Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 838
Filter
1.
Sci Rep ; 14(1): 16622, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025988

ABSTRACT

Natural deep eutectic solvents (NADES) are emerging, environment-friendly solvents that have garnered attention for their application in extracting phenolic compounds. This study investigated the effects of four synthetic NADES on polyphenols extracted from date seeds (DS) using choline chloride (ChCl) as a hydrogen-bond acceptor and lactic acid (La), citric acid (Citri), glycerol (Gly), and fructose (Fruc) as hydrogen-bond donors, in comparison with DS extracts extracted by conventional solvents (water, 70% methanol, and 70% ethanol). The antioxidant activity (DPPH), total phenolic content (TPC) and 6 phenolic compounds were determined using HPLC. The results showed that the ChCl-La and ChCl-Citri systems exhibited a high extraction efficiency regarding TPC, and DPPH in the DS extracts extracted by NADES compare to those DS extracts extracted with conventional solvents (p ˂ 0.001). HPLC results demonstrated that DS extracted by ChCl-La contained all measured phenolic compounds. Also gallic acid and catechin were the major compounds identified in the DS extracts. In addition DS extracted by ChCl-Citri and ChCl-Gly had the highest concentration of catechin. In conclusion, combining NADES is a promising and environment-friendly alternative to the conventional solvent extraction of phenolic compounds from DS.


Subject(s)
Antioxidants , Deep Eutectic Solvents , Phoeniceae , Plant Extracts , Seeds , Seeds/chemistry , Phoeniceae/chemistry , Plant Extracts/chemistry , Deep Eutectic Solvents/chemistry , Antioxidants/chemistry , Phenols/analysis , Phenols/chemistry , Chromatography, High Pressure Liquid/methods , Polyphenols/chemistry , Polyphenols/analysis , Solvents/chemistry , Choline/chemistry , Ultrasonic Waves
2.
Sci Rep ; 14(1): 13613, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871855

ABSTRACT

Propolis extracts have been used in traditional medicines since ages due to its advantageous complex chemical composition. However, the antibacterial and antifungal activity of poplar propolis extracts prepared in Natural Deep Eutectic Solvent (NADES) are seldom studied. This study investigates suitable alternate for ethanol as a solvent for extraction for Polish poplar propolis. It also attempts to identify suitable extraction condition for the efficient transfer of compounds from propolis to the solvents. The extraction efficiency of NADES extracts was assessed in terms of total phenolic content, antioxidant activity and antimicrobial activity. The chemical composition of the extracts was analysed using UHPLC-DAD-QqTOF-MS. Four extracts, prepared in Propylene Glycol, Choline Chloride:Propylene Glycol (1:3), Choline Chloride:Propylene Glycol (1:4) and Choline Chloride:Glycerol (1:2), demonstrated activity and properties similar to ethanolic extract and extraction at 50 °C was found the most suitable for propolis. HPLC analysis confirmed that the chemical cocktail extracted by these solvents from propolis were identical with minor variations in their concentration as compared to its ethanolic extract. Thus, extracts of propolis at 50 °C in Propylene Glycol, Choline Chloride:Propylene Glycol (1:3) and Choline Chloride:Propylene Glycol (1:4) can be alternates for ethanolic extracts.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Propolis , Propolis/chemistry , Propolis/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Propylene Glycol/chemistry , Solvents/chemistry , Choline/chemistry , Deep Eutectic Solvents/chemistry , Phenols/chemistry , Phenols/pharmacology
3.
Eur J Pharm Biopharm ; 201: 114381, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917948

ABSTRACT

The solidification of deep eutectic solvent (DES) through wet impregnation techniques on inert solid carriers is an interesting approach that offers better processing attributes and excellent stability. Herein, DES of Fimasartan (FS) was developed to improve its solubility and bioavailability. The selected DES-FS was solidified by wet impregnation method employing Nesulin US2 and Aerosil 200. The SeDeM-SLA (solid-liquid adsorption) system was employed to investigate flow attributes of solidified DES-FS. Further, the selected solidified DES-FS (A) was characterized by Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (PXRD), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM). The DES comprising Choline Chloride (ChCl): Glycerol (Gly) (1:3) revealed maximum drug solubility (35.6 ± 2.2 mg/mL) and thus opted for solidification. Solidification through wet impregnation was employed using 1:0.5 ratios (DES-FS to carriers). The Index of Good Flow (IGF) value was calculated from the SeDeM-SLA expert system, which indicates the better flow characteristics of solidified DES-FS, particularly with Neusilin US2 [SDES-FS (A)]. The solid-state evaluation data of SDS-FS (A) suggested a transition of FS to an amorphous form, resulting in an increment in solubility and dissolution. A similar trend was reported in the in vivo pharmacokinetic study, which indicated a 2.9 folds increment in the oral bioavailability of FS. Furthermore, excellent stability, i.e., a shelf life of 28.44 months, reported by SDES-FS (A) in accelerated stability studies, suggests better formulation perspectives. In a nutshell, the present study evokes the potentiality of performing solidification through wet impregnation and successful implementation of the SeDeM-SLA expert model, which could find wide applications in pharmaceutical science.


Subject(s)
Biological Availability , Pyrimidines , Solubility , Solvents , Tetrazoles , Solvents/chemistry , Animals , Tetrazoles/chemistry , Tetrazoles/administration & dosage , Tetrazoles/pharmacokinetics , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/administration & dosage , Calorimetry, Differential Scanning/methods , Rats , Male , Biphenyl Compounds/chemistry , Chemistry, Pharmaceutical/methods , X-Ray Diffraction/methods , Drug Compounding/methods , Glycerol/chemistry , Drug Carriers/chemistry , Choline/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Drug Stability , Microscopy, Electron, Scanning/methods
4.
Mikrochim Acta ; 191(7): 399, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38877162

ABSTRACT

Nicotine (3-(1-methyl-2-pyrrolidinyl)pyridine) is one of the most common addictive substances, causing the trace detection of nicotine to be very necessary. Herein, we designed and prepared a functionalized nanocomposite CS-PAA (NaYF4:19.5%Yb,0.5%Tm@NaYF4-PAA) using a simple method. The nicotine concentration was quantitatively detected through the inhibition of choline oxidase activity by nicotine and the luminescence intensity of CS-PAA being quenched by Fe3+. The mechanism of Fe3+ quenching CS-PAA emission was inferred by luminescence lifetime and UV-vis absorption spectra characterization. During the nicotine detection, both excitation (980 nm) and emission (802 nm) wavelengths of CS-PAA enable the avoidance of the interference of background fluorescence in complicated food objects, thus providing high selectivity and sensitivity with a linear range of 5-750 ng/mL and a limit of detection of 9.3 nM. The method exhibits an excellent recovery and relative standard deviation, indicating high accuracy and repeatability of the detection of nicotine.


Subject(s)
Choline , Limit of Detection , Nicotine , Nicotine/analysis , Nicotine/chemistry , Choline/chemistry , Choline/analysis , Nanocomposites/chemistry , Luminescent Measurements/methods , Alcohol Oxidoreductases/chemistry , Luminescence
5.
Int J Biol Macromol ; 271(Pt 1): 132789, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845258

ABSTRACT

Eutectogels based on natural polymers have attracted significant attention as an alternative to easily dehydrated hydrogels and expensive ionogels in the development of flexible strain sensors. The feasibility of employing eutectogels derived from pure natural polymers could be greatly enhanced if their mechanical properties satisfy the requirements of applications. Herein, alginate eutectogels (AEs) with high mechanical properties (tensile strain 217 % and strength 2.26 MPa at fracture), and excellent transparency (over 90 %) are acquired via CaCl2 inducing ionic crosslinking and subsequent deep eutectic solvents (DESs, composed of glycerol and choline chloride) initiating physical crosslinking with a universal solvent- replacement strategy. Among them, sodium alginate, a natural polysaccharide polymer, is selected as representative supporting scaffolds and forms water-insoluble alginate hydrogels (AHs) in CaCl2 coagulation bath. The exchange of DESs with water of AHs not only restrengthens the polymer network by physical crosslinking, but also endows the obtained AEs with long-term solvent retention and high temperature resistance. In addition, the AEs not only have high reliability but also exhibit better linear sensitivity in a wide strain range (0-200 %). In particular, the AEs display multiple sensitivity to stretching, bending, and human motions, demonstrating feasibility as sensitive strain sensors.


Subject(s)
Alginates , Hydrogels , Solvents , Alginates/chemistry , Hydrogels/chemistry , Solvents/chemistry , Glycerol/chemistry , Calcium Chloride/chemistry , Humans , Tensile Strength , Choline/chemistry , Temperature
6.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891947

ABSTRACT

Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a "state-of-the-art" snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.


Subject(s)
Betaine , Cations , Choline , Betaine/chemistry , Betaine/analogs & derivatives , Choline/chemistry , Choline/analogs & derivatives , Cations/chemistry , Esters/chemistry , Quaternary Ammonium Compounds/chemistry , Humans
7.
J Mater Chem B ; 12(25): 6102-6116, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38836422

ABSTRACT

Physical eutectogels as a newly emerging type of conductive gel have gained extensive interest for the next generation multifunctional electronic devices. Nevertheless, some obstacles, including weak mechanical performance, low self-adhesive strength, lack of self-healing capacity, and low conductivity, hinder their practical use in wearable strain sensors. Herein, lignin as a green filler and a multifunctional hydrogen bond donor was directly dissolved in a deep eutectic solvent (DES) composed of acrylic acid (AA) and choline chloride, and lignin-reinforced physical eutectogels (DESL) were obtained by the polymerization of AA. Due to the unique features of lignin and DES, the prepared DESL eutectogels exhibit good transparency, UV shielding capacity, excellent mechanical performance, outstanding self-adhesiveness, superior self-healing properties, and high conductivity. Based on the aforementioned integrated functions, a wearable strain sensor displaying a wide working range (0-1500%), high sensitivity (GF = 18.15), rapid responsiveness, and excellent stability and durability (1000 cycles) and capable of detecting diverse human motions was fabricated. Additionally, by combining DESL sensors with a deep learning technique, a gesture recognition system with accuracy as high as 98.8% was achieved. Overall, this work provides an innovative idea for constructing multifunction-integrated physical eutectogels for application in wearable electronics.


Subject(s)
Deep Learning , Wearable Electronic Devices , Humans , Gels/chemistry , Lignin/chemistry , Acrylates/chemistry , Electric Conductivity , Choline/chemistry , Particle Size , Deep Eutectic Solvents/chemistry
8.
Nature ; 629(8012): 710-716, 2024 May.
Article in English | MEDLINE | ID: mdl-38693265

ABSTRACT

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively1-6. Despite the essential roles of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here we show that the protein encoded by FLVCR1, whose mutation leads to the neurodegenerative syndrome posterior column ataxia and retinitis pigmentosa7-9, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway. Structures of FLVCR1 in the presence of choline and ethanolamine reveal that both metabolites bind to a common binding site comprising aromatic and polar residues. Despite binding to a common site, FLVCR1 interacts in different ways with the larger quaternary amine of choline in and with the primary amine of ethanolamine. Structure-guided mutagenesis identified residues that are crucial for the transport of ethanolamine, but dispensable for choline transport, enabling functional separation of the entry points into the two branches of the Kennedy pathway. Altogether, these studies reveal how FLVCR1 is a high-affinity metabolite transporter that serves as the common origin for phospholipid biosynthesis by two branches of the Kennedy pathway.


Subject(s)
Choline , Ethanolamine , Membrane Transport Proteins , Humans , Binding Sites , Biological Transport/genetics , Choline/chemistry , Choline/metabolism , Ethanolamine/chemistry , Ethanolamine/metabolism , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Models, Molecular , Phosphatidylcholines/metabolism , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphorylation , Mutagenesis
9.
Int J Biol Macromol ; 268(Pt 2): 131997, 2024 May.
Article in English | MEDLINE | ID: mdl-38697420

ABSTRACT

Hybrid ionic fluids (HIFs) are one of the emerging and fascinating sustainable solvent media, a novel environment-friendly solvent for biomolecules. The HIFs have been synthesized by combining a deep eutectic solvent (DES), an ionic liquid (IL) having a common ion. The stability and activity of hen's egg white lysozyme (Lyz) in the presence of a recently designed new class of biocompatible solvents, HIFs have been explored by UV-visible, steady-state fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) along with dynamic light scattering (DLS) measurements. This work emphasizes the effect of DES synthesized by using 1:2 choline chloride and glycerol [Glyn], ILs (1-butly-3-methylimidazolium chloride [BMIM]Cl and choline acetate [Chn][Ac]) and their corresponding HIFs on the structure and functionality of Lyz. Moving forward, we also studied the secondary structure, thermal stability and enzymatic activity and thermodynamic profile of Lyz at pH = 7 in the presence of varying concentrations (0.1 to 0.5) M of [BMIM]Cl, [Chn][Ac] ILs, [Glyn] DES and [Glyn][BMIM]Cl (hybrid ionic fluid1) as well as [Glyn][Chn][Ac] (hybrid ionic fluid2). Spectroscopic results elucidate that ILs affect the activity and structural stability of Lyz, whereas the stability and activity are increased by DES and are maintained by HIFs at all the studied concentrations. Overall, the experimental results studied elucidate expressly that the properties of Lyz are maintained in the presence of hybrid ionic fluid1 while these properties are intensified in hybrid ionic fluid2. This work has elucidated expressly biocompatible green solvents in protein stability and functionality due to the alluring properties of DES, which can counteract the negative effect of ILs in HIFs.


Subject(s)
Ionic Liquids , Muramidase , Ionic Liquids/chemistry , Muramidase/chemistry , Deep Eutectic Solvents/chemistry , Enzyme Stability , Animals , Choline/chemistry , Thermodynamics , Imidazoles/chemistry , Glycerol/chemistry , Solvents/chemistry , Protein Structure, Secondary , Hydrogen-Ion Concentration
10.
Phys Chem Chem Phys ; 26(22): 16218-16233, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38804505

ABSTRACT

The micellization of choline-based anionic surface-active ionic liquids (SAILs) having lauroyl sarcosinate [Sar]-, dodecylsulfate [DS]-, and deoxycholate [Doc]- as counter-ions was investigated in an aqueous medium. Density functional theory (DFT) was employed to investigate the net interactional energy (Enet), extent of non-covalent interactions, and band gap of the choline-based SAILs. The critical micelle concentration (cmc) along with various parameters related to the surface adsorption, counter-ion binding (ß), and polarity of the cores of the micelles were deduced employing surface tension measurements, conductometric titrations and fluorescence spectroscopy, respectively. A dynamic light scattering (DLS) system equipped with zeta-potential measurement set-up and small-angle neutron scattering (SANS) were used to predict the size, zeta-potential, and morphology, respectively, of the formed micelles. Thermodynamic parameters such as standard Gibb's free energy and standard enthalpy change of micellization were calculated using isothermal titration calorimetry (ITC). Upon comparing with sodium salt analogues, it was established that the micellization was predominantly governed by the extent of hydration of [Cho]+, the head groups of the respective anions, and the degree of counter-ion binding (ß). Considering the concentration dependence of the enzyme-SAIL interactions, aqueous solutions of the synthesized SAILs at two different concentrations (below and above the cmc) were utilized as the medium for testing the enzymatic activity of cellulase. The activity of cellulase was found to be ∼7- to ∼13-fold higher compared to that observed in buffers in monomeric solutions of the SAILs and followed the order: [Cho][Sar] > [Cho][DS] > [Cho][Doc]. In the micellar solution, a ∼4- to 5-fold increase in enzymatic activity was observed.


Subject(s)
Cellulase , Choline , Ionic Liquids , Micelles , Water , Ionic Liquids/chemistry , Choline/chemistry , Choline/analogs & derivatives , Cellulase/chemistry , Cellulase/metabolism , Water/chemistry , Thermodynamics , Surface-Active Agents/chemistry , Density Functional Theory
11.
J Mol Graph Model ; 130: 108784, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692127

ABSTRACT

Deep eutectic solvents (DESs) composed of choline chloride (ChCl) and ascorbic acid (AA) were investigated using the molecular dynamics (MD) simulations. The analyses of the configuration, radial distribution function (RDFs), coordination number, spatial distribution function (SDFs), interaction energies, hydrogen bond number, and self-diffusion coefficient of the ChCl/AA binary systems of different concentrations showed that the stability of the hydrogen bond network and the mutual attraction between systems were the strongest at the experimental eutectic concentration (molar ratio of 2:1). In our simulated temperature range from 303.15 to 353.15 K, the hydrogen bonding network of ChCl/AA DES does not undergo considerable alterations, indicating that its stability was insensitive to temperature. In addition, the influence of the water content on the ChCl/AA DES system was further investigated. The simulated results revealed that the water molecules could disrupt the formation of the hydrogen bonding network by occupyin positions that are essential for the formation of hydrogen bonds within the DES system.


Subject(s)
Ascorbic Acid , Choline , Deep Eutectic Solvents , Hydrogen Bonding , Molecular Dynamics Simulation , Choline/chemistry , Ascorbic Acid/chemistry , Deep Eutectic Solvents/chemistry , Water/chemistry , Solvents/chemistry , Temperature
12.
Food Res Int ; 187: 114334, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763634

ABSTRACT

Red-fleshed apple cultivars with an enhanced content of polyphenolic compounds have attracted increasing interest due to their promising health benefits. Here, we have analysed the polyphenolic content of young, red-fleshed apples (RFA) and optimised extraction conditions of phenolics by utilising natural deep eutectic solvents (NDES). We also compare the antioxidant, neuroprotective and antimicrobial activities of NDES- and methanol-extracted phenolics from young RFA. High-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) was used for phenolics identification and quantification. Besides young RFA, ripe red-fleshed, young and ripe white-fleshed apples were analysed, revealing that young RFA possess the highest phenolic content (2078.4 ± 4.0 mg gallic acid equivalent/100 g), and that ripe white-fleshed apples contain the least amount of phenolics (545.0 ± 32.0 mg gallic acid equivalent/100 g). The NDES choline chloride-glycerol containing 40 % w/w H2O gave similar yields at 40 °C as methanol. In addition, the polyphenolics profile, and bioactivities of the NDES extract from young RFA were comparable that of methanol extracts. Altogether, our data show that NDES extracts of young RFA are a promising source of bioactive polyphenolics with potential applications in diverse sectors, e.g., for functional food production, smart material engineering and natural therapies.


Subject(s)
Antioxidants , Deep Eutectic Solvents , Fruit , Malus , Polyphenols , Malus/chemistry , Polyphenols/analysis , Polyphenols/isolation & purification , Antioxidants/analysis , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Fruit/chemistry , Deep Eutectic Solvents/chemistry , Plant Extracts/chemistry , Choline/chemistry , Glycerol/chemistry , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/chemistry , Mass Spectrometry
13.
Phys Chem Chem Phys ; 26(20): 14766-14776, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716816

ABSTRACT

Hybrid ionic fluids (HIFs) are newly emerging and fascinating sustainable solvent media, which are attracting a great deal of scientific interest in protecting the native structure of proteins. For a few decades, there has been a demand to consider ionic liquids (ILs) and deep eutectic solvents (DESs) as biocompatible solvent media for enzymes; however, in some cases, these solvent media also show limitations. Therefore, this work focuses on synthesising novel HIFs to intensify the properties of existing ILs and DESs by mixing them. Herein, HIFs have been synthesised by the amalgamation of a deep eutectic solvent (DES) and an ionic liquid (IL) with a common cation or anion. Later on, the stability and activity of hen's egg white lysozyme (Lyz) in the presence of biocompatible solvent media and HIFs were studied by various techniques such as UV-vis, steady-state fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and dynamic light scattering (DLS) measurements. This work emphasises the effect of a DES (synthesised using 1 : 2 choline chloride and malonic acid) [Maline], ILs (1-butyl-3-methylimidazolium chloride [BMIM]Cl or choline acetate [Chn][Ac]) and their corresponding HIFs on the structure and functionality of Lyz. Moreover, we also studied the secondary structure, thermal stability, enzymatic activity and thermodynamic profile of Lyz at pH = 7 in the presence of varying concentrations (0.1 to 0.5 M) of [BMIM]Cl and [Chn][Ac] ILs, Maline as a DES, and Maline [BMIM]Cl (HIF1) and Maline [Chn][Ac] (HIF2). Spectroscopic results elucidate that ILs affect the activity and structural stability of Lyz. In contrast, the stability and activity are inhibited by DES and are enhanced by HIFs at all the studied concentrations. Overall, the experimental results studied explicitly elucidate that the structure and stability of Lyz are maintained in the presence of HIF1 while these properties are intensified in HIF2. This study shows various applications in biocompatible green solvents, particularly in the stability and functionality of proteins, due to their unique combination where the properties counteract the negative effect of either DESs or ILs in HIFs.


Subject(s)
Deep Eutectic Solvents , Enzyme Stability , Ionic Liquids , Muramidase , Ionic Liquids/chemistry , Muramidase/chemistry , Muramidase/metabolism , Deep Eutectic Solvents/chemistry , Solvents/chemistry , Animals , Chickens , Choline/chemistry
14.
Int J Biol Macromol ; 269(Pt 1): 132055, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704073

ABSTRACT

Pretreatment is the key step to convert lignocelluloses to sustainable biofuels, biochemicals or biomaterials. In this study, a green pretreatment method based on choline chloride-lactic acid deep eutectic solvent (ChCl-LA) and niobium-based single-atom catalyst (Nb/CN) was developed for the fractionation of corn straw and further enzymatic hydrolysis of cellulose. With this strategy, significant lignin removal of 96.5 % could be achieved when corn straw was pretreated by ChCl-LA (1:2) DES over Nb/CN under 120 °C for 6 h. Enzymatic hydrolysis of the cellulose-enriched fraction (CEF) presented high glucose yield of 92.7 % and xylose yield of 67.5 %. In-depth investigations verified that the high yields of fractions and monosaccharides was attributed to the preliminary fractionation by DES and the deep fractionation by Nb/CN. Significantly, compared to other reported soluble catalysts, the synthesized single-atom catalyst displayed excellent reusability by simple filtration and enzymatic hydrolysis. The recyclability experiments showed that the combination of ChCl-LA DES and Nb/CN could be repeated at least three times for corn straw fractionation, moreover, the combination displayed remarkable feedstock adaptability.


Subject(s)
Choline , Deep Eutectic Solvents , Lactic Acid , Lignin , Niobium , Lignin/chemistry , Niobium/chemistry , Catalysis , Choline/chemistry , Hydrolysis , Deep Eutectic Solvents/chemistry , Lactic Acid/chemistry , Zea mays/chemistry , Chemical Fractionation/methods
15.
Carbohydr Polym ; 337: 122165, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710577

ABSTRACT

This research intended to remove residual protein from chitin with proteases in deep eutectic solvents (DESs). The activities of some proteases in several DESs, including choline chloride/p-toluenesulfonic acid, betaine/glycerol (Bet/G), choline chloride/malic acid, choline chloride/lactic acid, and choline chloride/urea, which are capable of dissolving chitin, were tested, and only in Bet/G some proteases were found to be active, with subtilisin A, ficin, and bromelain showing higher activity than other proteases. However, the latter two proteases caused degradation of chitin molecules. Further investigation revealed that subtilisin A in Bet/G did not exhibit "pH memory", which is a universal characteristic displayed by enzymes dispersed in organic phases, and the catalytic characteristics of subtilisin A in Bet/G differed significantly from those in aqueous phase. The conditions for protein removal from chitin by subtilisin A in Bet/G were determined: Chitin dissolved in Bet/G with 0.5 % subtilisin A (442.0 U/mg, based on the mass of chitin) was hydrolyzed at 45 °C for 30 min. The residual protein content in chitin decreased from 5.75 % ± 0.10 % to 1.01 % ± 0.12 %, improving protein removal by 57.20 % compared with protein removal obtained by Bet/G alone. The crystallinity and deacetylation degrees of chitin remained unchanged after the treatment.


Subject(s)
Betaine , Chitin , Deep Eutectic Solvents , Glycerol , Chitin/chemistry , Betaine/chemistry , Glycerol/chemistry , Deep Eutectic Solvents/chemistry , Hydrolysis , Subtilisin/metabolism , Subtilisin/chemistry , Hydrogen-Ion Concentration , Peptide Hydrolases/metabolism , Peptide Hydrolases/chemistry , Choline/chemistry
16.
J Mater Chem B ; 12(22): 5479-5495, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38742683

ABSTRACT

The non-invasive nature and potential for sustained release make transdermal drug administration an appealing treatment option for cancer therapy. However, the strong barrier of the stratum corneum (SC) poses a challenge for the penetration of hydrophilic chemotherapy drugs such as 5-fluorouracil (5-FU). Due to its biocompatibility and capacity to increase drug solubility and permeability, especially when paired with chemical enhancers, such as oleic acid (OA), which is used in this work, choline glycinate ([Cho][Gly]) has emerged as a potential substance for transdermal drug delivery. In this work, we examined the possibility of transdermal delivery of 5-FU for the treatment of breast cancer using an ionic hydrogel formulation consisting of [Cho][Gly] with OA. Small angle neutron scattering, rheological analysis, field emission scanning electron microscopy, and dynamic light scattering analysis were used to characterize the ionic hydrogel. The non-covalent interactions present between [Cho][Gly] and OA were investigated by computational simulations and FTIR spectroscopy methods. When subjected to in vitro drug permeation using goat skin in a Franz diffusion cell, the hydrogel demonstrated sustained release of 5-FU and effective permeability in the order: [Cho][Gly]-OA gel > [Cho][Gly] > PBS (control). The hydrogel also demonstrated 92% cell viability after 48 hours for the human keratinocyte cell line (HaCaT cells) as well as the normal human cell line L-132. The breast cancer cell line MCF-7 and the cervical cancer cell line HeLa were used to study in vitro cytotoxicity that was considerably affected by the 5-FU-loaded hydrogel. These results indicate the potential of the hydrogel as a transdermal drug delivery vehicle for the treatment of breast cancer.


Subject(s)
Administration, Cutaneous , Fluorouracil , Hydrogels , Hydrogels/chemistry , Humans , Fluorouracil/chemistry , Fluorouracil/pharmacology , Fluorouracil/administration & dosage , Animals , Drug Delivery Systems , Cell Survival/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Goats , Drug Liberation , Skin Absorption/drug effects , Oleic Acid/chemistry , Skin/metabolism , Choline/chemistry , Glycine/chemistry , Glycine/administration & dosage , Adhesives/chemistry , Drug Carriers/chemistry
17.
Nature ; 630(8016): 501-508, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778100

ABSTRACT

Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome2-7. Earlier studies concluded that FLVCR1 may function as a haem exporter8-12, whereas FLVCR2 was suggested to act as a haem importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14-16. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation-π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.


Subject(s)
Choline , Ethanolamine , Membrane Transport Proteins , Humans , Binding Sites , Biological Transport , Cations/chemistry , Cations/metabolism , Cell Membrane/metabolism , Cell Membrane/chemistry , Choline/metabolism , Choline/chemistry , Ethanolamine/metabolism , Ethanolamine/chemistry , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Models, Molecular , Protein Conformation , Receptors, Virus/metabolism , Receptors, Virus/chemistry , Substrate Specificity , Tryptophan/metabolism , Tryptophan/chemistry , Tyrosine/metabolism , Tyrosine/chemistry , Mutation
18.
Bioresour Technol ; 400: 130652, 2024 May.
Article in English | MEDLINE | ID: mdl-38575096

ABSTRACT

The primary objective of this study is to explore the application of a deep eutectic solvent, synthesized from lactic acid and choline chloride, in combination with a pre-treatment involving ZSM-5 catalytic fast pyrolysis, aimed at upgrading the quality of bio-oil. Characterization results demonstrate a reduction in lignin content post-treatment, alongside a significant decrease in carboxyls and carbonyls, leading to an increase in the C/O ratio and noticeable enhancement in crystallinity. During catalytic fast pyrolysis experiments, the pre-treatment facilitates the production of oil fractions, achieving yields of 54.53% for total hydrocarbons and 39.99% for aromatics hydrocarbons under optimized conditions. These findings validate the positive influence of the deep eutectic solvent pre-treatment combined with ZSM-5 catalytic fast pyrolysis on the efficient production of bio-oil and high-value chemical derivatives. .


Subject(s)
Biofuels , Biomass , Deep Eutectic Solvents , Plant Oils , Polyphenols , Pyrolysis , Zeolites , Catalysis , Zeolites/chemistry , Deep Eutectic Solvents/chemistry , Lignin/chemistry , Choline/chemistry , Solvents/chemistry
19.
J Chromatogr A ; 1722: 464872, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581975

ABSTRACT

LC-MS is an indispensable tool for small molecule analysis in many fields; however, many small molecules require chemical derivatization to improve retention on commonly used reversed-phase columns and increase ionization. Benzoyl chloride (BzCl) derivatization is commonly used for derivatization of primary and secondary amines and phenolic alcohols, though evidence exists that with proper reaction conditions (i.e., specific bases), other hydroxyl groups may be derivatized too. Previous studies have examined BzCl concentration, reaction times, and reaction temperatures for derivatization of amines and phenols for LC-MS analysis; however, use of different bases, base concentration, and extending to conditions to hydroxyl groups for LC-MS analysis has not been well-studied. To address this understudied area and identify reaction conditions for both amino and hydroxyl groups, we performed a systematic study of reaction conditions on multiple classes of potential targets. For selected derivatization methods, detection limits and performance in a variety of biological matrices were assessed. Results highlight the importance of tailoring derivatization methods for a given application as they varied by molecule and/or molecule class. Compared to the standard BzCl method commonly used, alternative methods were identified to better derivatize challenging analytes (glucosamine, choline, cortisol, uridine, cytidine) with detection limits reaching 1100, 9, 38, 170, and 67 nM compared to undetectable, 170, 86, 1000, and 86 nM respectively. Sub-nanomolar detection limits were achieved for norepinephrine with alternative derivatization approaches. Improved derivatization methods for several classes and molecules including nucleosides, steroids, and molecules containing hydroxyl groups were also identified.


Subject(s)
Benzoates , Amines/analysis , Amines/chemistry , Benzoates/analysis , Benzoates/chemistry , Choline/analysis , Choline/chemistry , Hydrocortisone/analysis , Hydrocortisone/chemistry , Limit of Detection , Liquid Chromatography-Mass Spectrometry
20.
J Environ Manage ; 356: 120615, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518499

ABSTRACT

Anaerobic digestion (AD) is a prevalent waste activated sludge (WAS) treatment, and optimizing methane production is a core focus of AD. Two DESs were developed in this study and significantly increased methane production, including choline chloride-urea (ChCl-Urea) 390% and chloride-ethylene glycol (ChCl-EG) 540%. Results showed that ChCl-Urea mainly disrupted extracellular polymeric substances (EPS) structures, aiding in initial sludge solubilization during pretreatment. ChCl-EG, instead, induced sludge self-driven organic solubilization and enhanced hydrolysis and acidification processes during AD process. Based on the extent to which the two DESs promoted AD for methane production, the AD process can be divided into stage Ⅰ and stage Ⅱ. In stage Ⅰ, ChCl-EG promoted methanogenesis more significantly, microbiological analysis showed both DESs enriched aceticlastic methanogens-Methanosarcina. Notably, ChCl-Urea particularly influenced polysaccharide-related metabolism, whereas ChCl-EG targeted protein-related metabolism. In stage Ⅱ, ChCl-Urea was more dominant than ChCl-EG, ChCl-Urea bolstered metabolism and ChCl-EG promoted genetic information processing in this stage. In essence, this study investigated the microbial mechanism of DES-enhanced sludge methanogenesis and provided a reference for future research.


Subject(s)
Deep Eutectic Solvents , Sewage , Sewage/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Choline/chemistry , Methane , Urea/chemistry , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL