Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.356
Filter
1.
Sci Rep ; 14(1): 21220, 2024 09 11.
Article in English | MEDLINE | ID: mdl-39261560

ABSTRACT

One of the most common causes of peritoneal dialysis withdrawal is ultrafiltration failure which is characterized by peritoneal membrane thickening and fibrosis. Although previous studies have demonstrated the inhibitory effect of p38 MAPK inhibitors on peritoneal fibrosis in mice, it was unclear which specific cells contribute to peritoneal fibrosis. To investigate the role of p38 MAPK in peritoneal fibrosis more precisely, we examined the expression of p38 MAPK in human peritoneum and generated systemic inducible p38 MAPK knockout mice and macrophage-specific p38 MAPK knockout mice. Furthermore, the response to lipopolysaccharide (LPS) was assessed in p38 MAPK-knocked down RAW 264.7 cells to further explore the role of p38 MAPK in macrophages. We found that phosphorylated p38 MAPK levels were increased in the thickened peritoneum of both human and mice. Both chlorhexidine gluconate (CG)-treated systemic inducible and macrophage-specific p38 MAPK knockout mice ameliorated peritoneal thickening, mRNA expression related to inflammation and fibrosis, and the number of αSMA- and MAC-2-positive cells in the peritoneum compared to CG control mice. Reduction of p38 MAPK in RAW 264.7 cells suppressed inflammatory mRNA expression induced by LPS. These findings suggest that p38 MAPK in macrophages plays a critical role in peritoneal inflammation and thickening.


Subject(s)
Inflammation , Macrophages , Peritoneal Dialysis , Peritoneal Fibrosis , p38 Mitogen-Activated Protein Kinases , Animals , Humans , Male , Mice , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Inflammation/pathology , Inflammation/metabolism , Inflammation/genetics , Lipopolysaccharides , Macrophages/metabolism , Mice, Knockout , p38 Mitogen-Activated Protein Kinases/metabolism , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/pathology , Peritoneum/pathology , RAW 264.7 Cells
2.
J Appl Oral Sci ; 32: e20240168, 2024.
Article in English | MEDLINE | ID: mdl-39319905

ABSTRACT

OBJECTIVES: This study sought to determine effects of Thai propolis extract mixed in mineral trioxide aggregate (MTA) on matrix metalloproteinase-2 (MMP-2) expression and its activity in inflamed human dental pulp cells (HDPCs). MATERIALS AND METHODS: Interleukin-1ß-primed HDPCs were treated with either the eluate of MTA mixed with distilled water, of MTA mixed with 0.75 mg/ml of the propolis extract, or of Dycal®, 0.75 mg/ml of the propolis extract, or 0.2% (v/v) of chlorhexidine for 24 or 72 h. The viability of HDPCs was determined by the PrestoBlue® cytotoxic assay. HDPCs' lysates were analyzed for MMP-2 mRNA expression by RT-qPCR, while their supernatants were measured for MMP-2 activity by gelatin zymography. RESULTS: At 24 and 72 h, a non-toxic dose of the propolis extract at 0.75 mg/ml by itself or mixed in MTA tended to reduce MMP-2 expression upregulated by MTA, while it further decreased the MMP-2 activity as compared to that of MTA mixed with distilled water. The MMP-2 activity of interleukin-1ß-primed HDPCs treated with the eluate of the propolis extract mixed in MTA was significantly lower than that of interleukin-1ß-primed HDPCs at 24 h (p=0.012). As a control, treatment with chlorhexidine significantly inhibited MMP-2 expression induced by MTA and MMP-2 activity enhanced by interleukin-1ß (p<0.05). Treatment with Dycal® caused a significant increase in HDPC's death, resulting in a significant decrease in MMP-2 expression and activity (p<0.05). CONCLUSIONS: MTA mixed with Thai propolis extract can reduce MMP-2 mRNA expression and activity when compared to MTA mixed with distilled water in inflamed HDPCs.


Subject(s)
Aluminum Compounds , Calcium Compounds , Dental Pulp , Drug Combinations , Matrix Metalloproteinase 2 , Oxides , Propolis , Silicates , Humans , Propolis/pharmacology , Propolis/chemistry , Aluminum Compounds/pharmacology , Matrix Metalloproteinase 2/drug effects , Calcium Compounds/pharmacology , Silicates/pharmacology , Oxides/pharmacology , Dental Pulp/drug effects , Dental Pulp/cytology , Time Factors , Cell Survival/drug effects , Cells, Cultured , Chlorhexidine/pharmacology , Interleukin-1beta , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Analysis of Variance , Materials Testing , Reference Values , Statistics, Nonparametric , Thailand , RNA, Messenger/drug effects , Southeast Asian People
3.
BMC Microbiol ; 24(1): 323, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39237859

ABSTRACT

BACKGROUND: Nosocomial infections are a global problem in hospitals all around the world. It is considered a major health problem, especially in developing countries. The increase in the patient's stay in hospitals has increased the mortality rate, and consequently, the costs drastically increase. The main purpose of using disinfectants in the hospital environment is to reduce the risk of nosocomial infections. Ethylene diamine tetra acetic acid (EDTA) causes lysis and increases susceptibility to antimicrobial agents in the planktonic form of bacteria. This substance affects the permeability of the outer membrane of bacteria. It also prevents the formation of biofilms by bacteria. MATERIALS AND METHODS: In the current study, 120 isolates of Acinetobacter baumannii (A. baumannii) were confirmed by phenotypic and genotypic methods. Antibiogram was performed and then the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of isolates against 5% sodium hypochlorite, ethanol %70, sayasept-HP 2%, chlorhexidine 2%, dettol 4/8% were evaluated. In addition, the disinfectant effect was re-evaluated with the mixture of EDTA solution. All isolates were examined for biofilm presence by crystal violet staining method in triplicates and repeated three times for each strain. Also for all isolates detection of efflux pump genes (Qac-E, qacE-Δ1, SUG-E) by PCR technique was done. RESULTS: Antibiogram results of A. baumannii showed that 6.7% were Multi-drug-resistant (MDR), and 89.2% were Extensively drug-resistant (XDR) isolates. The highest effect of disinfectants was related to 5% sodium hypochlorite, and the least effect was 70% ethanol. EDTA increases the efficacy of selected disinfectants significantly. The highest prevalence of the efflux pump genes was related to SUG-E (95%) and Qac-E (91.7%), and, the qacE-Δ1 gene with 12.5%. The biofilm production rate was 91.3% among all isolates. CONCLUSION: The best and safest way to disinfect hospital floors and surfaces is to choose the right disinfectants, and learn how to use them properly. In this study, a mixture of disinfectants and EDTA had a significant effect on bactericidal activity. it was found that improper use of disinfectants, especially the use of sub-inhibitory dilutions, increases the resistance of bacteria to disinfectants.


Subject(s)
Acinetobacter baumannii , Biofilms , Disinfectants , Genotype , Microbial Sensitivity Tests , Phenotype , Biofilms/drug effects , Biofilms/growth & development , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Acinetobacter baumannii/physiology , Acinetobacter baumannii/isolation & purification , Disinfectants/pharmacology , Humans , Iran , Edetic Acid/pharmacology , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Acinetobacter Infections/microbiology , Sodium Hypochlorite/pharmacology , Cross Infection/microbiology , Chlorhexidine/pharmacology
4.
Dent Med Probl ; 61(4): 593-598, 2024.
Article in English | MEDLINE | ID: mdl-39150236

ABSTRACT

BACKGROUND: The probability of a positive outcome of root canal therapy is substantially higher if the infection is eradicated successfully before the obturation of the root canal system. Irrigation is an essential aspect of root canal debridement, as it enables more thorough cleaning than is possible with root canal instrumentation alone. To overcome the side effects of chemical irrigants, there has been a search for herbal medicines as substitutes. OBJECTIVES: The aim of the present study was to explore the antimicrobial efficacy of white tea-mediated silver nanoparticles (AgNPs) formulated as an intracanal irrigant against Enterococcus faecalis, and to compare it with the efficacy of chlorhexidine and sodium hypochlorite irrigants. MATERIAL AND METHODS: The experimental groups were as follows: group I - white tea-mediated AgNPs; group II - 2% chlorhexidine; and group III - 2.5% sodium hypochlorite. The characterization of AgNPs was performed using ultraviolet-visible (UV-Vis) spectroscopy and transmission electron microscopy (TEM) analysis. Enterococcus faecalis was inoculated onto Mueller-Hinton agar plates. The disks impregnated with irrigants were placed on the inoculated plates and incubated aerobically at 37°C for 24 h. Then, the growth inhibition zones were measured. Statistical analysis was performed using the one-way analysis of variance (ANOVA) and the post hoc tests. RESULTS: A concentration of 50 µL of white tea-mediated AgNPs exhibited the greatest zone of inhibition (32 ±2 mm), followed by 2% chlorhexidine (25 ±1 mm) and 2.5% sodium hypochlorite (23 ±3 mm). CONCLUSIONS: White tea-mediated AgNPs showed promising results in the elimination of E. faecalis, being superior to chlorhexidine and sodium hypochlorite irrigants.


Subject(s)
Chlorhexidine , Enterococcus faecalis , Metal Nanoparticles , Root Canal Irrigants , Silver , Sodium Hypochlorite , Enterococcus faecalis/drug effects , Silver/pharmacology , Root Canal Irrigants/pharmacology , Root Canal Irrigants/administration & dosage , Chlorhexidine/pharmacology , Chlorhexidine/administration & dosage , Sodium Hypochlorite/pharmacology , In Vitro Techniques , Tea , Humans
5.
Sci Rep ; 14(1): 19223, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160198

ABSTRACT

To assess the biochemical, mechanical and structural characteristics of retained dentin after applying three novel bromelain-contained chemomechanical caries removal (CMCR) formulations in comparison to the conventional excavation methods (hand and rotary) and a commercial papain-contained gel (Brix 3000). Seventy-two extracted permanent molars with natural occlusal carious lesions (score > 4 following the International Caries Detection and Assessment System (ICDAS-II)) were randomly allocated into six groups (n = 12) according to the excavation methods: hand excavation, rotary excavation, Brix 3000, bromelain-contained gel (F1), bromelain-chloramine-T (F2), and bromelain-chlorhexidine gel (F3). The superficial and deeper layers of residual dentin were examined by Raman microspectroscopy and Vickers microhardness, while the surface morphology was assessed by the scanning electron microscope (SEM). A multivariate analysis of variance followed by Tukey's test (p > 0.05) was performed for data analysis. The novel formulations showed an ability to preserve the partially demineralized dentin that showed a reduced phosphate content with a higher organic matrix. This was associated with lower Vickers microhardness values in comparison to sound dentin and rotary excavation. The collagen integration ratio in all methods was close to sound dentin (0.9-1.0) at the deeper dentin layer. The bromelain-chloramine-T gel (F2) produced the smoothest smear-free dentin surface with a higher number of opened dentinal tubules. In contrast, dense smearing covering the remaining dentin was observed in the manual and rotary methods with obstructed dentin tubule orifices. The bromelain-contained formulations can be considered a new minimally invasive approach for selectively removing caries in deep cavitated dentin lesions.


