia/epidemiology , Phylogeny , Disease Reservoirs/virology , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus/classification , Humans , Feces/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/virology , COVID-19/epidemiology , COVID-19/veterinary , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Coronavirus Infections/epidemiology
19.
Curr Biol ; 34(13): R620-R622, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981425

ABSTRACT

Foraging involves searching for resources distributed in space and time with varying nutritional values. New research suggests that free-ranging wild fruit bats track tree phenology, implicating the use of spatio-temporal mental maps.


Subject(s)
Chiroptera , Cognition , Animals , Chiroptera/physiology , Feeding Behavior
20.
Proc Biol Sci ; 291(2026): 20240855, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981523

ABSTRACT

Understanding how animals meet their daily energy requirements is critical in our rapidly changing world. Small organisms with high metabolic rates can conserve stored energy when food availability is low or increase energy intake when energetic requirements are high, but how they balance this in the wild remains largely unknown. Using miniaturized heart rate transmitters, we continuously quantified energy expenditure, torpor use and foraging behaviour of free-ranging male bats (Nyctalus noctula) in spring and summer. In spring, bats used torpor extensively, characterized by lowered heart rates and consequently low energy expenditures. In contrast, in summer, bats consistently avoided torpor, even though they could have used this low-energy mode. As a consequence, daytime heart rates in summer were three times as high compared with the heart rates in spring. Daily energy use increased by 42% during summer, despite lower thermogenesis costs at higher ambient temperatures. Likely, as a consequence, bats nearly doubled their foraging duration. Overall, our results indicate that summer torpor avoidance, beneficial for sperm production and self-maintenance, comes with a high energetic cost. The ability to identify and monitor such vulnerable energetic life-history stages is particularly important to predict how species will deal with increasing temperatures and changes in their resource landscapes.


Subject(s)
Chiroptera , Energy Metabolism , Heart Rate , Seasons , Animals , Male , Chiroptera/physiology , Torpor/physiology
SELECTION OF CITATIONS
SEARCH DETAIL