Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36.014
Filter
1.
Stem Cell Reports ; 19(8): 1189-1204, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39094562

ABSTRACT

It has been proposed that adult hematopoiesis is sustained by multipotent progenitors (MPPs) specified during embryogenesis. Adult-like hematopoietic stem cell (HSC) and MPP immunophenotypes are present in the fetus, but knowledge of their functional capacity is incomplete. We found that fetal MPP populations were functionally similar to adult cells, albeit with some differences in lymphoid output. Clonal assessment revealed that lineage biases arose from differences in patterns of single-/bi-lineage differentiation. Long-term (LT)- and short-term (ST)-HSC populations were distinguished from MPPs according to capacity for clonal multilineage differentiation. We discovered that a large cohort of long-term repopulating units (LT-RUs) resides within the ST-HSC population; a significant portion of these were labeled using Flt3-cre. This finding has two implications: (1) use of the CD150+ LT-HSC immunophenotype alone will significantly underestimate the size and diversity of the LT-RU pool and (2) LT-RUs in the ST-HSC population have the attributes required to persist into adulthood.


Subject(s)
Cell Lineage , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Animals , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mice , Cell Differentiation , Fetus/cytology , Immunophenotyping , Hematopoiesis , Clone Cells/cytology
2.
Genome Biol ; 25(1): 214, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123248

ABSTRACT

Analysis of clonal dynamics in human tissues is enabled by somatic genetic variation. Here, we show that analysis of mitochondrial mutations in single cells is dramatically improved in females when using X chromosome inactivation to select informative clonal mutations. Applying this strategy to human peripheral mononuclear blood cells reveals clonal structures within T cells that otherwise are blurred by non-informative mutations, including the separation of gamma-delta T cells, suggesting this approach can be used to decipher clonal dynamics of cells in human tissues.


Subject(s)
Mutation , Single-Cell Analysis , X Chromosome Inactivation , Humans , Female , Leukocytes, Mononuclear/metabolism , Chromosomes, Human, X/genetics , Clone Cells , T-Lymphocytes/metabolism , Male , DNA, Mitochondrial/genetics
3.
Phys Rev E ; 109(6-1): 064407, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39021023

ABSTRACT

The self-organization of cells into complex tissues relies on a tight coordination of cell behavior. Identifying the cellular processes driving tissue growth is key to understanding the emergence of tissue forms and devising targeted therapies for aberrant growth, such as in cancer. Inferring the mode of tissue growth, whether it is driven by cells on the surface or by cells in the bulk, is possible in cell culture experiments but difficult in most tissues in living organisms (in vivo). Genetic tracing experiments, where a subset of cells is labeled with inheritable markers, have become important experimental tools to study cell fate in vivo. Here we show that the mode of tissue growth is reflected in the size distribution of the progeny of marked cells. To this end, we derive the clone size distributions using analytical calculations in the limit of negligible cell migration and cell death, and we test our predictions with an agent-based stochastic sampling technique. We show that for surface-driven growth the clone size distribution takes a characteristic power-law form with an exponent determined by fluctuations of the tissue surface. Our results propose a possible way of determining the mode of tissue growth from genetic tracing experiments.


Subject(s)
Models, Biological , Stochastic Processes , Cell Proliferation , Clone Cells/cytology , Animals , Cell Movement
4.
Nature ; 632(8023): 201-208, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39020172

ABSTRACT

Telomerase is intimately associated with stem cells and cancer, because it catalytically elongates telomeres-nucleoprotein caps that protect chromosome ends1. Overexpression of telomerase reverse transcriptase (TERT) enhances the proliferation of cells in a telomere-independent manner2-8, but so far, loss-of-function studies have provided no evidence that TERT has a direct role in stem cell function. In many tissues, homeostasis is shaped by stem cell competition, a process in which stem cells compete on the basis of inherent fitness. Here we show that conditional deletion of Tert in the spermatogonial stem cell (SSC)-containing population in mice markedly impairs competitive clone formation. Using lineage tracing from the Tert locus, we find that TERT-expressing SSCs yield long-lived clones, but that clonal inactivation of TERT promotes stem cell differentiation and a genome-wide reduction in open chromatin. This role for TERT in competitive clone formation occurs independently of both its reverse transcriptase activity and the canonical telomerase complex. Inactivation of TERT causes reduced activity of the MYC oncogene, and transgenic expression of MYC in the TERT-deleted pool of SSCs efficiently rescues clone formation. Together, these data reveal a catalytic-activity-independent requirement for TERT in enhancing stem cell competition, uncover a genetic connection between TERT and MYC and suggest that a selective advantage for stem cells with high levels of TERT contributes to telomere elongation in the male germline during homeostasis and ageing.


Subject(s)
Cell Competition , Clone Cells , Stem Cells , Telomerase , Animals , Male , Mice , Cell Differentiation , Cell Lineage , Chromatin/metabolism , Chromatin/genetics , Clone Cells/cytology , Clone Cells/enzymology , Clone Cells/metabolism , Gene Deletion , Genes, myc , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Spermatogonia/cytology , Spermatogonia/metabolism , Stem Cells/cytology , Stem Cells/enzymology , Stem Cells/metabolism , Telomerase/deficiency , Telomerase/genetics , Telomerase/metabolism , Reverse Transcription , Biocatalysis , Homeostasis , Aging
5.
Nature ; 632(8024): 419-428, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39020166

ABSTRACT

The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Squamous Cell , Cell Transformation, Neoplastic , Clonal Evolution , Clone Cells , Single-Cell Analysis , Tumor Necrosis Factors , Animals , Female , Humans , Male , Mice , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Clonal Evolution/genetics , Clone Cells/cytology , Clone Cells/metabolism , Clone Cells/pathology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , CRISPR-Cas Systems/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Macrophages/metabolism , Mutation , Neoplasm Invasiveness/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction/genetics , Single-Cell Analysis/methods , Transcriptome/genetics , Tumor Necrosis Factors/genetics , Tumor Necrosis Factors/metabolism , Autocrine Communication , Survival Analysis
6.
Sci Rep ; 14(1): 14587, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918509

ABSTRACT

Engineered mammalian cells are key for biotechnology by enabling broad applications ranging from in vitro model systems to therapeutic biofactories. Engineered cell lines exist as a population containing sub-lineages of cell clones that exhibit substantial genetic and phenotypic heterogeneity. There is still a limited understanding of the source of this inter-clonal heterogeneity as well as its implications for biotechnological applications. Here, we developed a genomic barcoding strategy for a targeted integration (TI)-based CHO antibody producer cell line development process. This technology provided novel insights about clone diversity during stable cell line selection on pool level, enabled an imaging-independent monoclonality assessment after single cell cloning, and eventually improved hit-picking of antibody producer clones by monitoring of cellular lineages during the cell line development (CLD) process. Specifically, we observed that CHO producer pools generated by TI of two plasmids at a single genomic site displayed a low diversity (< 0.1% RMCE efficiency), which further depends on the expressed molecules, and underwent rapid population skewing towards dominant clones during routine cultivation. Clonal cell lines from one individual TI event demonstrated a significantly lower variance regarding production-relevant and phenotypic parameters as compared to cell lines from distinct TI events. This implies that the observed cellular diversity lies within pre-existing cell-intrinsic factors and that the majority of clonal variation did not develop during the CLD process, especially during single cell cloning. Using cellular barcodes as a proxy for cellular diversity, we improved our CLD screening workflow and enriched diversity of production-relevant parameters substantially. This work, by enabling clonal diversity monitoring and control, paves the way for an economically valuable and data-driven CLD process.


Subject(s)
Clone Cells , Cricetulus , DNA Barcoding, Taxonomic , CHO Cells , Animals , DNA Barcoding, Taxonomic/methods , Genomics/methods , Antibodies, Monoclonal/genetics
7.
Front Immunol ; 15: 1306490, 2024.
Article in English | MEDLINE | ID: mdl-38873594

ABSTRACT

Recurrent exposures to a pathogenic antigen remodel the CD8+ T cell compartment and generate a functional memory repertoire that is polyclonal and complex. At the clonotype level, the response to the conserved influenza antigen, M158-66 has been well characterized in healthy individuals, but not in patients receiving immunosuppressive therapy or with aberrant immunity, such as those with juvenile idiopathic arthritis (JIA). Here we show that patients with JIA have a reduced number of M158-66 specific RS/RA clonotypes, indicating decreased clonal richness and, as a result, have lower repertoire diversity. By using a rank-frequency approach to analyze the distribution of the repertoire, we found several characteristics of the JIA T cell repertoire to be akin to repertoires seen in healthy adults, including an amplified RS/RA-specific antigen response, representing greater clonal unevenness. Unlike mature repertoires, however, there is more fluctuation in clonotype distribution, less clonotype stability, and more variable IFNy response of the M158-66 specific RS/RA clonotypes in JIA. This indicates that functional clonal expansion is altered in patients with JIA on immunosuppressive therapies. We propose that the response to the influenza M158-66 epitope described here is a general phenomenon for JIA patients receiving immunosuppressive therapy, and that the changes in clonal richness and unevenness indicate a retarded and uneven generation of a mature immune response.


Subject(s)
Arthritis, Juvenile , CD8-Positive T-Lymphocytes , Influenza Vaccines , Influenza, Human , Humans , Arthritis, Juvenile/immunology , CD8-Positive T-Lymphocytes/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Female , Child , Male , Adolescent , Vaccination , Clone Cells/immunology , Child, Preschool , Immunologic Memory , Young Adult
8.
Nature ; 631(8019): 134-141, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867047

ABSTRACT

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Subject(s)
Aneuploidy , Chromosomes, Human, X , Clone Cells , Leukocytes , Mosaicism , Adult , Female , Humans , Male , Middle Aged , Alleles , Autoimmune Diseases/genetics , Biological Specimen Banks , Chromosome Segregation/genetics , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Clone Cells/metabolism , Clone Cells/pathology , Exome/genetics , F-Box Proteins/genetics , Genetic Predisposition to Disease/genetics , Germ-Line Mutation , Leukemia/genetics , Leukocytes/metabolism , Models, Genetic , Multifactorial Inheritance/genetics , Mutation, Missense/genetics
9.
Immunol Cell Biol ; 102(7): 630-641, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38855806

ABSTRACT

CD8+ T cells recognizing their cognate antigen are typically recruited as a polyclonal population consisting of multiple clonotypes with varying T-cell receptor (TCR) affinity to the target peptide-major histocompatibility complex (pMHC) complex. Advances in single-cell sequencing have increased accessibility toward identifying TCRs with matched antigens. Here we present the discovery of a monoclonal CD8+ T-cell population with specificity for a hepatitis C virus (HCV)-derived human leukocyte antigen (HLA) class I epitope (HLA-B*07:02 GPRLGVRAT) which was isolated directly ex vivo from an individual with an episode of acutely resolved HCV infection. This population was absent before infection and underwent expansion and stable maintenance for at least 2 years after infection as measured by HLA-multimer staining. Furthermore, the monoclonal clonotype was characterized by an unusually long dissociation time (half-life = 794 s and koff = 5.73 × 10-4) for its target antigen when compared with previously published results. A comparison with related populations of HCV-specific populations derived from the same individual and a second individual suggested that high-affinity TCR-pMHC interactions may be inherent to epitope identity and shape the phenotype of responses which has implications for rational TCR selection and design in the age of personalized immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Clone Cells , Hepacivirus , Hepatitis C , Receptors, Antigen, T-Cell , Humans , CD8-Positive T-Lymphocytes/immunology , Hepatitis C/immunology , Hepatitis C/virology , Hepacivirus/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Epitopes, T-Lymphocyte/immunology
10.
Nucleic Acids Res ; 52(14): e62, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38922688

ABSTRACT

Genome-level clonal decomposition of a single specimen has been widely studied; however, it is mostly limited to cancer research. In this study, we developed a new algorithm CLEMENT, which conducts accurate decomposition and reconstruction of multiple subclones in genome sequencing of non-tumor (normal) samples. CLEMENT employs the Expectation-Maximization (EM) algorithm with optimization strategies specific to non-tumor subclones, including false variant call identification, non-disparate clone fuzzy clustering, and clonal allele fraction confinement. In the simulation and in vitro cell line mixture data, CLEMENT outperformed current cancer decomposition algorithms in estimating the number of clones (root-mean-square-error = 0.58-0.78 versus 1.43-3.34) and in the variant-clone membership agreement (∼85.5% versus 70.1-76.7%). Additional testing on human multi-clonal normal tissue sequencing confirmed the accurate identification of subclones that originated from different cell types. Clone-level analysis, including mutational burden and signatures, provided a new understanding of normal-tissue composition. We expect that CLEMENT will serve as a crucial tool in the currently emerging field of non-tumor genome analysis.


Subject(s)
Algorithms , Genomics , Humans , Genomics/methods , Neoplasms/genetics , Mutation , Genome, Human , Clone Cells
11.
Nat Cell Biol ; 26(5): 710-718, 2024 May.
Article in English | MEDLINE | ID: mdl-38714853

ABSTRACT

During brain development, neural progenitors expand through symmetric divisions before giving rise to differentiating cell types via asymmetric divisions. Transition between those modes varies among individual neural stem cells, resulting in clones of different sizes. Imaging-based lineage tracing allows for lineage analysis at high cellular resolution but systematic approaches to analyse clonal behaviour of entire tissues are currently lacking. Here we implement whole-tissue lineage tracing by genomic DNA barcoding in 3D human cerebral organoids, to show that individual stem cell clones produce progeny on a vastly variable scale. By using stochastic modelling we find that variable lineage sizes arise because a subpopulation of lineages retains symmetrically dividing cells. We show that lineage sizes can adjust to tissue demands after growth perturbation via chemical ablation or genetic restriction of a subset of cells in chimeric organoids. Our data suggest that adaptive plasticity of stem cell populations ensures robustness of development in human brain organoids.


Subject(s)
Cell Lineage , Neural Stem Cells , Organoids , Organoids/cytology , Organoids/metabolism , Humans , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Brain/cytology , Brain/growth & development , Brain/metabolism , Cell Differentiation , Cell Proliferation , Clone Cells , Neurogenesis/genetics , DNA Barcoding, Taxonomic , Animals
12.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716731

ABSTRACT

T cells are required for protective immunity against Mycobacterium tuberculosis. We recently described a cohort of Ugandan household contacts of tuberculosis cases who appear to "resist" M. tuberculosis infection (resisters; RSTRs) and showed that these individuals harbor IFN-γ-independent T cell responses to M. tuberculosis-specific peptide antigens. However, T cells also recognize nonprotein antigens via antigen-presenting systems that are independent of genetic background, known as donor-unrestricted T cells (DURTs). We used tetramer staining and flow cytometry to characterize the association between DURTs and "resistance" to M. tuberculosis infection. Peripheral blood frequencies of most DURT subsets were comparable between RSTRs and latently infected controls (LTBIs). However, we observed a 1.65-fold increase in frequency of MR1-restricted T (MR1T) cells among RSTRs in comparison with LTBIs. Single-cell RNA sequencing of 18,251 MR1T cells sorted from 8 donors revealed 5,150 clonotypes that expressed a common transcriptional program, the majority of which were private. Sequencing of the T cell receptor α/T cell receptor δ (TCRα/δ) repertoire revealed several DURT clonotypes were expanded among RSTRs, including 2 MR1T clonotypes that recognized mycobacteria-infected cells in a TCR-dependent manner. Overall, our data reveal unexpected donor-specific diversity in the TCR repertoire of human MR1T cells as well as associations between mycobacteria-reactive MR1T clonotypes and resistance to M. tuberculosis infection.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/immunology , Uganda , Adult , Male , Minor Histocompatibility Antigens/immunology , Minor Histocompatibility Antigens/genetics , Female , Tuberculosis/immunology , Tuberculosis/microbiology , T-Lymphocytes/immunology , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Clone Cells/immunology , Disease Resistance/immunology , Disease Resistance/genetics , Young Adult , Histocompatibility Antigens Class I
13.
Nature ; 629(8014): 1149-1157, 2024 May.
Article in English | MEDLINE | ID: mdl-38720070

ABSTRACT

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Subject(s)
Chromatin , Epigenesis, Genetic , Genotype , Mutation , Single-Cell Analysis , Animals , Female , Humans , Male , Mice , Antigens, CD34/metabolism , Cell Differentiation/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic/genetics , Epigenome/genetics , Genome, Mitochondrial/genetics , Genotyping Techniques , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Inflammation/genetics , Inflammation/pathology , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Megakaryocytes/metabolism , Megakaryocytes/pathology , Membrane Proteins/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , RNA/genetics , Clone Cells/metabolism
14.
Br J Cancer ; 131(1): 196-204, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750113

ABSTRACT

BACKGROUND: Adoptive cell therapy using tumor-infiltrating lymphocytes (TILs) has shown promising results in cancer treatment, including breast cancer. However, clonal dynamics and clinical significance of TIL expansion ex vivo remain poorly understood. METHODS: We investigated T cell receptor (TCR) repertoire changes in expanded TILs from 19 patients with breast cancer. We compared TCR repertoire of TILs at different stages of expansion, including initial (2W TILs) and rapid expansion (REP TILs), and their overlap with formalin fixed paraffin embedded (FFPE) and peripheral blood. Additionally, we examined differences in TCR repertoire between CD4+ and CD8+ REP TILs. RESULTS: In descending order of proportion, average of 60% of the top 10% clonotypes of FFPE was retained in 2W TIL (60% in TRB, 64.7% in TRA). Among the overlapped clonotypes between 2W TILs and REP TILs, 69.9% was placed in top 30% of 2W TIL. The proportion of clonotypes in 2W TIL and REP TIL showed a significant positive correlation. CD4+ and CD8+ T cells show similar results in diversity and CDR3 length. CONCLUSIONS: Our study traces the changes in TILs repertoire from FFPE to 2W TIL and REP TIL and confirmed that clonotypes with high frequencies in TILs have a high likelihood of maintaining their priority throughout culture process.


Subject(s)
Breast Neoplasms , CD8-Positive T-Lymphocytes , Lymphocytes, Tumor-Infiltrating , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Female , CD8-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , CD4-Positive T-Lymphocytes/immunology , Middle Aged , Clone Cells/immunology , Adult , Aged
15.
J Pathol ; 263(3): 360-371, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38779852

ABSTRACT

Mutations are abundantly present in tissues of healthy individuals, including the breast epithelium. Yet it remains unknown whether mutant cells directly induce lesion formation or first spread, leading to a field of mutant cells that is predisposed towards lesion formation. To study the clonal and spatial relationships between morphologically normal breast epithelium adjacent to pre-cancerous lesions, we developed a three-dimensional (3D) imaging pipeline combined with spatially resolved genomics on archival, formalin-fixed breast tissue with the non-obligate breast cancer precursor ductal carcinoma in situ (DCIS). Using this 3D image-guided characterization method, we built high-resolution spatial maps of DNA copy number aberration (CNA) profiles within the DCIS lesion and the surrounding normal mammary ducts. We show that the local heterogeneity within a DCIS lesion is limited. However, by mapping the CNA profiles back onto the 3D reconstructed ductal subtree, we find that in eight out of 16 cases the healthy epithelium adjacent to the DCIS lesions has overlapping structural variations with the CNA profile of the DCIS. Together, our study indicates that pre-malignant breast transformations frequently develop within mutant clonal fields of morphologically normal-looking ducts. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , DNA Copy Number Variations , Mutation , Humans , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Imaging, Three-Dimensional , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Clone Cells
16.
Nat Immunol ; 25(5): 916-924, 2024 May.
Article in English | MEDLINE | ID: mdl-38698238

ABSTRACT

B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.


Subject(s)
B-Lymphocytes , Breast Neoplasms , Immunologic Surveillance , Humans , Female , Breast Neoplasms/immunology , B-Lymphocytes/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , T-Lymphocytes/immunology , Monitoring, Immunologic , Exome Sequencing , Antigens, Neoplasm/immunology , Neoplasm Metastasis , Clone Cells
17.
Nature ; 629(8012): 679-687, 2024 May.
Article in English | MEDLINE | ID: mdl-38693266

ABSTRACT

Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.


Subject(s)
Genetic Heterogeneity , Genomics , Imaging, Three-Dimensional , Pancreatic Neoplasms , Precancerous Conditions , Single-Cell Analysis , Adult , Female , Humans , Male , Clone Cells/metabolism , Clone Cells/pathology , Exome Sequencing , Machine Learning , Mutation , Pancreas/anatomy & histology , Pancreas/cytology , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Workflow , Disease Progression , Early Detection of Cancer , Oncogenes/genetics
18.
Proc Natl Acad Sci U S A ; 121(20): e2320268121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709934

ABSTRACT

Insulin is a central autoantigen in the pathogenesis of T1D, and thymic epithelial cell expression of insulin under the control of the Autoimmune Regulator (Aire) is thought to be a key component of maintaining tolerance to insulin. In spite of this general working model, direct detection of this thymic selection on insulin-specific T cells has been somewhat elusive. Here, we used a combination of highly sensitive T cell receptor transgenic models for detecting thymic selection and sorting and sequencing of Insulin-specific CD4+ T cells from Aire-deficient mice as a strategy to further define their selection. This analysis revealed a number of unique t cell receptor (TCR) clones in Aire-deficient hosts with high affinity for insulin/major histocompatibility complex (MHC) ligands. We then modeled the thymic selection of one of these clones in Aire-deficient versus wild-type hosts and found that this model clone could escape thymic negative selection in the absence of thymic Aire. Together, these results suggest that thymic expression of insulin plays a key role in trimming and removing high-affinity insulin-specific T cells from the repertoire to help promote tolerance.


Subject(s)
AIRE Protein , Insulin , Receptors, Antigen, T-Cell , Thymus Gland , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Clone Cells , Immune Tolerance , Insulin/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Thymus Gland/immunology , Thymus Gland/metabolism , Thymus Gland/cytology , Transcription Factors/metabolism , Transcription Factors/genetics
19.
Cancer Immunol Res ; 12(7): 814-821, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38631025

ABSTRACT

Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TIL) is effective in patients with melanoma, although long-term responses seem restricted in patients who have complete remissions. Many patients develop secondary resistance to TIL-ACT but the involved mechanisms are unclear. In this study, we describe a case of secondary resistance to TIL-ACT possibly due to intratumoral heterogeneity and selection of a resistant tumor cell clone by the transferred T cells. To the best our knowledge, this is the first case of clonal selection of a pre-existing nondominant tumor cell clone; this report demonstrates the mechanism involved in secondary resistance to TIL-ACT that can potentially change current clinical practice because it advocates for T-cell collection from multiple tumor sites and analysis of tumor heterogeneity before treatment with TIL-ACT.


Subject(s)
Immunotherapy, Adoptive , Lymphocytes, Tumor-Infiltrating , Melanoma , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/therapy , Melanoma/immunology , Immunotherapy, Adoptive/methods , Male , Clone Cells , Female , Middle Aged , Skin Neoplasms/therapy , Skin Neoplasms/immunology , Skin Neoplasms/pathology
20.
Nature ; 629(8011): 384-392, 2024 May.
Article in English | MEDLINE | ID: mdl-38600385

ABSTRACT

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Subject(s)
Cell Lineage , Clone Cells , Mosaicism , Neurons , Prosencephalon , Aged , Female , Humans , Alleles , Cell Lineage/genetics , Clone Cells/cytology , Clone Cells/metabolism , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Hippocampus/cytology , Homeodomain Proteins/metabolism , Neocortex/cytology , Neural Inhibition , Neurons/cytology , Neurons/metabolism , Parietal Lobe/cytology , Prosencephalon/anatomy & histology , Prosencephalon/cytology , Prosencephalon/metabolism , Single-Cell Analysis , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL