Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 403
Filter
1.
Aging (Albany NY) ; 16(11): 10132-10141, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862253

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is a prevalent acute abdominal condition, and AP induced colonic barrier dysfunction is commonly observed. Total flavonoids of Chrysanthemum indicum L (TFC) have exhibited noteworthy anti-inflammatory and anti-apoptotic properties. METHODS: We established AP models, both in animals and cell cultures, employing Cerulein. 16S rRNA gene sequencing was performed to investigate the gut microorganisms changes. RESULTS: In vivo, TFC demonstrated a remarkable capacity to ameliorate AP, as indicated by the inhibition of serum amylase, myeloperoxidase (MPO) levels, and the reduction in pancreatic tissue water content. Furthermore, TFC effectively curtailed the heightened inflammatory response. The dysfunction of colonic barrier induced by AP was suppressed by TFC. At the in vitro level, TFC treatment resulted in attenuation of increased cell apoptosis, and regulation of apoptosis related proteins expression in AR42J cells. The increase of Bacteroides sartorial, Lactobacillus reuteri, Muribaculum intestinale, and Parabacteroides merdae by AP, and decrease of of Helicobacter rodentium, Pasteurellaceae bacterium, Streptococcus hyointestinalis by AP were both reversed by TFC treatment. CONCLUSIONS: TFC can effectively suppress AP progression and AP induced colonic barrier dysfunction by mitigating elevated serum amylase, MPO levels, water content in pancreatic tissue, as well as curtailing inflammation, apoptosis. The findings presented herein shed light on the potential mechanisms by which TFC inhibit the development of AP progression and AP induced colonic barrier dysfunction.


Subject(s)
Chrysanthemum , Flavonoids , Gastrointestinal Microbiome , Pancreatitis , Animals , Gastrointestinal Microbiome/drug effects , Chrysanthemum/chemistry , Pancreatitis/metabolism , Pancreatitis/microbiology , Pancreatitis/drug therapy , Flavonoids/pharmacology , Male , Rats , Colon/drug effects , Colon/metabolism , Colon/pathology , Apoptosis/drug effects , Disease Models, Animal , Cell Line , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology
2.
J Ethnopharmacol ; 332: 118352, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38762208

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chrysanthemum morifolium Ramat. is a commonly used Chinese herb and food homologous plant with traditional effects such as anti-inflammatory, antifebrile, antibacterial and antiviral. AIM OF STUDY: Photoaging is one of the main causes of accelerated skin aging. Chrysanthemum morifolium Ramat. has reported to alleviate photodamage. In this study, we investigated the protective effect of the extract of buds of Chrysanthemum morifolium Ramat. (CE) on UVB-induced photoaging and further mechanism. MATERIALS AND METHODS: The extract of buds of chrysanthemum was analyzed by HPLC-Q-TOF-MS/MS. Antioxidant activity was assessed by DPPH and ABTS assay. Cell viability examined by cell counting kit-8 assay. The ROS level was detected by fluorescent probe DCFH-DA. Protein expression evaluated by Western blotting. The skin tissue investigated by immunohistochemistry. RESULTS: CE significantly reversed the decrease of cell viability that induced by UVB in HaCaT and HFF-1 cells. Further analysis showed that CE alleviated photoaging by inhibiting the expression of mitogen-activated protein kinase (MAPK) and activating the NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway to promote the expression of antioxidant enzymes. Moreover, CE effectively improved the reduced skin hydration, disordered collagen and thickening epidermis caused by UVB in mice. CONCLUSIONS: All results demonstrated that CE had therapeutic effect on UVB-induced photoaging and provided theoretical basis for its further developing as a natural functional product with anti-photoaging effect.


Subject(s)
Chrysanthemum , NF-E2-Related Factor 2 , Plant Extracts , Skin Aging , Ultraviolet Rays , Chrysanthemum/chemistry , Skin Aging/drug effects , Skin Aging/radiation effects , Animals , NF-E2-Related Factor 2/metabolism , Ultraviolet Rays/adverse effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Mice , Antioxidants/pharmacology , Antioxidants/isolation & purification , Cell Survival/drug effects , Antioxidant Response Elements/drug effects , Skin/drug effects , Skin/radiation effects , Skin/pathology , Skin/metabolism , Flowers/chemistry , Mitogen-Activated Protein Kinases/metabolism , HaCaT Cells , Signal Transduction/drug effects , Cell Line
3.
Phytomedicine ; 130: 155774, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38820659

ABSTRACT

BACKGROUND: Metabolic and alcohol-associated liver disease (MetALD) shows a high prevalence rate in liver patients, but there is currently no effective treatment for MetALD. As a typical edible traditional Chinese medicinal herb, the anti-inflammatory, antioxidant, and hepatoprotective properties of water extract of Chrysanthemum morifolium Ramat. (WECM) has been demonstrated. However, its therapeutic effect on MetALD and the associated mechanisms remain unclear. PURPOSE: To investigate the underlying mechanisms of WECM against MetALD. METHODS: We constructed a MetALD rat model following a high-fat & high-sucrose plus alcohol diet (HFHSAD). MetALD rats were treated with WECM at 2.1, 4.2, and 8.4 g/kg/d for six weeks. Efficacy was determined, and pathways associated with WECM against MetALD were predicted through serum and hepatic biochemical marker measurement, histopathological section analysis, 16S rDNA sequencing of the gut microbiota and untargeted serum metabolomics analyses. Changes in genes and proteins in the peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ) signaling pathways were detected by RT‒PCR and Western blotting. RESULTS: WECM treatment significantly attenuated hepatic steatosis, hyperlipidemia and markers of liver injury in MetALD rats. Moreover, WECM improved vascular endothelial function, hypertension, and systematic oxidative stress. Mechanistically, WECM treatment altered the overall structure of the gut microbiota through maintaining Firmicutes/Bacteroidota ratio and reducing harmful bacterial abundances such as Clostridium, Faecalibaculum, and Herminiimonas. Notably, WECM promoted 15-deoxy-△12, 14-prostaglandin J2 (15d-PGJ2) release and further activated the PPARγ to reduce serum TNF-α, IL-1ß, and IL-6 levels. Additionally, WECM upregulated PPARα and downregulated the levels of CD36 and FABP4 to improve lipid metabolism. CONCLUSION: Our findings provide the first evidence that WECM treatment significantly improved hepatic steatosis, oxidative stress and inflammation in MetALD rats by regulating the gut microbiota and activating the 15d-PGJ2/PPARγ and PPARα signaling pathway.


Subject(s)
Chrysanthemum , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , PPAR alpha , PPAR gamma , Rats, Sprague-Dawley , Chrysanthemum/chemistry , Animals , Gastrointestinal Microbiome/drug effects , PPAR gamma/metabolism , PPAR alpha/metabolism , Male , Liver Diseases, Alcoholic/drug therapy , Diet, High-Fat/adverse effects , Rats , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Disease Models, Animal , Signal Transduction/drug effects , Drugs, Chinese Herbal/pharmacology , Oxidative Stress/drug effects
4.
Phytomedicine ; 129: 155695, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728922

ABSTRACT

BACKGROUND: Exercise is an effective strategy to prevent sarcopenia, but high physical inactivity in the elderly requires alternative therapeutic approaches. Exercise mimetics are therapeutic compounds that simulate the beneficial effects of exercise on skeletal muscles. However, the toxicity and adverse effects of exercise mimetics raise serious concerns. PURPOSE: We aimed to search novel plant-based alternatives to activate exercise induced-signaling. METHODS: We used open databases and luciferase assays to identify plant-derived alternatives to activate exercise-induced signaling and compared its efficacy to mild intensity continuous training (MICT) in aged C57BL/6 mice. The nineteen-month-old mice were either fed an experimental diet supplemented with the isolated alternative or subjected to MICT for up to 21 mo of age. RESULTS: Our analysis revealed that Chrysanthemum zawadskii Herbich var latillobum (Maxim.) Kitamura (CZH), a medicinal plant rich in linarin, is a novel activator of peroxisome proliferator-activated receptor δ (PPARδ) and estrogen-related receptor γ (ERRγ), key regulators of exercise-induced positive effects on muscles. CZH supplementation ameliorated the loss of muscle function and mass, and increased PPARδ and ERRγ expression in mouse muscles. CZH also improved mitochondrial functions and proteostasis in aged mice, similar to MICT. Furthermore, CZH and linarin induced the activation of Sestrin 1, a key mediator of exercise benefits, in muscle. Silencing Sestrin 1 negated the increase in myogenesis and mitochondrial respiration by CZH and linarin in primary myoblasts from old mice. CONCLUSION: Our findings suggest the potential of CZH as a novel plant-derived alternative to activate exercise-induced signaling for preventing sarcopenia in sedentary older adults. This could offer a safer therapeutic option for sarcopenia treatment.


Subject(s)
Chrysanthemum , Mice, Inbred C57BL , Sarcopenia , Signal Transduction , Animals , Chrysanthemum/chemistry , Signal Transduction/drug effects , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Male , PPAR delta/metabolism , Plant Extracts/pharmacology , Receptors, Estrogen/metabolism , Humans , Aging/drug effects , Glycosides
5.
J Ethnopharmacol ; 330: 118198, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38621465

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In recent years, Chinese herbal medicine has gained more and more recognition in disease prevention and control due to its low toxicity and comprehensive treatment. C. morifolium (Chrysanthemum morifolium Ramat.), as the medicine food homology plant with the bioactivity of anti-oxidation, anti-inflammatory, neuroprotection and cardiovascular protection, has important therapeutic effects and health benefits for colds, inflammation, cardiovascular diseases and various chronic diseases. AIM OF THE STUDY: By reviewing the historical development, classification and distribution of germplasm resources, phytochemistry, pharmacology, and modern application of C. morifolium, the paper provides a reliable basis for the further research and application of chrysanthemum as therapeutic agents and functional additives. MATERIALS AND METHODS: The literature and information about C. morifolium published in the last ten years were collected from various platforms, including Google Scholar, PubMed, ScienceDirect, Web of Science and China Knowledge Network. RESULTS: A comprehensive analysis confirmed that C. morifolium originated in China, and it went through the development process from food and tea to medicine for more than 3000 years. During this period, different cultivars emerged through several breeding techniques and were distributed throughout the world. Moreover, A variety of chemical components such as flavonoids, phenolic acids, volatile oils, and terpenes in chrysanthemum have been proven they possess various pharmacology of anti-inflammatory, anti-oxidant, and prevention of chronic diseases by regulating inflammatory cytokines, oxidative stress responses and signaling pathways, which are the essential conditions to play a role in TCM, nutraceuticals and diet. CONCLUSION: This paper provides a comprehensive review of historical development, classification, phytochemistry, pharmacology, and modern application of C. morifolium. However, future studies should continue to focus on the bioactive compounds and the synergistic mechanism of the "multi-component, multi-target, and multi-pathway" of chrysanthemum, and it is necessary to develop more innovative products with therapeutic effects.


Subject(s)
Chrysanthemum , Medicine, Chinese Traditional , Animals , Humans , Chrysanthemum/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Ethnopharmacology , Medicine, Chinese Traditional/methods , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytotherapy
6.
Sci Rep ; 14(1): 9505, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664430

ABSTRACT

The effects of low-cost Thai leucoxene mineral (LM) at different concentrations (10, 20, 30, 40, 50, and 60 mg/L) on the growth and antibacterial properties of Chrysanthemum indium L. cuttings under in vitro were evaluated. The primary chemical composition of LM was approximately 86% titanium dioxide (TiO2), as determined by dispersive X-ray spectroscopy. The crystalline structure, shape, and size were investigated by X-ray diffraction and scanning electron microscopy. LM at 40 and 50 mg/L significantly increased plant height, leaf number, node number, and fresh and dry weight. These growth-promoting properties were accompanied by improved chlorophyll and carotenoid contents and antioxidant enzyme activities and reduced malondialdehyde levels. Additionally, LM treatment at 40 and 50 mg/L had positive effects on antibacterial activity, as indicated by the lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. The high levels of phenolic compounds in the plants contributed to the MIC and MBC values. In conclusion, these findings provide evidence for the effectiveness of LM in enhancing the growth of Chrysanthemum plants in in vitro culture and improving their antibacterial abilities.


Subject(s)
Anti-Bacterial Agents , Chrysanthemum , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Carotenoids/chemistry , Chlorophyll/chemistry , Chrysanthemum/chemistry , Plant Leaves/chemistry , Thailand , Titanium/chemistry , Titanium/pharmacology
7.
Int J Biol Macromol ; 267(Pt 1): 131469, 2024 May.
Article in English | MEDLINE | ID: mdl-38604432

ABSTRACT

Pectic polysaccharide is a bioactive ingredient in Chrysanthemum morifolium Ramat. 'Hangbaiju' (CMH), but the high proportion of HG domain limited its use as a prebiotic. In this study, hot water, cellulase-assisted, medium-temperature alkali, and deep eutectic solvent extraction strategies were firstly used to extract pectin from CMH (CMHP). CMHP obtained by cellulase-assisted extraction had high purity and strong ability to promote the proliferation of Bacteroides and mixed probiotics. However, 4 extraction strategies led to general high proportion of HG domain in CMHPs. To further enhance the dissolution and prebiotic potential of CMHP, pectinase was used alone and combined with cellulase. The key factor for the optimal extraction was enzymolysis by cellulase and pectinase in a mass ratio of 3:1 at 1 % (w/w) dosage. The optimal CMHP had high yield (15.15 %), high content of total sugar, and Bacteroides proliferative activity superior to inulin, which was probably due to the cooperation of complex enzyme on the destruction of cell wall and pectin structural modification for raised RG-I domain (80.30 %) with relatively high degree of branching and moderate HG domain. This study provided a green strategy for extraction of RG-I enriched prebiotic pectin from plants.


Subject(s)
Bacteroides , Chrysanthemum , Pectins , Pectins/chemistry , Chrysanthemum/chemistry , Cell Proliferation/drug effects , Cellulase/chemistry , Cellulase/metabolism , Solubility , Polygalacturonase/chemistry , Polygalacturonase/metabolism
8.
Molecules ; 29(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38474439

ABSTRACT

The leaves of Chrysanthemum indicum L. are known to have various bioactive compounds; however, industrial use is extremely limited. To overcome this situation by producing high-quality leaves with high bioactive content, this study examined the environmental factors affecting the phytochemical content and antioxidant activity using C. indicum leaves collected from 22 sites in Kochi Prefecture, Japan. Total phenolic and flavonoid content in the dry leaves ranged between 15.0 and 64.1 (mg gallic acid g-1) and 2.3 and 11.4 (mg quercetin g-1), while the antioxidant activity (EC50) of the 50% ethanol extracts ranged between 28.0 and 123.2 (µg mL-1) in 1,1-Diphenyl-2-picrylhydrazyl radical scavenging assay. Among the identified compounds, chlorogenic acid and 1,5-dicaffeoylquinic acid were the main constituents in C. indicum leaves. The antioxidant activity demonstrated a positive correlation with 1,5-dicaffeoylquinic acid (R2 = 0.62) and 3,5-dicaffeoylquinic acid (R2 = 0.77). The content of chlorogenic acid and dicaffeoylquinic acid isomers varied significantly according to the effects of exchangeable magnesium, cation exchange capacity, annual temperature, and precipitation, based on analysis of variance. The habitat suitability map using the geographical information system and the MaxEnt model predicted very high and high regions, comprising 3.2% and 10.1% of the total area, respectively. These findings could be used in future cultivation to produce high-quality leaves of C. indicum.


Subject(s)
Chrysanthemum , Cinnamates , Flavonoids , Flavonoids/chemistry , Antioxidants/chemistry , Polyphenols/analysis , Chlorogenic Acid/analysis , Chrysanthemum/chemistry , Plant Leaves/chemistry , Plant Extracts/chemistry
9.
Plant Physiol Biochem ; 207: 108406, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309182

ABSTRACT

Chrysanthemum is one of the most attractive flowering plants widely grown commercially worldwide. Having a good source of organic fertilizers plays an important role in meeting the increasing demand for these plants, which requires high-quality flowers and a high survival time for the longest period. The effect of nitrogen (N) coupled with spent coffee ground (SCG) at various levels (0.0, 2.5, 5.0, 7.5, 10.0°% w/w) was evaluated on growth performance and chemical components of the Chrysanthemum over two years in a pot scale. Overall, total dry matter (TDM) was significantly enhanced with N+ by 125 and 97°% over N- in the first and second years, respectively. SCG also enhanced TDM up to the highest level of application in the range of 27-98°% and 18-81°% over SCG (0.0°%) in the same years, respectively. The interaction effect between N and SCG was perfect on TDM, flower number, and flower dry weight. Similarly, total antioxidant activities when N and SCG were coupled together gave respective increments ranging from 11.8 to 45.9 U/g DW and from 2.1 to 15.9 U/g DW compared to N alone (5.8 and 0.9 U/g DW) in both leaves and flowers, respectively. Extracts of plant treated with N and 10°% SCG exhibited a higher content of rosmarinic, caffeic, chlorogenic, vanillic acids, and rutin in the leaves. SCG as a natural organic source is easy to obtain and is a practical and cost-effective solution to plant nutrition, which can be valuable for ornamental plants, especially when combined with nitrogen.


Subject(s)
Chrysanthemum , Coffee , Antioxidants/chemistry , Chrysanthemum/chemistry , Nitrogen/analysis , Plant Leaves , Flowers
10.
Phytochem Anal ; 35(4): 754-770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38282123

ABSTRACT

INTRODUCTION: Chrysanthemi Flos (CF) is widely used as a natural medicine or tea. Due to its diverse cultivation regions, CF exhibits varying quality. Therefore, the quality and swiftness in evaluation holds paramount significance for CF. OBJECTIVE: The aim of the study was to construct a comprehensive evaluation strategy for assessing CF quality using HPLC, near-infrared (NIR) spectroscopy, and chemometrics, which included the rapid quantification analyses of chemical components and the Fourier transform (FT)-NIR to HPLC conversion of fingerprints. MATERIALS AND METHODS: A total of 145 CF samples were utilised for data collection via NIR spectroscopy and HPLC. The partial least squares regression (PLSR) models were optimised using various spectral preprocessing and variable selection methods to predict the chemical composition content in CF. Both direct standardisation (DS) and PLSR algorithms were employed to establish the fingerprint conversion model from the FT-NIR spectrum to HPLC, and the model's performance was assessed through similarity and cluster analysis. RESULTS: The optimised PLSR quantitative models can effectively predict the content of eight chemical components in CF. Both DS and PLSR algorithms achieve the calibration conversion of CF fingerprints from FT-NIR to HPLC, and the predicted and measured HPLC fingerprints are highly similar. Notably, the best model relies on CF powder FT-NIR spectra and DS algorithm [root mean square error of prediction (RMSEP) = 2.7590, R2 = 0.8558]. A high average similarity (0.9184) prevails between predicted and measured fingerprints of test set samples, and the results of the clustering analysis exhibit a high level of consistency. CONCLUSION: This comprehensive strategy provides a novel and dependable approach for the rapid quality evaluation of CF.


Subject(s)
Chrysanthemum , Quality Control , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Chromatography, High Pressure Liquid/methods , Least-Squares Analysis , Chrysanthemum/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Flowers/chemistry , Cluster Analysis , Algorithms
11.
J Antibiot (Tokyo) ; 76(12): 741-745, 2023 12.
Article in English | MEDLINE | ID: mdl-37749218

ABSTRACT

Biosurfactants have found widespread use across multiple industrial fields, including medicine, food, cosmetics, detergents, pulp, and paper, as well as the degradation of oil and fat. The culture broth of Aureobasidium pullulans A11231-1-58 isolated from flowers of Chrysanthemum boreale Makino exhibited potent surfactant activity. Surfactant activity-guided fractionation led to the isolation of three new biosurfactants, pullusurfactins A‒C (1‒3). Their chemical structures were established through the use of spectroscopic techniques, predominantly 1D and 2D NMR, in conjunction with mass measurements. We evaluated the surface tension activities of isolated compounds. At 1.0 mg l-1, these compounds showed high degrees of surfactant activity (31.15 dyne/cm, 33.75 dyne/cm, and 33.83 dyne/cm, respectively).


Subject(s)
Chrysanthemum , Chrysanthemum/chemistry , Chrysanthemum/metabolism , Surface-Active Agents/chemistry
12.
Fitoterapia ; 171: 105633, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37543236

ABSTRACT

Six previously undescribed sesquiterpenoids, chrysanthterpenoids H-M (1-6), were isolated from the stem and leaves of Chrysanthemum morifolium Ramat. Structure elucidation of isolated compounds was unambiguously determined based on extensive 1D and 2D NMR spectroscopic analyses. Furthermore, computational prediction of ECD was used to propose the absolute configurations of the compounds. All compounds were evaluated for their anti-asthma effects on RBL-2H3 cells in vitro. The results showed that Compounds 2 and 3 significantly inhibited the release of ß-aminohexosidase and improved RBL-2H3 degranulation by chromogenic substrate and high-content imaging. These results suggest that Compounds 2 and 3 may exhibit anti-asthma activities.


Subject(s)
Chrysanthemum , Chrysanthemum/chemistry , Molecular Structure , Plant Leaves
13.
Food Chem ; 427: 136745, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37392633

ABSTRACT

Submicroparticles are important components generally existed in chrysanthemum tea infusion, but their functionality, chemical composition, structure and self-assembly mechanism are unclear due to lack of suitable preparation method and research strategy. This study showed that submicroparticles promoted the intestinal absorption of phenolics in chrysanthemum tea infusion by comparison of chrysanthemum tea infusion, submicroparticles-free chrysanthemum tea infusion and submicroparticles. Submicroparticles efficiently prepared by ultrafiltration mainly consisting of polysaccharide and phenolics accounted for 22% of total soluble solids in chrysanthemum tea infusion. The polysaccharide, which was determined as esterified pectin with a spherical conformation, provided spherical skeleton to form submicroparticles. A total of 23 individual phenolic compounds were identified in submicroparticles with the total phenolic content of 7.63 µg/mL. The phenolics not only attached to the external region of spherical pectin by hydrogen bonds, but also got into hydrophobic cavities of spherical pectin and attached to the internal region by hydrophobic interactions.


Subject(s)
Chrysanthemum , Chrysanthemum/chemistry , Flowers/chemistry , Pectins/analysis , Antioxidants/analysis , Phenols/analysis , Tea/chemistry
14.
Chem Biodivers ; 20(7): e202300370, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37263981

ABSTRACT

Recently, much attention has been devoted to natural phenolics because of their ideal structure and chemistry for free radical scavenging activities, which may play important roles in long-term health and a reduction in the risk of developing chronic degenerative diseases. Chrysanthemum indicum (C. indicum) has been widely used as a health food and as a popular herb in China for many centuries. Opisthopappus Shih (O. shih) often takes the place of its related genera, C. indicum, in functional tea or medicine prescriptions in place of origin. In this article, a comparative study on the phenolics and antioxidant activity of C. indicum and O. shih during different growth stages was investigated. The antioxidant properties of plant extracts were tested using DPPH and ABTS assays. The characterization of potential phytochemicals was carried out using Fourier transform infrared (FT-IR) spectroscopy. Total phenolics (TPC) and total flavonoid content (TFC) were measured using Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. An HPLC method was used to simultaneously quantify five phenolic compounds, including chlorogenic acid, luteolin, rutin, quercetin, and apigenin. Results indicated that the Trolox equivalent antioxidant activity (TEAC) values of C. indicum and O. shih had extremely large variations at different growth stages. The most abundant phenolics and potent antioxidant activity of two related plants appear at the early vegetative and then flowering stages. Antioxidant activities and phenolic content of O. shih were higher than those of corresponding organs of C. indicum at the same collection time. The whole plant of O. shih, especially its leaves and flowers, are good candidates for obtaining nutraceuticals and functional food ingredients.


Subject(s)
Asteraceae , Chrysanthemum , Antioxidants/pharmacology , Antioxidants/chemistry , Chrysanthemum/chemistry , Spectroscopy, Fourier Transform Infrared , Flavonoids/pharmacology , Quercetin , Phenols/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
15.
Biomed Pharmacother ; 163: 114818, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37182513

ABSTRACT

Our previous studies uncovered the glucose-lowering properties of snow chrysanthemum tea, however, the active ingredients and underlying mechanisms were yet to be uncovered. Flavonoids are the most active and abundant components in snow chrysanthemum tea. In this study, we treated leptin-deficient diabetic ob/ob or high-fat diet (HFD)-induced C57BL/6 J obese mice with or without total flavonoids of snow chrysanthemum (TFSC) for 14 weeks. Results indicated that TFSC ameliorated dyslipidemia and fatty liver, thereby reducing hyperlipidemia. Further mechanism experiments, including RNA-seq and experimental validation, revealed TFSC improved glycolipid metabolism primarily by activating the AMPK/Sirt1/PPARγ pathway. Additionally, by integrating UPLC, network pharmacology, transcriptomics, and experimental validation, we identified two novel hypoglycemic compounds, sulfuretin and leptosidin, in TFSC. Treatment with 12.5 µmol/L sulfuretin obviously stimulated cellular glucose consumption, and sulfuretin (3.125, 6.25 and 12.5 µmol/L) significantly mitigated glucose uptake damage and reliably facilitated glucose consumption in insulin-resistant HepG2 cells. Remarkably, sulfuretin interacted with the ligand-binding pocket of PPARγ via three hydrogen bond interactions with the residues LYS-367, GLN-286 and TYR-477. Furthermore, a concentration of 12.5 µmol/L sulfuretin effectively upregulated the expression of PPARγ, exhibiting a comparable potency to a renowned PPARγ agonist at 20 µmol/L. Taken together, our findings have identified two new hypoglycemic compounds and revealed their mechanisms, which significantly expands people's understanding of the active components in snow chrysanthemum that have hypoglycemic effects.


Subject(s)
Chrysanthemum , Hypoglycemic Agents , Mice , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Molecular Docking Simulation , Chrysanthemum/chemistry , PPAR gamma/genetics , PPAR gamma/metabolism , Network Pharmacology , Transcriptome , Mice, Inbred C57BL , Glucose , Flavonoids/pharmacology , Tea
16.
Food Chem Toxicol ; 177: 113850, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37225032

ABSTRACT

Two new germacrane-type sesquiterpenoids, chrysanthemolides A (1) and B (2), and four known germacrane-type sesquiterpenoids, hanphyllin (3), 3ß-hydroxy-11α,13-dihydro-costunolide (4), costunolide (5), and 6,7-dimethylmethylene-4-aldehyde-1ß-hydroxy-10(15)-ene-(4Z)-dicyclodecylene (6), were isolated and identified from the flowers of Chrysanthemum indicum. The structures of the new compounds were elucidated via high resolution electrospray ionization mass spectrometry (HR-ESI-MS), 1D and 2D nuclear magnetic resonance (NMR) spectra and electronic circular dichroism (ECD). Meanwhile, all the isolates were tested for their hepatoprotective activity in tert-butyl hydroperoxide (t-BHP) injured AML12 cells. Compounds 1, 2, and 4 showed significant protective effects at 40 µM, comparable with the positive control resveratrol at 10 µM. As the most potent one, compound 1 was chosen for further studies. Compound 1 dose-dependently increased the viability of t-BHP-injured AML12 cells. Furthermore, compound 1 decreased reactive oxygen species accumulation, while increased glutathione level, heme oxygenase-1 level and superoxide dismutase activity, through anchoring in the binding site of Kelch domain of the Kelch-like ECH-associated protein 1 (Keap1) to promote the dissociation of nuclear factor erythroid 2-related factor 2 from Keap1 and translocation to nuclei. In summary, germacrane-type sesquiterpenoids from C. indicum might be further developed to protect liver against oxidative damage.


Subject(s)
Chrysanthemum , Sesquiterpenes , Chrysanthemum/chemistry , Flowers/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Sesquiterpenes/pharmacology , Sesquiterpenes/analysis , Sesquiterpenes, Germacrane/pharmacology , Sesquiterpenes, Germacrane/analysis
17.
Eur J Med Chem ; 255: 115391, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37099836

ABSTRACT

As a popular healthy tea beverage, Jinsi Huangju has been consumed in China for hundreds of years. However, its active ingredients which dissolved in hot water have not been fully determined. In this study, 14 compounds were identified by different spectroscopic techniques, including 11 compounds identified in this plant for the first time. For in-depth studies, apigenin-7-O-6″-malonylglucoside (8) and luteolin-7-O-6″-malonylglucoside (9) were synthesized for the first time by 5 steps in 1.2% overall yields. Further analyses of the natural compounds showed that 8 could inhibit pancreatic lipase, reduce cellular lipid contents, and attenuate insulin resistance in vitro. Furthermore, 8 restore lipid and inflammatory profiles in the plasma and liver (TG, TC, ALT, AST, LDL-C, HDL-C, MPO, and IL-6) and attenuated hepatic steatosis in NAFLD mouse models. In conclusion, Jinsi Huangju and its active ingredients are candidates for developing drug, functional foods and therapeutic strategies for hyperlipidaemia and NAFLD.


Subject(s)
Chrysanthemum , Hyperlipidemias , Non-alcoholic Fatty Liver Disease , Animals , Mice , Chrysanthemum/chemistry , Hyperlipidemias/drug therapy , Lipids/pharmacology , Liver , Non-alcoholic Fatty Liver Disease/drug therapy
18.
Biomed Chromatogr ; 37(6): e5630, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36949600

ABSTRACT

Chrysanthemi Flos (Juhua), an edible herbal medicine that possesses efficacies of dispersing wind, clearing heat and detoxifying. Studies have demonstrated that the health benefits of Chrysanthemi Flos are largely attributable to its anti-inflammatory effects. However, the correlation between the compounds monitored by the current quality control methods and the anti-inflammatory effects of Chrysanthemi Flos is unclear. In order to better control the quality of Chrysanthemi Flos, the identification of anti-inflammatory quality markers (Q-markers) of Chrysanthemi Flos was performed. The chemical components of Chrysanthemi Flos were profiled by HPLC fingerprints combined with chemometrics methods. Simultaneously, the anti-inflammatory activities of 10 batches of water extracts of Chrysanthemi Flos were evaluated in lipopolysaccharide-activated RAW 264.7 macrophages cells. Gray correlation analysis was performed to assess the relationship between the anti-inflammatory activity and chemical properties. The results showed that 13 common peaks were closely correlated with the anti-inflammatory effect, and further bioactivity re-evaluation confirmed that 10 known compounds exerted a strong anti-inflammatory effect. The quantitative analysis of the 10 Q-markers showed that the 25 batches of samples could be discriminated into different zones according to their producing areas. Conclusively, the present work identified 10 anti-inflammatory Q-markers of Chrysanthemi Flos using spectrum-effect relationships combined with bioactivity re-evaluation.


Subject(s)
Chrysanthemum , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Chrysanthemum/chemistry , Drugs, Chinese Herbal/chemistry , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , Quality Control
19.
Molecules ; 28(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770967

ABSTRACT

The chrysanthemum can be consumed in various forms, representing the "integration of medicine and food". Quantitative analysis of multi-pesticide residues in chrysanthemum matrices is therefore crucial for both product-safety assurance and consumer-risk evaluation. In the present study, a simple and effective method was developed for simultaneously detecting 15 pesticides frequently used in chrysanthemum cultivation in three matrices, including fresh flowers, dry chrysanthemum tea, and infusions. The calibration curves for the pesticides were linear in the 0.01-1 mg kg-1 range, with correlation coefficients greater than 0.99. The limits of quantification (LOQs) for fresh flowers, dry chrysanthemum tea, and infusions were 0.01-0.05 mg kg-1, 0.05 mg kg-1, and 0.001-0.005 mg L-1, respectively. In all selected matrices, satisfactory accuracy and precision were achieved, with recoveries ranging from 75.7 to 118.2% and relative standard deviations (RSDs) less than 20%. The validated method was then used to routinely monitor pesticide residues in 50 commercial chrysanthemum-tea samples. As a result, 56% of samples were detected with 5-13 pesticides. This research presents a method for the efficient analysis of multi-pesticide residues in chrysanthemum matrices.


Subject(s)
Chrysanthemum , Pesticide Residues , Chrysanthemum/chemistry , Pesticide Residues/analysis , Flowers/chemistry , Food , Tea/chemistry
20.
Biomed Pharmacother ; 161: 114379, 2023 May.
Article in English | MEDLINE | ID: mdl-36827711

ABSTRACT

Chrysanthemum morifolium Ramat. is a kind of food and drug dual-use traditional Chinese medicine possessing multiple pharmacological and biochemical benefits. In our study, a rapid and high-throughput method based on Surface plasmon resonance (SPR) biosensor technology was developed and verified for screening potential xanthine oxidase (XOD) inhibitors exemplarily in the Chrysanthemum morifolium Ramat. Coupled with ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS), 14 XOD-binders were identified. In the SPR-based biosensor and molecular docking analysis, most compounds exhibited a strong affinity and binding kinetic property (association rate constant, Kon and dissociation rate constant, Koff) for XOD and could be regarded as potential inhibitors. More importantly, to further accurately assess target occupancy of candidate compounds in vivo, a mathematical model was established and verified involving three crucial intrinsic kinetic processes (Pharmacokinetics, Binding kinetic and Target kinetic). Overall, the proposed screening and assessment strategy could be proved an effective theoretical basis for further pharmacodynamic evaluation.


Subject(s)
Chrysanthemum , Xanthine Oxidase , Chrysanthemum/chemistry , Molecular Docking Simulation , Kinetics , Chromatography, High Pressure Liquid/methods , Enzyme Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...