Subject(s)
Dental Caries , Dentin , Dental Caries/therapy , Dental Caries/pathology , Humans , Dentin/chemistry , Bromelains/pharmacology , Bromelains/chemistry , Papain/metabolism , Molar , Microscopy, Electron, Scanning , Chlorhexidine/pharmacology
6.
J Mech Behav Biomed Mater ; 158: 106678, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39096683

ABSTRACT

OBJECTIVE: Analyze the effects of the functionalization of pre-functionalized GIC particles with chlorhexidine on the physicochemical properties and antimicrobial activity. MATERIALS AND METHODS: Four groups were prepared: (1) GIC (Bioglass R - Biodinamica) - control group; (2) GIC-CHX 1%: Group containing 1% pre-reacted CHX particles; (3) GIC-CHX 2.5%: Group containing 2.5% pre-reacted CHX particles; (4) GIC-CHX 5%: Group containing 5% pre-reacted CHX particles. Hourglass-shaped specimens (10 mm × 2 mm x 1 mm) were fabricated for mechanical tests including cohesive strength (n = 12), modulus of elasticity (n = 12) and microhardness (n = 10). Discs (10 mm × 2 mm) were prepared for the analysis of Ca+2, PO4- and F- ions release (n = 3), and roughness (n = 12). To evaluate the setting time, a Gilmore needle was used according to ISO 9917-1:2016. Disk-shaped specimens (5 × 1mm) were manufactured and subjected to bacterial activity (n = 9) (Streptococcus mutans ATCC 159). RESULTS: Modulus, roughness, setting time and ions release (Ca+2, PO4-, and F-) there were no statistically significant differences among the groups (p > 0.05). The setting time did not change with the incorporation of CHX. The GIC-CHX 2.5% and GIC-CHX 5% groups exhibited superior antibacterial activity compared to the control group and GIC-CHX 1% (p < 0.001). The GIC-CHX 5% group showed the highest microhardness values (p < 0.041), cohesive strength (p < 0.009) when compared to the control group. CONCLUSION: The pre-reacted CHX in GICs was able to confer antimicrobial activity, improve cohesive strength, microhardness, and did not impair ion release, setting time, and roughness.


Subject(s)
Chlorhexidine , Glass Ionomer Cements , Materials Testing , Chlorhexidine/chemistry , Chlorhexidine/pharmacology , Glass Ionomer Cements/chemistry , Glass Ionomer Cements/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Streptococcus mutans/drug effects , Hardness , Mechanical Phenomena , Surface Properties , Chemical Phenomena , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
7.
Am J Dent ; 37(4): 210-215, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39186603

ABSTRACT

PURPOSE: To investigate the stain preventing ability of a new chlorhexidine mouthwash while maintaining efficacy using a randomized clinical trial design. METHODS: 98 subjects were enrolled and completed a 4-week clinical study that evaluated the effectiveness of the new mouthwash on plaque, gingivitis, and staining as compared to a commercially available chlorhexidine mouthwash. A subset of 62 subjects was evaluated for the effectiveness of the mouthwashes against plaque bacteria. RESULTS: After 4 weeks of use, the new chlorhexidine mouthwash reduced staining by 42.6% (P< 0.05) as compared to the commercially available mouthwash. The two mouthwashes were equivalent with regards to their effect on gingivitis, plaque, and plaque bacteria. CLINICAL SIGNIFICANCE: A new mouthwash, containing 0.12% chlorhexidine gluconate, has been developed that delivers stain reduction while maintaining equivalent efficacy to a commercially available chlorhexidine mouthwash with regards to gingivitis, plaque, and plaque bacteria. These findings should be considered by dental practitioners when making recommendations to patients whose teeth stain easily and need an anti-gingivitis and anti-plaque mouthwash.


Subject(s)
Anti-Infective Agents, Local , Chlorhexidine , Dental Plaque , Gingivitis , Mouthwashes , Tooth Discoloration , Humans , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Chlorhexidine/therapeutic use , Dental Plaque/prevention & control , Gingivitis/prevention & control , Female , Male , Anti-Infective Agents, Local/therapeutic use , Adult , Middle Aged , Young Adult
8.
Molecules ; 29(16)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39202881

ABSTRACT

Worldwide, synthetic compounds are used for both in-office and at-home dental care. They are a valuable resource for both prophylactic and curative treatments for various dental problems, such as tooth decay, periodontal diseases, and many more. They are typically preferred due to their broad range of actions and ability to produce targeted, rapid, and long-lasting effects. Using a 0.12% chlorhexidine mouthwash is capable of reducing the plaque index from 47.69% to 2.37% and the bleeding index from 32.93% to 6.28% after just 2 weeks. Mouthwash with 0.1% OCT is also highly effective, as it significantly lowered the median plaque index and salivary bacterial counts in 152 patients in 5 days compared to a control group (p < 0.0001), while also reducing the gingival index (p < 0.001). When povidone-iodine was used as an irrigant during the surgical removal of mandibular third molars in 105 patients, it resulted in notably lower pain scores after 2 days compared to a control group (4.57 ± 0.60 vs. 5.71 ± 0.45). Sodium hypochlorite is excellent for root canal disinfection, as irrigating with 1% NaOCl completely eliminated the bacteria from canals in 65% patients. A 0.05% CPC mouthwash proved effective for perioperative patient care, significantly decreasing gingival bleeding (p < 0.001) and suppressing Streptococcus levels even one week post-surgery. Lastly, a 6% H2O2 paint-on varnish and 6% H2O2 tray formulations successfully bleached the teeth of 40 patients, maintaining a noticeably whiter appearance up to the 6-month follow-up, with significant color differences from the baseline (p < 0.005). Synthetic compounds have a large research base, which also provides a greater awareness of their mechanism of action and potential adverse effects. For a better understanding of how they work, several methods and assays are performed. These are protocolary techniques through which a compound's efficacy and toxicity are established.


Subject(s)
Mouthwashes , Humans , Mouthwashes/pharmacology , Dentistry , Chlorhexidine/pharmacology , Chlorhexidine/therapeutic use
9.
J Med Microbiol ; 73(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39207836

ABSTRACT

Introduction. The global spread of Acinetobacter spp., particularly the Acinetobacter calcoaceticusbaumannii (ACB) complex, has led to its recognition as a significant pathogen by the World Health Organization (WHO). The increasing resistance of the ACB complex to multiple antibiotics presents a challenge for treatment, necessitating accurate antibiotic susceptibility profiling after isolation.Hypothesis or gap statement. There is limited understanding of the antimicrobial resistance and chlorhexidine, a biocide, susceptibility profiles of ACB complex strains, especially in clinical settings in Turkey.Aim. This study aimed to identify ACB complex strains recovered from various clinical specimens at Hacettepe University Hospitals in Ankara, Turkey, in 2019, and to assess identification, their antibiotic and chlorhexidine susceptibility profiles, and genomic relatedness.Methodology. Eighty-two ACB complex strains were identified using MALDI-TOF MS. Susceptibility testing to 12 antibiotics was conducted using the disc diffusion method, and colistin, chlorhexidine susceptibility was assessed using the broth microdilution technique, following the latest EUCAST and CLSI guidelines. ACB complex members with reduced chlorhexidine sensitivity were further analyzed by pulsed-field gel electrophoresis (PFGE) for bacterial typing.Results. Among the isolates, 1.2% were multidrug-resistant (MDR), 73.2% were extensively drug-resistant (XDR), and 12.2% were pandrug-resistant (PDR). Carbapenem resistance was found in 86.7% of MDR, PDR, and XDR strains. Colistin resistance was observed in 15.8% of isolates, and 18.2% exhibited decreased susceptibility to chlorhexidine. PFGE revealed seven different clones among strains with reduced chlorhexidine sensitivity, indicating vertical transmission within the hospital.Conclusion. This study highlights the reduced susceptibility to chlorhexidine in ACB complex members and provides epidemiological insights into their spread. The findings underscore the importance of screening for antimicrobial resistance and biocide susceptibility profiles to effectively manage healthcare-associated infections.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Chlorhexidine , Electrophoresis, Gel, Pulsed-Field , Microbial Sensitivity Tests , Chlorhexidine/pharmacology , Turkey/epidemiology , Humans , Anti-Bacterial Agents/pharmacology , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Acinetobacter calcoaceticus/drug effects , Acinetobacter calcoaceticus/genetics , Acinetobacter calcoaceticus/classification , Acinetobacter calcoaceticus/isolation & purification , Female , Adult , Male , Middle Aged , Molecular Typing/methods , Young Adult , Aged , Adolescent , Child , Child, Preschool , Infant , Drug Resistance, Multiple, Bacterial/genetics , Aged, 80 and over
10.
J Sex Med ; 21(9): 816-822, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38979774

ABSTRACT

BACKGROUND: Chlorhexidine gluconate (CHG) (0.05%) has recently been suggested as both a dip for the hydrophilic surface and an irrigation solution in the setting of penile prosthesis (PP) surgery. AIM: The study sought to compare the antimicrobial efficacy of 0.05% CHG with vancomycin and gentamicin (VG) antibiotics as dip and/or irrigation solutions in the setting of a hydrophilic PP surface in vitro. METHODS: Sterile PPs with a hydrophilic coating were obtained. A series of experiments were performed to evaluate the efficacy of normal saline (NS), 0.05% CHG, or VG as dip and/or irrigation solutions to reduce methicillin-sensitive Staphylococcus aureus adhesion to PP surfaces. The 8-mm discs from PPs were incubated in 105 colony-forming units/mL of methicillin-sensitive S aureus for 48 hours, plated, and counted. Disc-diffusion tests were conducted by suspending 6-mm discs for 2 minutes in NS, 0.05% CHG, or VG, then placing them coated side down onto plates streaked with the following organisms: methicillin-sensitive S aureus, S epidermidis, Enterococcus, and Escherichia coli. After 24 hours of growth, zones of inhibition were measured. OUTCOMES: We found average bacterial counts (colony-forming units/mL) and zones of inhibition (mm) following a series of treatment protocols of PP discs. RESULTS: PP discs dipped in VG reduced bacterial adhesion to the implant surface >0.05% CHG (~5.5 log vs ~1.5 log; P < .01). Discs irrigated with either 0.05% CHG or NS removed all dip solution adsorbed to the hydrophilic surface, allowing bacterial growth. VG irrigation adsorbed to the hydrophilic surface even after 0.05% CHG or NS dips, reducing bacterial adherence (~3 log). Dipping and irrigating discs with VG was most effective in reducing adherent bacteria (~5.5 log) and was the only irrigation that showed antimicrobial activity. CLINICAL TRANSLATION: VG, when used both as a prophylactic dip and as an intraoperative irrigation solution for hydrophilic penile implant surfaces, has improved efficacy to 0.05% CHG and NS. STRENGTHS AND LIMITATIONS: This is the first study to compare the use of VG, 0.05% CHG, and NS as prophylactic dips and intraoperative irrigations for hydrophilic penile implant surfaces. Limitations include the use of in vitro studies, which serve as a proxy for in vivo practices and may not be entirely accurate nor translatable clinically. CONCLUSION: We demonstrated the superior efficacy of VG as a combined dip and irrigation solution for hydrophilic penile implant surfaces compared with 0.05% CHG.


Subject(s)
Anti-Bacterial Agents , Chlorhexidine , Gentamicins , Penile Prosthesis , Therapeutic Irrigation , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Chlorhexidine/administration & dosage , Humans , Gentamicins/pharmacology , Gentamicins/administration & dosage , Male , Therapeutic Irrigation/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/administration & dosage , Vancomycin/pharmacology , Vancomycin/administration & dosage , Hydrophobic and Hydrophilic Interactions , Prosthesis-Related Infections/prevention & control
11.
Colloids Surf B Biointerfaces ; 243: 114117, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39084056

ABSTRACT

Guided bone regeneration (GBR) is currently the most widely used bone augmentation technique in oral clinics. However, infection and soft tissue management remain the greatest challenge. In this study, a Janus sponge/electrospun fibre membrane containing epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and chlorhexidine (CHX) were prepared to optimize its application as a barrier membrane for GBR. The loose sponge part was covalently bonded with the fiber part which has a dense structure. The composed scaffold exhibited superior biocompatibility and antibacterial activity verified by in vitro test. A rat model of unilateral skull bone injury was used to confirm the effectiveness on both hard and soft tissue regeneration. The chitosan sponge on the soft tissue side containing EGF, bFGF and CHX had a loose structure, promoting collagen and cell regeneration and exerting an antibacterial effect. Meanwhile, the dense PLGA/PCL layer on the hard tissue side prevented fibroblast entry into the bone defect, thereby facilitating bone regeneration. The Janus composite scaffold provides a promising strategy for oral tissue restoration.


Subject(s)
Bone Regeneration , Chlorhexidine , Epidermal Growth Factor , Fibroblast Growth Factor 2 , Animals , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/chemistry , Bone Regeneration/drug effects , Rats , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/chemistry , Chlorhexidine/pharmacology , Chlorhexidine/chemistry , Rats, Sprague-Dawley , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tissue Scaffolds/chemistry , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Guided Tissue Regeneration/methods , Chitosan/chemistry , Chitosan/pharmacology
12.
J Sex Med ; 21(9): 823-826, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39079058

ABSTRACT

BACKGROUND: 0.05% Chlorhexidine gluconate (CHG; Irrisept [IrriMax]) is a commercial wound irrigation solution approved by the Food and Drug Administration that has seen recent adoption in the field of prosthetic urology; however, no study has evaluated whether 0.05% CHG is compatible with the minocycline-rifampin-impregnated surface (InhibiZone) of the AMS 700 penile prosthesis (Boston Scientific). AIM: To evaluate whether 0.05% CHG alters the antibiotic efficacy of the minocycline-rifampin-impregnated penile prosthesis surface. METHODS: Discs (8 mm) were taken by a punch biopsy (Sklar) from sterile penile prosthesis reservoirs whose surfaces had been impregnated with rifampin and minocycline. Discs (n = 10) were suspended in 0.05% CHG, vancomycin and gentamicin, or normal saline for 2 minutes to simulate intraoperative irrigation. Discs were then rinsed in normal saline to remove any unbound solution and incubated with methicillin-sensitive Staphylococcus aureus for 48 hours. Adherent surface bacteria were suspended by shaking in a 0.3% Tween 20 solution, serially diluted, plated onto 3M PetriFilms, and counted. Kirby-Bauer disc diffusion assays were conducted to generalize findings across various organisms. OUTCOMES: Outcomes included (1) bacterial adherence to the implant surface measured as bacterial counts (in colony-forming units per milliliter) and (2) bacterial growth reduction measured as zones of inhibitions (in millimeters). RESULTS: Incubation of implant surfaces in 0.05% CHG did not alter recovered bacterial counts as compared with normal saline and vancomycin/gentamycin. Similarly, within a single bacterial species, 0.05% CHG and vancomycin/gentamycin did not alter zone-of-inhibition measurements in Kirby-Bauer disc diffusion studies. CLINICAL TRANSLATION: This study demonstrates in vitro that 0.05% CHG may be used directly on the minocycline-rifampin-impregnated surface without altering the antibiotic efficacy of the coating. STRENGTHS AND LIMITATIONS: Strengths include that this is the first study to evaluate if 0.05% CHG affected the minocycline-rifampin-impregnated surface. Limitations include the use of in vitro studies, which serve as a proxy for in vivo practices and may not be entirely accurate or translatable in a clinical setting. CONCLUSION: 0.05% CHG does not alter the antimicrobial activity of the minocycline-rifampin-impregnated surface as compared with vancomycin/gentamycin and normal saline in vitro; however, its efficacy in clinical practice remains to be evaluated.


Subject(s)
Anti-Bacterial Agents , Chlorhexidine , Minocycline , Penile Prosthesis , Rifampin , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Chlorhexidine/administration & dosage , Humans , Minocycline/pharmacology , Minocycline/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Male , Rifampin/pharmacology , Rifampin/administration & dosage , Therapeutic Irrigation/methods , Gentamicins/pharmacology , Gentamicins/administration & dosage , Vancomycin/pharmacology , Vancomycin/administration & dosage , Staphylococcus aureus/drug effects , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/administration & dosage
13.
Lasers Med Sci ; 39(1): 184, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020076

ABSTRACT

PURPOSE: This study aimed to investigate the efficiency of antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans biofilm in the oral cavity using the photosensitizer chloroaluminum phthalocyanine encapsulated in chitosan nanoparticles (ClAlPc/Ch) at three preirradiation times. METHODS: Biofilms of Streptococcus mutans strains (ATCC 25,175) were cultivated on bovine tooth blocks and exposed to a 10% sucrose solution three times a day for 1 min over three consecutive days. The samples were randomly distributed into five treatment groups (n = 5): (I) aPDT with ClAlPc/Ch with a preirradiation time of 5 min (F5), (II) aPDT with ClAlPc/Ch with a preirradiation time of 15 min (F15), (III) aPDT with ClAlPc/Ch with a preirradiation time of 30 min (F30), (IV) 0.12% chlorhexidine digluconate (CHX), and (V) 0.9% saline solution (NaCl). After treatment, the S. mutans biofilms formed on each specimen were collected to determine the number of viable bacteria (colony-forming units (CFU)/mL). Data were analyzed for normality using the Shapiro-Wilk test and the analysis of variance (ANOVA) and Tukey HSD tests to analyze the number of viable bacteria (α = 0.05). RESULTS: The one-way ANOVA showed a difference between the groups (p = 0.0003), and the Tukey HSD posttest showed that CHX had the highest microbial reduction of S. mutans, not statistically different from the F5 and F15 groups, whereas the NaCl group had the lowest microbial reduction statistically similar to the F30 group. CONCLUSION: The results demonstrate that aPDT mediated by ClAlPc/Ch when used at preirradiation times of 5-15 min can be an effective approach in controlling cariogenic biofilm of S. mutans, being an alternative to 0.12% CHX.


Subject(s)
Biofilms , Chitosan , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Streptococcus mutans , Streptococcus mutans/drug effects , Streptococcus mutans/radiation effects , Streptococcus mutans/physiology , Photochemotherapy/methods , Chitosan/pharmacology , Chitosan/chemistry , Nanoparticles/chemistry , Biofilms/drug effects , Biofilms/radiation effects , Animals , Cattle , Photosensitizing Agents/pharmacology , In Vitro Techniques , Indoles/pharmacology , Mouth/microbiology , Chlorhexidine/pharmacology , Chlorhexidine/analogs & derivatives , Microbial Viability/drug effects , Microbial Viability/radiation effects , Organometallic Compounds
14.
J Hosp Infect ; 151: 99-108, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992843

ABSTRACT

BACKGROUND: Chlorhexidine gluconate (CHG) and povidone-iodine (PI) are commonly used to prevent prosthetic joint infection (PJI) during total joint replacement; however, their effective concentrations and impact on biofilms are not well defined. AIM: To determine: (1) the in-vitro minimum inhibitory concentration of CHG and PI against model PJI-causing organisms and clinical isolates; (2) their impact on biofilm formation; (3) whether there is a synergistic benefit to combining the two solutions; and (4) whether adding the antibiotic vancomycin impacts antiseptic activity. METHODS: We measured in-vitro growth and biofilm formation of Staphylococcus epidermidis, meticillin-sensitive and meticillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans, as well as recent clinical isolates, in the presence of increasing concentrations of CHG and/or PI. Checkerboard assays were used to measure potential synergy of the solutions together and with vancomycin. FINDINGS: CHG and PI inhibited growth and biofilm formation of all model organisms tested at concentrations of 0.0004% and 0.33% or lower, respectively; highly dilute concentrations paradoxically increased biofilm formation. The solutions did not synergize with one another and acted independently of vancomycin. CONCLUSION: CHG and PI are effective at lower concentrations than typically used, establishing baselines to support further clinical trials aimed at optimizing wound disinfection. There is no synergistic advantage to using both in combination. Vancomycin is effective at inhibiting the growth of S. epidermidis and S. aureus; however, it stimulates P. aeruginosa biofilm production, suggesting in the rare case of P. aeruginosa PJI, it could exacerbate infection.


Subject(s)
Biofilms , Chlorhexidine , Microbial Sensitivity Tests , Povidone-Iodine , Prosthesis-Related Infections , Vancomycin , Biofilms/drug effects , Biofilms/growth & development , Chlorhexidine/pharmacology , Chlorhexidine/analogs & derivatives , Povidone-Iodine/pharmacology , Vancomycin/pharmacology , Prosthesis-Related Infections/microbiology , Prosthesis-Related Infections/prevention & control , Humans , Drug Synergism , Anti-Infective Agents, Local/pharmacology , Anti-Bacterial Agents/pharmacology , Candida albicans/drug effects , Bacteria/drug effects
15.
Clin Oral Investig ; 28(8): 435, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028340

ABSTRACT

OBJECTIVES: This study aimed to synthesize and characterize colloidal chitosan-silver nanoparticles-fluoride nanocomposite (CCAgNPF) and evaluate its efficacy compared to chlorhexidine on salivary Streptococcus mutans in orthodontic patients. MATERIALS AND METHODS: AgNPs stabilized with chitosan were synthesized by chemical reduction of AgNO3. The nanoparticles were characterized with SEM, FTIR, DLS and ICP-OES. The MIC and MBC against S. mutans and IC50 concentration of CCAgNPF were obtained for antibacterial and cytotoxicity evaluations, respectively. For the clinical study, a total of 45 orthodontic patients were divided into three groups of 15 and used the following mouthwashes twice a day for 1 month: CCAgNPF, chlorhexidine 0.2% and the combination of these mouthwashes. The colony count of salivary S. mutans was evaluated before and after using the mouthwashes. The data were analyzed using One-way ANOVA and Tukey's test. RESULTS: Stabilized AgNPs were spherical with a diameter of 25.3 ± 3.3 nm. The MIC, MBC and IC50 of CCAgNPF were 4.42, 8.85 and 18.89 µg/ml. All mouthwashes reduced the salivary S. mutans of the orthodontic patients, however, no significant difference was found between the efficacy of CCAgNPF and chlorhexidine (P-value > 0.05). The best results were achieved by the combination of CCAgNPF and chlorhexidine mouthwashes (P-value < 0.05). CONCLUSION: The CCAgNPF and its combination with chlorhexidine present potent bactericidal, biocompatible and effective anti-carious mouthwashes for orthodontic patients. CLINICAL RELEVANCE: This study proved CCAgNPF as an antibacterial mouthwash with lower cytotoxicity and side effects for patients undergoing orthodontic treatments to maintain oral hygiene and reduce salivary S. mutans.


Subject(s)
Anti-Bacterial Agents , Chitosan , Chlorhexidine , Fluorides , Metal Nanoparticles , Mouthwashes , Nanocomposites , Silver , Streptococcus mutans , Humans , Streptococcus mutans/drug effects , Chitosan/pharmacology , Chitosan/chemistry , Silver/pharmacology , Silver/chemistry , Mouthwashes/pharmacology , Mouthwashes/chemistry , Nanocomposites/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Female , Male , Fluorides/pharmacology , Fluorides/chemistry , Chlorhexidine/pharmacology , Saliva/microbiology , Adolescent , Microbial Sensitivity Tests
16.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38991984

ABSTRACT

AIMS: We aimed to identify mechanisms underlying the tolerance of Proteus mirabilis-a common cause of catheter associated urinary tract infection-to the clinically used biocides chlorhexidine (CHD) and octenidine (OCT). METHODS AND RESULTS: We adapted three clinical isolates to grow at concentrations of 512 µg ml-1 CHD and 128 µg ml-1 OCT. Genetic characterization and complementation studies revealed mutations inactivating the smvR repressor and increasing smvA efflux expression were associated with adaptation to both biocides. Mutations in mipA (encoding the MltA interacting protein) were less prevalent than smvR mutations and only identified in CHD adapted populations. Mutations in the rppA response regulator were exclusive to one adapted isolate and were linked with reduced polymyxin B susceptibility and a predicted gain of function after biocide adaptation. Biocide adaptation had no impact on crystalline biofilm formation. CONCLUSIONS: SmvR inactivation is a key mechanism in both CHD and OCT tolerance. MipA inactivation alone confers moderate protection against CHD, and rppA showed no direct role in either CHD or OCT susceptibility.


Subject(s)
Chlorhexidine , Imines , Proteus mirabilis , Pyridines , Proteus mirabilis/drug effects , Proteus mirabilis/genetics , Proteus mirabilis/physiology , Chlorhexidine/pharmacology , Imines/pharmacology , Pyridines/pharmacology , Microbial Sensitivity Tests , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/drug effects , Biofilms/growth & development , Proteus Infections/microbiology , Mutation , Drug Resistance, Bacterial/genetics , Anti-Infective Agents, Local/pharmacology , Disinfectants/pharmacology , Catheter-Related Infections/microbiology , Urinary Tract Infections/microbiology
17.
Dent Mater ; 40(10): e41-e51, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38942710

ABSTRACT

OBJECTIVE: Streptococcus mutans (S. mutans) is a major contributor to dental caries, with its ability to synthesize extracellular polysaccharides (EPS) and biofilms. The gcrR gene is a regulator of EPS synthesis and biofilm formation. The objectives of this study were to investigate a novel strategy of combining gcrR gene over-expression with dimethylaminohexadecyl methacrylate (DMAHDM), and to determine their in vivo efficacy in reducing caries in rats for the first time. METHODS: Two types of S. mutans were tested: Parent S. mutans; and gcrR gene over-expressed S. mutans (gcrR OE S. mutans). Bacterial minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were measured with DMAHDM and chlorhexidine (CHX). Biofilm biomass, polysaccharide, lactic acid production, live/dead staining, colony-forming units (CFUs), and metabolic activity (MTT) were evaluated. A Sprague-Dawley rat model was used with parent S. mutans and gcrR OE S. mutans colonization to determine caries-inhibition in vivo. RESULTS: Drug-susceptibility of gcrR OE S. mutans to DMAHDM or CHX was 2-fold higher than that of parent S. mutans. DMAHDM reduced biofilm CFU by 3-4 logs. Importantly, the combined gcrR OE S. mutans+ DMAHDM dual strategy reduced biofilm CFU by 5 logs. In the rat model, the parent S. mutans group had a higher cariogenicity in dentinal (Dm) and extensive dentinal (Dx) regions. The DMAHDM + gcrR OE group reduced the Dm and Dx caries to only 20 % and 0 %, those of parent S. mutans + PBS control group (p < 0.05). The total caries severity of gcrR OE + DMAHDM group was decreased to 51 % that of parent S. mutans control (p < 0.05). SIGNIFICANCE: The strategy of combining S. mutans gcrR over-expression with antibacterial monomer reducing biofilm acids by 97 %, and reduced in vivo total caries in rats by 48 %. The gcrR over-expression + DMAHDM strategy is promising for a wide range of dental applications to inhibit caries and protect tooth structures.


Subject(s)
Anti-Bacterial Agents , Biofilms , Dental Caries , Methacrylates , Microbial Sensitivity Tests , Streptococcus mutans , Animals , Male , Rats , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Biofilms/drug effects , Chlorhexidine/pharmacology , Dental Caries/microbiology , Dental Caries/drug therapy , Methacrylates/pharmacology , Rats, Sprague-Dawley , Streptococcus mutans/drug effects , Streptococcus mutans/genetics
18.
J Microbiol ; 62(8): 683-693, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38935316

ABSTRACT

Enterococcus faecalis is a Gram-positive bacterium that is frequently found in the periapical lesion of patients with apical periodontitis. Its biofilm formation in root canal is closely related to the development of refractory apical periodontitis by providing increased resistance to endodontic treatments. Phage therapy has recently been considered as an efficient therapeutic strategy in controlling various periodontal pathogens. We previously demonstrated the bactericidal capacities of Enterococcus phage vB_EfaS_HEf13 (phage HEf13) against clinically-isolated E. faecalis strains. Here, we investigated whether phage HEf13 affects biofilm formation and pre-formed biofilm of clinically-isolated E. faecalis, and its combinatory effect with endodontic treatments, including chlorhexidine (CHX) and penicillin. The phage HEf13 inhibited biofilm formation and disrupted pre-formed biofilms of E. faecalis in a dose- and time-dependent manner. Interestingly, phage HEf13 destroyed E. faecalis biofilm exopolysaccharide (EPS), which is known to be a major component of bacterial biofilm. Furthermore, combined treatment of phage HEf13 with CHX or penicillin more potently inhibited biofilm formation and disrupted pre-formed biofilm than either treatment alone. Confocal laser scanning microscopic examination demonstrated that these additive effects of the combination treatments on disruption of pre-formed biofilm are mediated by relatively enhanced reduction in thickness distribution and biomass of biofilm. Collectively, our results suggest that the effect of phage HEf13 on E. faecalis biofilm is mediated by its EPS-degrading property, and its combination with endodontic treatments more potently suppresses E. faecalis biofilm, implying that phage HEf13 has potential to be used as a combination therapy against E. faecalis infections.


Subject(s)
Bacteriophages , Biofilms , Enterococcus faecalis , Biofilms/drug effects , Biofilms/growth & development , Enterococcus faecalis/virology , Enterococcus faecalis/drug effects , Enterococcus faecalis/physiology , Bacteriophages/physiology , Humans , Anti-Bacterial Agents/pharmacology , Chlorhexidine/pharmacology , Phage Therapy , Gram-Positive Bacterial Infections/microbiology , Periapical Periodontitis/therapy , Periapical Periodontitis/microbiology , Periapical Periodontitis/virology , Polysaccharides, Bacterial/metabolism
19.
J Appl Oral Sci ; 32: e20230291, 2024.
Article in English | MEDLINE | ID: mdl-38865512

ABSTRACT

The prevalence of gingivitis is substantial within the general population, necessitating rigorous oral hygiene maintenance. OBJECTIVE: This study assessed a Garcinia indica (GI) fruit extract-based mouthrinse, comparing it to a 0.1% turmeric mouthrinse and a 0.2% Chlorhexidine (CHX) mouthrinse. The evaluation encompassed substantivity, staining potential, antimicrobial efficacy and cytocompatibility. METHODOLOGY: The study employed 182 tooth sections. For antimicrobial analysis, 64 extracted human teeth coated with a polymicrobial biofilm were divided into four groups, each receiving an experimental mouthrinse or serving as a control group with distilled water. Microbial reduction was assessed through colony forming units (CFU). Substantivity was evaluated on 54 human tooth sections using a UV spectrophotometer, while staining potential was examined on 64 tooth sections. Cytocompatibility was tested using colorimetric assay to determine non-toxic levels of 0.2% GI fruit extract, 0.1% Turmeric, and 0.2% CHX. RESULTS: Data were analysed with one-way ANOVA (α=0.05). Cell viability was highly significant (p<0.001) in the 0.2% GI group (64.1±0.29) compared to 0.1% Turmeric (40.2±0.34) and 0.2% CHX (10.95±1.40). For antimicrobial activity, both 0.2% GI (20.18±4.81) and 0.2% CHX (28.22±5.41) exhibited no significant difference (P>0.05) at end of 12 hours. However, 0.1% Turmeric showed minimal CFU reduction (P<0.001). Substantivity results at 360 minutes indicated statistically significant higher mean release rate in 0.1%Turmeric (12.47±5.84 ) when compared to 0.2% GI (5.02±3.04) and 0.2% CHX (4.13±2.25) (p<0.001). The overall discoloration changes (∆E) were more prominent in the 0.2% CHX group (18.65±8.3) compared to 0.2% GI (7.61±2.4) and 0.1% Turmeric (7.32±4.9) (P<0.001). CONCLUSION: This study supports 0.2% GI and 0.1% Turmeric mouth rinses as potential natural alternatives to chemical mouth rinses. These findings highlight viability of these natural supplements in oral healthcare.


Subject(s)
Biofilms , Chlorhexidine , Curcuma , Fruit , Garcinia , Mouthwashes , Oral Hygiene , Plant Extracts , Plant Extracts/pharmacology , Humans , Mouthwashes/pharmacology , Chlorhexidine/pharmacology , Garcinia/chemistry , Curcuma/chemistry , Biofilms/drug effects , Oral Hygiene/methods , Fruit/chemistry , Analysis of Variance , Colony Count, Microbial , Reproducibility of Results , Cell Survival/drug effects , Anti-Infective Agents, Local/pharmacology , Spectrophotometry, Ultraviolet , Colorimetry , Materials Testing , Time Factors
20.
Med Sci Monit ; 30: e943353, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825814

ABSTRACT

BACKGROUND Dentin contamination with hemostatic agents before bonding indirect restorations negatively affects the bond strength. However, the consensus on which materials could be used to clean contamination of hemostatic agents has not been explored. The aim of this study was to assess the effect of Katana Cleaner applied on the surface of dentin contaminated with hemostatic agents on the shear bond strength (SBS) of self-adhesive resin cement by comparing it with three other surface cleaners. MATERIAL AND METHODS Ninety dentin specimens were divided into a no contamination group (control) (n=10), 4 groups contaminated with 25% aluminum chloride (Viscostat Clear) (n=40), and 4 groups contaminated with 20% ferric sulfate (Viscostat) (n=40). Subsequently, 4 different cleaners were used for each contamination group (water rinse, phosphoric acid, chlorhexidine, and Katana Cleaner). Then, self-adhesive resin cement was directly bonded to the treated surfaces. All specimens were subjected to 5000 thermal cycles of artificial aging. The shear bond strength was measured using a universal testing machine. RESULTS Two-way analysis of variance showed that the contaminant type as the main factor was statistically non-significant (p=0.655), cleaner type as the main factor was highly significant (p<0.001), and interaction between the contaminant and cleaner was non-significant (p=0.51). The cleaner type was the main factor influencing the bond strength. Phosphoric acid and chlorhexidine showed better performance than Katana Cleaner. CONCLUSIONS Cleaning dentin surface contamination with phosphoric acid and chlorhexidine had better performance than with Katana Cleaner.


Subject(s)
Dental Bonding , Dentin , Hemostatics , Resin Cements , Shear Strength , Humans , Dentin/drug effects , Hemostatics/pharmacology , Dental Bonding/methods , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Materials Testing/methods , Surface Properties/drug effects , Dentin-Bonding Agents , Ferric Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL