Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Food Chem ; 460(Pt 3): 140807, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39146719

ABSTRACT

Reliable analytical methods are the basis for the elucidation of phenolic compounds in foods. This study aimed to optimize and validate a method for determining 42 phenolics using reverse-phase (RP) high-performance liquid chromatography (HPLC) coupled to diode-array-detector-DAD. The performance of two RP columns was evaluated. The 150x4.6 mm 3-µm column showed superior separation quality, whereas 35 of the 42 phenolics showed a separation resolution ≥1.5. The method's linearity, precision (coefficient variation< 3.09%), recovery (87.5-103.2%), specificity, limits of detection (0.04-0.25 mg/L), and quantification (0.06-0.25 mg/L) had acceptable ranges. Thirty phenolics were quantified in Citrus peels, mainly flavanones, flavanols, flavonols, and phenolic acids, highlighting the high values of hesperidin (535-35070 mg/kg) and naringin (26-36466 mg/kg). Lemon peels named 'Lisboa,' 'Thaiti,' 'Thaiti-2000', and 'Thaiti-2001' presented the main phenolics associated with antioxidant capacity. The presented method was robust for determining 42 phenolic compounds, offering a new approach for bioactive compound quantification in food matrices.


Subject(s)
Citrus , Fruit , Phenols , Citrus/chemistry , Chromatography, High Pressure Liquid , Phenols/analysis , Phenols/chemistry , Phenols/isolation & purification , Fruit/chemistry , Brazil , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Chromatography, Reverse-Phase/methods , Chromatography, Reverse-Phase/instrumentation , Antioxidants/chemistry , Antioxidants/analysis
2.
Braz. J. Pharm. Sci. (Online) ; 59: e23020, 2023. tab, graf
Article in English | LILACS | ID: biblio-1520324

ABSTRACT

Abstract Certolizumab pegol (CZP) is a Fab' fragment of the humanized antibody with anti-TNF-α activity that is indicated as therapy for Crohn's disease and rheumatoid arthritis. Using a BioSep-SEC-S3000 column (300 x 4.6 mm i.d., 5 µm particle size), a size exclusion liquid chromatography (SEC) method was developed. Mobile phase A consisted of 100 mM monobasic sodium phosphate and 200 mM sodium chloride (pH 7.0), while mobile phase B was ethanol (95:5, v/v), and the analysis was performed using a diode array detector (DAD) set to 214 nm and a flow rate of 0.5 ml min-1. In addition, a reversed-phase liquid chromatography (RP-LC) method based on gradient elution was developed on a Zorbax 300 SB C18 column (150 mm x 4.6 mm i.d., 3.5 µm particle size) kept at 80 °C. Mobile phase A was 0.1% (v/v) TFA in ultrapure water, and mobile phase B was a mixture of propanol, acetonitrile, ultrapure water and TFA (70 + 20 + 9.9 + 0.1, v/v) operated at a flow rate of 1.0 ml min-1, and DAD was applied at 214 nm. CZP elution was achieved with retention times of 5.6 min and 9.0 min for SEC and RP-LC, respectively.


Subject(s)
Chromatography, Liquid/methods , Validation Study , Certolizumab Pegol/analysis , Chromatography, Reverse-Phase/methods , Antibodies, Monoclonal/classification
3.
Braz. J. Pharm. Sci. (Online) ; 59: e20692, 2023. tab, graf
Article in English | LILACS | ID: biblio-1447567

ABSTRACT

Abstract Epilepsy is a disorder of the central nervous system, in which the nerve cell activity in the brain is disturbed causing seizures. The objective was to develop an RP-HPLC method for consistent simultaneous quantitation of four antiepileptic drugs Levetiracetam (LVT), Lamotrigine (LTG), Phenobarbital (PBT) and Phenytoin (PTY). An isocratic method was developed on C18 column in JASCO HPLC using 5 mM potassium phosphate buffer (pH 6) and acetonitrile as the mobile phase at a flow rate of 1ml/min and detected at 230 nm using UV detector. The mean retention time for LVT, LTG, PBT and PTY were found as 2.55, 3.55, 4.65 and 5.99 minutes respectively. The method was validated as per ICH guidelines and was found to be acceptable. The %RSD value was <2.0 % thus stating the developed method was precise for the drugs in the given range. The accuracy values were within 85-115% of the recovery range. The specificity of the method was evaluated by an assay of marketed formulation, and it showed a percent content between 90-110% w/w for all the four drugs. The proposed analytical method was simple, accurate and robust and was precisely able to resolve the four major antiepileptic drugs. Hence, the current method can be applied successfully for routine examination of these drugs


Subject(s)
Pharmaceutical Preparations/analysis , Chromatography, Reverse-Phase/methods , Anticonvulsants/analysis , Epilepsy/pathology
4.
Braz. J. Pharm. Sci. (Online) ; 58: e20627, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420511

ABSTRACT

Abstract 1'-acetoxychavicol acetate (ACA)-loaded nanostructured lipid carriers (NLCs) were formulated for prostate cancer therapy and to determine the optimal therapeutic dose, we developed a rapid, specific, and accurate reversed-phase high-performance liquid chromatography (RP-HPLC) method to quantify the ACA content in NLCs. The method was validated according to International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. Chromatographic separation of ACA from the lipid components was performed with an Agilent 1220 Infinity LC system and ultraviolet detector using an Agilent Poroshell C18 column (4.6 x 250.0 mm). The mobile phase consisted of acetonitrile and water (80:20 [v/v]) with a flow rate of 0.8 mL/min in isocratic mode. Linearity of the standard curve was assessed at an ACA concentration range of 5-200 µg/mL, and a 1/x weighted linear regression was adopted for the calibration curve. The calculated limits of detection and quantification were 0.59 µg/mL and 1.79 µg/mL, respectively. The mean percent recovery of ACA was 100.02% (relative SD, 2%), and the coefficients of variation for intraday and interday assays were within the values required by the ICH. We also demonstrated robustness of the method by altering the mobile phase ratio and flow rate. Furthermore, we proved specificity of the method for ACA by comparing chromatograms of the blank NLC and ACA-NLC. Hence, we effectively used this validated method to determine the drug-loading capacity and entrapment efficiency of the NLCs.


Subject(s)
Chromatography, High Pressure Liquid/methods , Validation Study , Acetates/agonists , Prostatic Neoplasms/pathology , Drug Therapy/classification , Chromatography, Reverse-Phase/methods
5.
Braz. J. Pharm. Sci. (Online) ; 58: e19247, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420437

ABSTRACT

Abstract L-Malic acid is the Active Pharmaceutical Ingredient of the latest generation of compound electrolyte injection (STEROFUNDIN ISO, Germany) and plays a very important role in the rescue of critically ill patients. The optical purity of L-malic acid is a Critical Quality Attributes. A new reversed-phase high performance liquid chromatography (RP-HPLC) method for pre-column derivatization of D-malic acid enantiomer impurity in L-malic acid bulk drug was established. The derivatization reaction was carried out using (R)-1-(1-naphthyl)ethylamine ((R)-NEA) as a chiral derivatization reagent. The Kromasil C18 column was used with a detection wavelength of 225 nm, a flow rate of 1.0 mL·min-1, and a column temperature of 30 °C. The mobile phase was acetonitrile-0.01 mol·L-1 potassium dihydrogen phosphate solution (containing 20 mmol·L-1 sodium heptanesulfonate, adjusted to pH 2.80 with phosphoric acid) (at a ratio of 45:55) and the resolution of D-malic acid and L-malic acid derivatization products reached 1.7. The proposed method possesses the advantages of simple operation, mild conditions, stable derivatization products and low cost. Also it gave better separation and was more accurate than previous methods


Subject(s)
Chromatography, High Pressure Liquid/methods , Malicum Acidum/analysis , Chromatography, Reverse-Phase/methods , Patients/classification , Total Quality Management/classification
6.
J Sep Sci ; 44(21): 3986-3995, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34490976

ABSTRACT

Docetaxel is an anticancer that belongs to the family of taxanes and acts in the inhibition of cell proliferation through the polymerization of microtubules. The aim of this study was the development and validation of a fast method by reversed-phase high-performance liquid chromatography for quantitative analysis of docetaxel encapsulated in pegylated liposomes. The analytical method was validated for the following recognized specifications: system suitability, precision (repeatability and intermediate precision), linearity, accuracy, selectivity, detection and quantification limits, and robustness. The reversed phase-high-performance liquid chromatography analyses were performed at a temperature of 45°C (isocratic mode). The mobile phase was composed of acetonitrile and water (65:35, v/v) and the flow rate was fixed at 0.8 mL/min. The running time and wavelength were 8 min and 230 nm, respectively. The method was found to be linear, precise, selective, precise, robust, accurate, in the range of 1-75 µg/mL (R2 = 0.9999) and the values of detection and quantification limits were 2.35 and 7.84 µg/mL, respectively. The release rates of docetaxel in pegylated liposomes were lower compared to docetaxel in solution. The reversed phase high-performance liquid chromatography method developed proved to be adequate and can be effectively used to determine the in vitro release profile of docetaxel transported by pegylated liposomes.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Docetaxel , Liposomes/chemistry , Polyethylene Glycols/chemistry , Docetaxel/chemistry , Docetaxel/pharmacokinetics , Limit of Detection , Linear Models , Reproducibility of Results
7.
Pharmazie ; 76(4): 138-144, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33849697

ABSTRACT

Ibuprofen soft gelatin capsules were subjected to degradation under acidic, basic, oxidation, photolytic, thermal, humidity, and metal ions conditions. To analyse the degradation products, a reversed-phase liquid chromatography (RP-LC) indicative stability method was successfully developed. Chromatographic separation was achieved using a Poroshell HPH-C18 150 x 4.6 mm, 4 µm, column at 25 °C, with a mobile phase constituted by 0.1% phosphoric acid and acetonitrile in gradient at a flow rate of 1.0 mL• min -1 , using ultraviolet detection at 220 nm and injection volume of 20 µL. In total, eight unknown impurities were found. The peaks RRt 0.49, RRt 0.75, and RRt 0.95 were above 0.17%, corresponding to the identification threshold. Those were identified and characterized by LC-MS-QTOF, with the same chromatographic conditions, except for the exchange of 0.1% phosphoric acid for 0.1% formic acid. The impurities originated from the interaction of ibuprofen with excipients: esterification with PEG, with sorbitol/sorbitan, and with glycerol by-products, which has not yet been reported in the literature. The developed method can be used in several pharmaceutical areas as quality control of impurities, studies of forced degradation, and for the development of future formulations.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chromatography, Reverse-Phase/methods , Excipients/chemistry , Ibuprofen/chemistry , Capsules , Chemistry, Pharmaceutical , Drug Stability , Gelatin , Humidity , Hydrogen-Ion Concentration , Mass Spectrometry , Oxidation-Reduction , Photolysis , Quality Control
8.
Biomed Chromatogr ; 35(2): e4987, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32931605

ABSTRACT

The aim of this work was to develop and validate an analytical method using HPLC for the determination of propranolol in the different layers of the skin to be used in kinetic studies of skin permeation. The development of the method was based on the suitability of the chromatogram, and the validation followed the international health regulation for bioanalytical methods. In addition, the method was tested in an in vitro permeation assay using porcine skin. The drug was determined using an RP-C18 column at 30°C, a mobile phase comprising acidic aqueous phase:acetonitrile (75:25 v/v), at a flow rate of 1.0 mL min-1 , and UV detection at 290 nm. The method was demonstrated to be selective against skin contaminants, linear in a wide range of concentrations (3-20 µg mL-1 ), sensitive enough to quantify less than 0.1% of the drug dosage in skin matrices, and precise regardless of analysis variations such as day of analysis, analyst, or equipment. In addition, the method presented a high drug extraction capacity greater than 90% for all skin layers (stratum corneum, hair follicle, and remaining skin). Finally, the method was successfully tested in skin permeation assays, proving its value in the development of topical formulations containing propranolol.


Subject(s)
Chromatography, Reverse-Phase/methods , Propranolol/analysis , Propranolol/pharmacokinetics , Skin/chemistry , Animals , Limit of Detection , Linear Models , Reproducibility of Results , Skin Absorption
9.
Methods Mol Biol ; 2030: 351-364, 2019.
Article in English | MEDLINE | ID: mdl-31347130

ABSTRACT

This chapter describes improvements in a sequential injection method to automate the fluorimetric determination of amino acids by pre-column derivatization with o-phthaldialdehyde in presence of 2-mercaptoethanol. Separation is achieved by reversed-phase liquid chromatography in a 50 × 4.6 mm C18 silica-based monolithic column. The method is low-priced, and the separation is performed by stepwise gradient elution using six mobile phases. The mobile phase used for the first elution step is composed of methanol/tetrahydrofuran/10 mM phosphate buffer (pH 7.2) at volumetric ratio 8:1:91. Additional elution steps use mobile phases containing methanol and 10 mM phosphate buffer at volumetric ratios of 17.5:82.5, 25:75, 35:65, 50:50, and 65:35. Nineteen chromatographic peaks are observed in a mixture of twenty amino acids. The only complete co-elution is between tryptophan and methionine. The entire cycle of amino acid derivatization, chromatographic separation, and column conditioning at the end of separation lasts for 30 min. The method is successfully applied to quantify the major intracellular dissolved free amino acids in the marine microalgae Tetraselmis gracilis, Phaeodactium tricornutum, and Synechococcus elongatus.


Subject(s)
Amino Acids/isolation & purification , Chromatography, Reverse-Phase/methods , Fluorometry/methods , Microalgae/chemistry , Amino Acids/chemistry , Buffers , Chromatography, Reverse-Phase/instrumentation , Fluorometry/instrumentation , Furans/chemistry , Methanol/chemistry , Synechococcus/chemistry , o-Phthalaldehyde/chemistry
10.
Amino Acids ; 51(3): 407-418, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30430331

ABSTRACT

Plant foods are rich sources of biologically active peptides that may have a role in the prevention of diseases. Coconut water is a valuable beverage due to its nutrient composition and the presence of bioactive compounds, such as the peptide CnAMP1. It is unknown if CnAMP1 can be absorbed into intestinal cells. We, therefore, aimed to develop and validate a simple reversed-phase liquid chromatographic method to quantify the peptide in Caco-2 and LS180 cell lysates. CnAMP1 standards (1-200 µmol/L) and spiked cell lysates were injected onto a Reprosil-Pur 120 C18-AQ column (4.6 × 250 mm) using acetonitrile:water:trifluoroacetic acid (14.0:85.9:0.1, by volume) as mobile phase in isocratic mode at flow rate of 1 mL/min. The method achieved rapid separation (total run time of 6 min), with linear response, good sensitivity (limit of detection, 8.2 ng; lower limit of quantification, 30.6 ng) and no interfering peaks. Best recoveries (84-96%), accuracies (7.6-14.8%) and precision (1.5-8%) were found for LS180 cell lysates spiked with medium (50 µmol/L) and high (100 µmol/L) amounts of the peptide. Uptake assays detected no peptides in the cell lysates; however, after the first 15-min incubation CnAMP1 underwent partial hydrolysis upon incubation with LS180 cells (29%) and extensive hydrolysis with Caco-2 cells (93%).


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Intestines/physiology , Cells, Cultured , Humans , Reproducibility of Results , Validation Studies as Topic
11.
Braz. J. Pharm. Sci. (Online) ; 55: e18052, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039069

ABSTRACT

A specific, precise, and accurate LC-UV method was developed and validated to assay raloxifene hydrochloride in rat plasma. Raloxifene was analyzed after liquid-liquid extraction and quantified by reversed phase liquid chromatography (C18 column) using acetonitrile and ammonium acetate buffer 0.05 M (pH 4.0) as mobile phase at a flow rate of 1 mL.min-1 and UV detection at 287 nm. Retention times of raloxifene and internal standard (dexamethasone) were approximately 11 min and 14 min, respectively. Linearity was checked for a concentration range between 25 ng.mL-1 and 1000 ng.mL-1. Intra- and inter-day precision had relative standard deviation lower than 10% and 15%, respectively. Recovery from plasma was higher than 90%. Accuracy values were 98.21%, 99.70%, and 102.70% for lower, medium, and upper limits of quantification, respectively. Limit of quantification was 25 ng.mL-1. Drug stability was analyzed at room temperature using plasma kept in a freezer at -80 °C for 45 days after processing for 6 h and three freeze-thaw cycles. The advantages of the method developed include stability under different conditions and low limit of quantification. Its applicability was confirmed by the analysis of raloxifene levels in plasma samples in a designed pharmacokinetic study in rats after intravenous administration (5 mg.kg-1).


Subject(s)
Animals , Male , Rats , Plasma/drug effects , Raloxifene Hydrochloride/pharmacokinetics , Chromatography, Reverse-Phase/methods , Biological Availability
12.
Braz. J. Pharm. Sci. (Online) ; 55: e18328, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039071

ABSTRACT

Recombinant human interferon beta 1b (rhIFNß-1b) is clinically used to treat multiple sclerosis. A reversed-phase liquid chromatography (RP-LC) method was carried out on a Jupiter C4 column (250 mm × 4.6 mm i.d.). The mobile phase A consisted of 0.1% trifluoroacetic acid (TFA) in water, and the mobile phase B was acetonitrile with 0.1% TFA run at a flow rate of 1.0 mL/min. A size exclusion liquid chromatography (SE-LC) method was carried out on a BioSep-SEC-S 2000 column (300 mm × 7.8 mm i.d.). The mobile phase consisted of 1 mM monobasic potassium phosphate, 8 mM sodium phosphate dibasic and 200 mM sodium chloride buffer pH 7.4, run isocratically at a flow rate of 0.8 mL/min. Retention times were 31.87 and 17.78 min, and calibration curves were linear over the concentration range of 1-200 µg/mL (r2 = 0.9998) and 0.50-200 µg/mL (r2 = 0.9999), respectively, for RP-LC and SE-LC, with detection at 214 nm. Liquid chromatography (LC) methods were validated and employed in conjunction with the in vitro bioassay to assess the content/potency of rhIFNß-1b, contributing to improve the quality control and to ensure the efficacy of the biotherapeutic


Subject(s)
Biological Assay/methods , Humans , Chromatography, Reverse-Phase/methods , Interferon beta-1b/analysis , In Vitro Techniques , Biotechnology/classification , Validation Study
13.
Anal Bioanal Chem ; 410(26): 6827-6836, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30074087

ABSTRACT

The rapid and accurate quantification of lipopeptide families in biological samples are challenging. We present the development and validation of a method for simultaneous quantification of three families of lipopeptides (iturins, fengycins, and surfactins) and their isoforms, as well as the homologous series. The method was optimized in UPLC-MS for a column temperature at 65 °C, injection volume of 5 µL, and sample temperature of 10 °C. The SIM mode was used for detection and quantification of lipopeptides exhibiting ions [M + H]+ and [M + 2H]2+. Since the maximum mass detection threshold of the equipment is 1250 Da and the fengycins have ions between 1435 and 1505 Da, the ions [M + 2H]2+ were chosen for fengycin identification. The monitored ions were as follows: m/z 1043.5, 1057.5, 1071.5, 718.3, 725.4, 739.4, 732.4, 746.4, 753.4, 1008.6, 1022.6, and 1036.6. The compounds were separated by reverse-phase chromatography using a C18 analytical column in a total time of 19 min. Standard curves were linear with rw 0.99 for all analytes. Intra- and inter-day precision for samples (50, 250, and 750 µg L-1) were within recommended limits. The proposed analytical method was capable of simultaneously quantifying 12 isoforms and homologous series of lipopeptide families in biological samples, thus making it an important industrial tool in the evaluation of lipopeptide production processes. Graphical abstract ᅟ.


Subject(s)
Bacillus subtilis/metabolism , Fermentation , Lipopeptides/analysis , Protein Isoforms/metabolism , Chromatography, Reverse-Phase/methods , Culture Media , Limit of Detection , Mass Spectrometry/methods , Reference Standards , Reproducibility of Results , Temperature
14.
Int J Biol Macromol ; 119: 96-104, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30048724

ABSTRACT

The monoclonal antibody Denosumab (DmAb) is clinically used to treat osteoporosis and bone loss. We developed a bioassay based on the ability of DmAb to inhibit the effect of human receptor activator of nuclear factor-κB ligand (RANKL) to stimulate the formation of osteoclasts derived from RAW 264.7 cells. This bioassay was applied in conjunction with size exclusion high-performance liquid chromatography (SE-HPLC) and reversed-phase high-performance liquid chromatography (RP-HPLC) methods, with diode array detection (DAD), validated for the quantitation of this biotechnology-derived medicine. The SE-HPLC(DAD) method was carried out on a TSKGel G2000SWXL column and the mobile phase consisted of potassium phosphate buffer with sodium chloride, pH 7.4. The gradient RP-HPLC(DAD) method was carried out on a Vydac 214TP C4 column at 60 °C. The mobile phases consisted of 0.1% v/v trifluoroacetic acid (TFA) in water and 0.1% v/v TFA in acetonitrile. Calibration curves were linear over the concentration ranges 6-200 µg mL-1 and 6-300 µg mL-1 for the SE-HPLC(DAD) and RP-HPLC(DAD) methods respectively. The bioassay results correlated with the LC methods results, indicating the capabilities of these methods to quantitate DmAb, which will contribute to ensure the batch-to-batch consistency and efficacy of this biotherapeutic.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Biological Assay , Chromatography, High Pressure Liquid , Denosumab/chemistry , Denosumab/pharmacology , Animals , Chromatography, Reverse-Phase/methods , Mice , Reproducibility of Results , Sensitivity and Specificity
15.
Ther Drug Monit ; 40(2): 276-283, 2018 04.
Article in English | MEDLINE | ID: mdl-29432386

ABSTRACT

BACKGROUND: Voriconazole is a broad-spectrum triazole antifungal agent. It is widely used in the treatment of invasive fungal infections in immunocompromised patients. Because the pharmacokinetics of voriconazole demonstrates considerable variability, monitoring its serum levels plays an important role in optimizing therapies against many clinically relevant fungal pathogens. The aim of this study was to validate a simple and rapid U-HPLC-PDA method with minimal sample preparation for routine therapeutic drug monitoring (TDM) of voriconazole. METHODS: After protein precipitation with the internal standard solution (posaconazole 5.0 mg/L in acetonitrile), chromatographic separation was performed in 4 minutes using water and acetonitrile as mobile phases and an Acquity UPLC BEH HSS C18 column (2.1 × 100 mm, 1.7 µm). The temperature was set at 45°C and the flow rate was 0.4 mL/min. Photodiode array detection at 256 nm was used as detection system. The method was validated according international guidelines for linearity, accuracy, precision, selectivity, lower limit of quantitation, carry over, and stability under different conditions. RESULTS: All performance parameters were within acceptance criteria, demonstrating that the validated method is fit for purpose. After assay validation, 115 serum samples collected from 41 patients were analyzed to report the experience of the laboratory in TDM of voriconazole. Results showed a large variability in voriconazole trough levels, suggesting that this drug should be frequently measured in patients under treatment to enhance therapies efficacy and improve safety. CONCLUSIONS: In this study, a reproducible U-HPLC-PDA assay with a short analysis time, requiring only a small amount of serum, good accuracy and reproducibility was validated, which is suitable for routine TDM of voriconazole in serum.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Voriconazole/blood , Adolescent , Adult , Aged , Child , Child, Preschool , Drug Monitoring/methods , Female , Humans , Infant , Male , Middle Aged , Reproducibility of Results , Young Adult
16.
J Chromatogr Sci ; 56(4): 300-306, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29300927

ABSTRACT

Cashew nut shell liquid (CNSL) contains phenolic lipids with aliphatic chains that are of commercial interest. In this work, a chromatographic method was developed to monitor and quantify anacardic acids (AnAc) in CNSL. Samples containing AnAc were analyzed on a high-performance liquid chromatograph coupled to a diode array detector, equipped with a reversed phase C18 (150 × 4.6 mm × 5 µm) column using acetonitrile and water as the mobile phase both acidified with acetic acid to pH 3.0 in an isocratic mode (80:20:1). The chromatographic method showed adequate selectivity, as it could clearly separate the different AnAc. To validate this method, AnAc triene was used as an external standard at seven different concentrations varying from 50 to 1,000 µg mL-1. The Student's t-test and F-test were applied to ensure high confidence for the obtained data from the analytical calibration curve. The results were satisfactory with respect to intra-day (relative standard deviation (RSD) = 0.60%) and inter-day (RSD = 0.67%) precision, linearity (y = 2,670.8x - 26,949, r2 > 0.9998), system suitability for retention time (RSD = 1.02%), area under the curve (RSD = 0.24%), selectivity and limits of detection (19.8 µg mg-1) and quantification (60.2 µg mg-1). The developed chromatographic method was applied for the analysis of different CNSL samples, and it was deemed suitable for the quantification of AnAc.


Subject(s)
Anacardic Acids/analysis , Anacardium/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Nuts/chemistry , Limit of Detection , Linear Models , Reproducibility of Results
17.
Article in English | MEDLINE | ID: mdl-29179059

ABSTRACT

Reversed-phase high-performance liquid chromatography (RP-HPLC) has been used to analyze Interferon α-2 (IFN-α2) as a pure protein or as a pharmaceutical preparation: a method for analyzing periplasmic IFN-α2 directly in osmotic shock extract has, however, never been reported. This work describes an RP-HPLC methodology for the qualitative and quantitative analysis of human IFN-α2a and IFN-α2b directly in bacterial periplasmic extracts or in purified preparations. The analytical method has been set up and validated for accuracy, precision, linearity, sensitivity and specificity. A recovery test indicated an average bias of ∼1%, intra-day and inter-day quantitative determinations presented relative standard deviations always≤5%, while the working sensitivity was of ∼0.3µg of IFN-α2 (RSD=5%). The method proved to be suitable for detecting and quantifying also glycosylated and oxidized forms and N-methionylated IFN-α2 molecules, it was, however, not able to distinguish between IFN-α2a and IFN-α2b. This rapid methodology allows the application of RP-HPLC as a powerful tool to monitor the production yield and quality of IFN-α2 in osmotic shock fluids, right after, or even during the fermentation process.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Escherichia coli/genetics , Interferon-alpha/analysis , Recombinant Proteins/analysis , Glycosylation , Humans , Interferon-alpha/chemistry , Interferon-alpha/genetics , Interferon-alpha/isolation & purification , Linear Models , Oxidation-Reduction , Periplasm/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Reproducibility of Results , Sensitivity and Specificity
18.
Basic Clin Pharmacol Toxicol ; 122(4): 413-423, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29067765

ABSTRACT

Snake venom phospholipases A2 (PLA2 s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA2 homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA2 s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 µg/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA2 from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.


Subject(s)
Anti-Bacterial Agents/pharmacology , Crotalid Venoms/enzymology , Phospholipases A2/chemistry , Viperidae , Animals , Anti-Bacterial Agents/chemical synthesis , Chromatography, Gel/methods , Chromatography, Reverse-Phase/methods , Crotalid Venoms/chemistry , Drug Design , Enzyme Assays , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Peptides/chemical synthesis , Peptides/pharmacology , Phospholipases A2/isolation & purification , Pseudomonas aeruginosa/drug effects
19.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;24: 5, 2018. graf, ilus
Article in English | LILACS | ID: biblio-894164

ABSTRACT

Wasp venoms constitute a molecular reservoir of new pharmacological substances such as peptides and proteins, biological property holders, many of which are yet to be identified. Exploring these sources may lead to the discovery of molecules hitherto unknown. This study describes, for the first time in hymenopteran venoms, the identification of an enzymatically inactive phospholipase A2 (PLA2) from the venom of the social wasp Polybia occidentalis. Methods: P. occidentalis venom was fractioned by molecular exclusion and reverse phase chromatography. For the biochemical characterization of the protein, 1D and 2D SDS-PAGE were performed, along with phospholipase activity assays on synthetic substrates, MALDI-TOF mass spectrometry and sequencing by Edman degradation. Results: The protein, called PocTX, was isolated using two chromatographic steps. Based on the phospholipase activity assay, electrophoresis and mass spectrometry, the protein presented a high degree of purity, with a mass of 13,896. 47 Da and a basic pI. After sequencing by the Edman degradation method, it was found that the protein showed a high identity with snake venom PLA2 homologues. Conclusion: This is the first report of an enzymatically inactive PLA2 isolated from wasp venom, similar to snake PLA2 homologues.(AU)


Subject(s)
Animals , Wasps , Receptors, Phospholipase A2/isolation & purification , Receptors, Phospholipase A2/chemistry , Poisoning , Mass Spectrometry/methods , Receptors, Phospholipase A2/chemistry , Chromatography, Reverse-Phase/methods
20.
J Proteome Res ; 16(9): 3370-3390, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28731347

ABSTRACT

Adult rattlesnakes within genus Crotalus express one of two distinct venom phenotypes, type I (hemorrhagic) and type II (neurotoxic). In Costa Rican Central American rattlesnake, ontogenetic changes in the concentration of miRNAs modulate venom type II to type I transition. Venomics and venom gland transcriptome analyses showed that adult C. simus and C. tzabcan expressed intermediate patterns between type II and type I venoms, whereas C. culminatus had a canonical type I venom. Neonate/juvenile and adult Mexican rattlesnakes showed notable inter- and intraspecific variability in the number, type, abundance and ontogenetic shifts of the transcriptional and translational venom gland activities. These results support a role for miRNAs in the ontogenetic venom compositional changes in the three congeneric Mexican rattlesnakes. It is worth noting the finding of dual-action miRNAs, which silence the translation of neurotoxic heterodimeric PLA2 crotoxin and acidic PLA2 mRNAs while simultaneously up-regulating SVMP-targeting mRNAs. Dual transcriptional regulation potentially explains the existence of mutually exclusive crotoxin-rich (type-II) and SVMP-rich (type-I) venom phenotypic dichotomy among rattlesnakes. Our results support the hypothesis that alterations of the distribution of miRNAs, modulating the translational activity of venom gland toxin-encoding mRNAs in response to an external cue, may contribute to the mechanism generating adaptive venom variability.


Subject(s)
Crotalid Venoms/genetics , Crotalus/genetics , MicroRNAs/genetics , Proteogenomics/methods , Proteome/genetics , Transcriptome , Age Factors , Animals , Base Sequence , Chromatography, Reverse-Phase/methods , Crotalid Venoms/biosynthesis , Crotalid Venoms/classification , Crotalid Venoms/isolation & purification , Crotalus/growth & development , Crotalus/metabolism , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Genetic Variation , MicroRNAs/metabolism , Molecular Sequence Annotation , Protein Biosynthesis , Proteogenomics/instrumentation , Proteome/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL