Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Fungal Biol ; 128(5): 1917-1932, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059847

ABSTRACT

Here, we report on a Cordyceps species entering into a multi-trophic, multi-kingdom association. Cordyceps cateniannulata, isolated from the stem of wild Coffea arabica in Ethiopia, is shown to function as an endophyte, a mycoparasite and an entomopathogen. A detailed polyphasic taxonomic study, including a multilocus phylogenetic analysis, confirmed its identity. An emended description of C. cateniannulata is provided herein. Previously, this species was known as a pathogen of various insect hosts in both the Old and New World. The endophytic status of C. cateniannulata was confirmed by re-isolating it from inoculated coffee plants. Inoculation studies have further shown that C. cateniannulata is a mycoparasite of Hemileia vastatrix, as well as an entomopathogen of major coffee pests; infecting and killing Hypothenemus hampei and Leucoptera coffeella. This is the first record of C. cateniannulata from Africa, as well as an endophyte and a mycoparasite. The implications for its use as a biocontrol agent are discussed.


Subject(s)
Coffea , Cordyceps , Endophytes , Phylogeny , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/physiology , Cordyceps/genetics , Cordyceps/classification , Coffea/microbiology , Coffea/parasitology , Animals , Plant Diseases/microbiology , Plant Diseases/parasitology , Ethiopia , DNA, Fungal/genetics , DNA, Fungal/chemistry , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/chemistry , Plant Stems/microbiology , Plant Stems/parasitology , Sequence Analysis, DNA , Cluster Analysis
2.
Food Res Int ; 188: 114467, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823836

ABSTRACT

Cellulose-based packaging has received great attention due to its characteristics of biodegradability, sustainability, and recyclability. Natural polymer coatings are usually applied to the paper surface to enhance the barriers to water vapour and improve the mechanical properties. A chitosan-based coating for paper packaging was developed in this work to store specialty roasted coffee beans, evaluating two samples of chitosan (Sigma® and molasses chitosan), and following the physico-chemical and microbiological characteristics of coffee beans along a period of 60 days. Sensory tests (Ranking Descriptive Analysis and Preference Test) were applied to the beverage prepared with the roasted and ground coffee beans stored in each packaging. Thin chitosan films provided good coverage and adhesion on the paper. Improved mechanical properties and lower water permeability were observed in the chitosan-coated papers. The physicochemical and microbiological characteristics of the coffee beans were not influenced by the packaging along 60 days of storage. The molasses chitosan coating resulted in slightly darker roasted beans. In sensory evaluation, there is a clear difference between the chitosan samples, so that molasses chitosan-coated packaging had higher scores compared to Sigma® chitosan treatment for flavor and global impression in the preference analysis of the beverage. The molasses chitosan-coated packaging had three to four more consumers attributing the highest scores for the beverage prepared with the roasted beans stored in this type of packaging.


Subject(s)
Chitosan , Food Packaging , Paper , Chitosan/chemistry , Food Packaging/methods , Coffee/chemistry , Beverages/analysis , Seeds/chemistry , Seeds/microbiology , Humans , Taste , Coffea/chemistry , Coffea/microbiology , Consumer Behavior , Permeability
3.
Arch Microbiol ; 206(6): 279, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805051

ABSTRACT

Yeast, which plays a pivotal role in the brewing, food, and medical industries, exhibits a close relationship with human beings. In this study, we isolated and purified 60 yeast strains from the natural fermentation broth of Sidamo coffee beans to screen for indigenous beneficial yeasts. Among them, 25 strains were obtained through morphological characterization on nutritional agar medium from Wallerstein Laboratory (WL), with molecular biology identifying Saccharomyces cerevisiae strain YBB-47 and the remaining 24 yeast strains identified as Pichia kudriavzevii. We investigated the fermentation performance, alcohol tolerance, SO2 tolerance, pH tolerance, sugar tolerance, temperature tolerance, ester production capacity, ethanol production capacity, H2S production capacity, and other brewing characteristics of YBB-33 and YBB-47. The results demonstrated that both strains could tolerate up to 3% alcohol by volume at a high sucrose mass concentration (400 g/L) under elevated temperature conditions (40 ℃), while also exhibiting a remarkable ability to withstand an SO2 mass concentration of 300 g/L at pH 3.2. Moreover, S. cerevisiae YBB-47 displayed a rapid gas production rate and strong ethanol productivity. whereas P. kudriavzevii YBB-33 exhibited excellent alcohol tolerance. Furthermore, this systematic classification and characterization of coffee bean yeast strains from the Sidamo region can potentially uncover additional yeasts that offer high-quality resources for industrial-scale coffee bean production.


Subject(s)
Ethanol , Fermentation , Pichia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Pichia/metabolism , Pichia/isolation & purification , Pichia/genetics , Pichia/classification , Ethanol/metabolism , Hydrogen-Ion Concentration , Coffee/microbiology , Coffea/microbiology , Temperature , Seeds/microbiology , Hydrogen Sulfide/metabolism
4.
Methods Mol Biol ; 2787: 209-223, 2024.
Article in English | MEDLINE | ID: mdl-38656492

ABSTRACT

Coffea spp. is the source of one of the most widely consumed beverages in the world. However, the cultivation of this crop is threatened by Hemileia vastatrix Berk & Broome, a fungal disease, which reduces the productivity and can cause significant economic losses. In this protocol, coffee leaf segment derived from a chemical mutagenesis process are inoculated with uredospores of the pathogen. Subsequently, the gene expression changes are analyzed over the time (0, 5, 24, 48, and 120 h) using quantitative real-time polymerase chain reaction (RT-qPCR). The procedures and example data are presented for expression analysis in the CaWRKY1 gene. This procedure can be applied for quantitative analysis of other genes of interest to coffee breeders and scientists for elucidating the molecular mechanisms involved in the interaction between the plant and pathogen, potentially leading to the development of more efficient approaches for managing this disease.


Subject(s)
Basidiomycota , Coffea , Gene Expression Regulation, Plant , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/genetics , Coffea/microbiology , Coffea/genetics , Basidiomycota/genetics , Basidiomycota/pathogenicity , Real-Time Polymerase Chain Reaction/methods , Gene Expression Profiling/methods , Mutation , Plant Leaves/microbiology , Plant Leaves/genetics , Host-Pathogen Interactions/genetics
5.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38599638

ABSTRACT

Coffee leaf rust, caused by the fungus Hemileia vastatrix, has become a major concern for coffee-producing countries. Additionally, there has been an increase in the resistance of certain races of the fungus to fungicides and breeding cultivars, making producers use alternative control methods. In this work, we transplanted the leaf surface microbiota of rust-resistant coffee species (Coffea racemosa and Coffea stenophylla) to Coffea arabica and tested whether the new microbiota would be able to minimize the damage caused by H. vastatrix. It was seen that the transplant was successful in controlling rust, especially from C. stenophylla, but the protection depended on the concentration of the microbiota. Certain fungi, such as Acrocalymma, Bipolaris, Didymella, Nigrospora, Setophaeosphaeria, Simplicillium, Stagonospora and Torula, and bacteria, such as Chryseobacterium, Sphingobium and especially Enterobacter, had their populations increased and this may be related to the antagonism seen against H. vastatrix. Interestingly, the relative population of bacteria from genera Pantoea, Methylobacterium and Sphingomonas decreased after transplantation, suggesting a positive interaction between them and H. vastatrix development. Our findings may help to better understand the role of the microbiota in coffee leaf rust, as well as help to optimize the development of biocontrol agents.


Subject(s)
Basidiomycota , Coffea , Disease Resistance , Microbiota , Plant Diseases , Plant Leaves , Coffea/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Leaves/microbiology , Basidiomycota/genetics , Basidiomycota/growth & development , Bacteria/genetics , Bacteria/growth & development , Bacteria/classification , Fungi/growth & development , Fungi/genetics
6.
Int J Food Microbiol ; 415: 110638, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38430685

ABSTRACT

Biocontrol Agents (BCAs) can be an eco-friendly alternative to fungicides to reduce the contamination with mycotoxigenic fungi on coffee. In the present study, different strains of bacteria and yeasts were isolated from Ivorian Robusta coffee. Their ability to reduce fungal growth and Ochratoxin A (OTA) production during their confrontation against Aspergillus carbonarius was screened on solid media. Some strains were able to reduce growth and OTA production by 85 % and 90 % and were molecularly identified as two yeasts, Rhodosporidiobolus ruineniae and Meyerozyma caribbica. Subsequent tests on liquid media with A. carbonarius or solely with OTA revealed adhesion of R. ruineniae to the mycelium of A. carbonarius through Scanning Electron Microscopy, and an OTA adsorption efficiency of 50 %. For M. caribbica potential degradation of OTA after 24 h incubation was observed. Both yeasts could be potential BCAs good candidates for Ivorian Robusta coffee protection against A. carbonarius and OTA contamination.


Subject(s)
Coffea , Lactobacillales , Ochratoxins , Vitis , Coffee/metabolism , Aspergillus/metabolism , Coffea/microbiology , Yeasts , Vitis/microbiology
7.
Phytopathology ; 114(6): 1320-1332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38385804

ABSTRACT

Coffee fruit rot (CFR) is a well-known disease worldwide, mainly caused by Colletotrichum spp., the most important species being C. kahawae subsp. kahawae. In Puerto Rico, Colletotrichum spp. were identified as pathogens of coffee fruits. The coffee berry borer (CBB) was shown to be a dispersal agent of these fungi, and interaction of Fusarium with Colletotrichum affecting coffee fruits was suggested. In this study, we demonstrated that Fusarium spp. also cause CFR in Puerto Rico. Fusarium spp. are part of the CBB mycobiota, and this insect is responsible for spreading the pathogens in coffee fields. We identified nine Fusarium spp. (F. nirenbergiae, F. bostrycoides, F. crassum, F. hengyangense, F. solani-melongenae, F. pseudocircinatum, F. meridionale, F. concolor, and F. lateritium) belonging to six Fusarium species complexes isolated from CBBs and from rotten coffee fruits. Pathogenicity tests showed that F. bostrycoides, F. lateritium, F. nirenbergiae, F. solani-melongenae, and F. pseudocircinatum were pathogens causing CFR on green coffee fruits. F. bostrycoides was the predominant species isolated from the CBB mycobiota and coffee fruits with symptoms of CFR, suggesting a close relationship between F. bostrycoides and the CBB. To our knowledge, this is the first report of F. bostrycoides, F. solani-melongenae, F. pseudocircinatum, and F. nirenbergiae causing CFR worldwide and the first report of F. lateritium causing CFR in Puerto Rico. Understanding the CFR disease complex and how the CBB contributes to dispersing different Fusarium spp. on coffee farms is important to implement disease management practices in Puerto Rico and in other coffee-producing countries.


Subject(s)
Coffea , Fruit , Fusarium , Plant Diseases , Fusarium/physiology , Fusarium/isolation & purification , Animals , Plant Diseases/microbiology , Coffea/microbiology , Coffea/parasitology , Puerto Rico , Fruit/microbiology , Weevils/microbiology , Colletotrichum/physiology , Host-Pathogen Interactions
8.
J Math Biol ; 88(3): 30, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38400915

ABSTRACT

Ontogenic resistance has been described for many plant-pathogen systems. Conversely, coffee leaf rust, a major fungal disease that drastically reduces coffee production, exhibits a form of ontogenic susceptibility, with a higher infection risk for mature leaves. To take into account stage-dependent crop response to phytopathogenic fungi, we developed an SEIR-U epidemiological model, where U stands for spores, which differentiates between young and mature leaves. Based on this model, we also explored the impact of ontogenic resistance on the sporulation rate. We computed the basic reproduction number [Formula: see text], which classically determines the stability of the disease-free equilibrium. We identified forward and backward bifurcation cases. The backward bifurcation is generated by the high sporulation of young leaves compared to mature ones. In this case, when the basic reproduction number is less than one, the disease can persist. These results provide useful insights on the disease dynamics and its control. In particular, ontogenic resistance may require higher control efforts to eradicate the disease.


Subject(s)
Basidiomycota , Coffea , Mycoses , Coffea/microbiology , Basidiomycota/physiology , Mycoses/epidemiology , Models, Biological , Epidemiological Models
9.
Braz J Microbiol ; 55(2): 1841-1852, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38401008

ABSTRACT

Microorganisms are important indicators of soil quality due to their sensitivity to changes, reflecting the impacts caused by different land uses. The objective of this study was to evaluate the microbiological and physical-chemical attributes of the soil in areas cultivated with coffee under three different management systems (shaded coffee and full sun coffee with two spacings), as well as in adjacent areas under pasture and native forest, in Bahia, Brazil. The microbiological and physicochemical indicators evaluated were basal soil respiration (MBR), soil total organic carbon (TOC), microbial biomass carbon (MBC), metabolic quotient (qCO2), microbial quotient (qMic), enzyme activities (urease, acid phosphatase and fluorescein diacetate hydrolysis (FDA)). Physical and chemical indicators (particle size, texture, pH, P, K+, Ca2+, Mg2+, Al3+, and sum of bases) were also evaluated. Biological and chemical attributes were much more discriminative of study areas in the dry season. Microbial quotient (qMic) and metabolic quotient (qCO2) in the dry season showed that pasture is the most degraded land use. Conversely, nature forest and coffee with Grevillea were similar and were the best ones. In general, soil quality indicators were more sensitive to discriminate pasture and native forest from coffee systems, which, in turn, were not well discriminated among themselves.


Subject(s)
Coffea , Soil Microbiology , Soil , Brazil , Soil/chemistry , Coffea/microbiology , Coffea/chemistry , Coffea/growth & development , Coffee/chemistry , Coffee/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Agriculture/methods
10.
J Sci Food Agric ; 104(9): 5442-5461, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38349004

ABSTRACT

BACKGROUND: Climate influences the interaction between pathogens and their hosts significantly. This is particularly evident in the coffee industry, where fungal diseases like Cercospora coffeicola, causing brown-eye spot, can reduce yields drastically. This study focuses on forecasting coffee brown-eye spot using various models that incorporate agrometeorological data, allowing for predictions at least 1 week prior to the occurrence of disease. Data were gathered from eight locations across São Paulo and Minas Gerais, encompassing the South and Cerrado regions of Minas Gerais state. In the initial phase, various machine learning (ML) models and topologies were calibrated to forecast brown-eye spot, identifying one with potential for advanced decision-making. The top-performing models were then employed in the next stage to forecast and spatially project the severity of brown-eye spot across 2681 key Brazilian coffee-producing municipalities. Meteorological data were sourced from NASA's Prediction of Worldwide Energy Resources platform, and the Penman-Monteith method was used to estimate reference evapotranspiration, leading to a Thornthwaite and Mather water-balance calculation. Six ML models - K-nearest neighbors (KNN), artificial neural network multilayer perceptron (MLP), support vector machine (SVM), random forests (RF), extreme gradient boosting (XGBoost), and gradient boosting regression (GradBOOSTING) - were employed, considering disease latency to time define input variables. RESULTS: These models utilized climatic elements such as average air temperature, relative humidity, leaf wetness duration, rainfall, evapotranspiration, water deficit, and surplus. The XGBoost model proved most effective in high-yielding conditions, demonstrating high precision and accuracy. Conversely, the SVM model excelled in low-yielding scenarios. The incidence of brown-eye spot varied noticeably between high- and low-yield conditions, with significant regional differences observed. The accuracy of predicting brown-eye spot severity in coffee plantations depended on the biennial production cycle. High-yielding trees showed superior results with the XGBoost model (R2 = 0.77, root mean squared error, RMSE = 10.53), whereas the SVM model performed better under low-yielding conditions (precision 0.76, RMSE = 12.82). CONCLUSION: The study's application of agrometeorological variables and ML models successfully predicted the incidence of brown-eye spot in coffee plantations with a 7 day lead time, illustrating that they were valuable tools for managing this significant agricultural challenge. © 2024 Society of Chemical Industry.


Subject(s)
Ascomycota , Climate , Coffea , Forecasting , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/prevention & control , Coffea/growth & development , Coffea/microbiology , Coffea/chemistry , Brazil , Machine Learning , Coffee/chemistry
11.
Microbiol Res ; 282: 127638, 2024 May.
Article in English | MEDLINE | ID: mdl-38422858

ABSTRACT

The plant-parasitic root-knot nematode Meloidogyne exigua causes significant damage and is an important threat in Coffea arabica plantations. The utilization of plant-beneficial microbes as biological control agents against sedentary endoparasitic nematodes has been a longstanding strategy. However, their application in field conditions to control root-knot nematodes and their interaction with the rhizospheric microbiota of coffee plants remain largely unexplored. This study aimed to investigate the effects of biological control agent-based bioproducts and a chemical nematicide, used in various combinations, on the control of root-knot nematodes and the profiling of the coffee plant rhizomicrobiome in a field trial. The commercially available biological products, including Trichoderma asperellum URM 5911 (Quality), Bacillus subtilis UFPEDA 764 (Rizos), Bacillus methylotrophicus UFPEDA 20 (Onix), and nematicide Cadusafos (Rugby), were applied to adult coffee plants. The population of second-stage juveniles (J2) and eggs, as well as plant yield, were evaluated over three consecutive years. However, no significant differences were observed between the control group and the groups treated with bioproducts and the nematicide. Furthermore, the diversity and community composition of bacteria, fungi, and eukaryotes in the rhizosphere soil of bioproduct-treated plants were evaluated. The dominant phyla identified in the 16 S, ITS2, and 18 S communities included Proteobacteria, Acidobacteria, Actinobacteria, Ascomycota, Mortierellomycota, and Cercozoa in both consecutive years. There were no significant differences detected in the Shannon diversity of 16 S, ITS2, and 18 S communities between the years of data. The application of a combination of T. asperellum, B. subtilis, and B. methylotrophicus, as well as the use of Cadusafos alone and in combination with T. asperellum, B. subtilis, and B. methylotrophicus, resulted in a significant reduction (26.08%, 39.13%, and 21.73%, respectively) in the relative abundance of Fusarium spp. Moreover, the relative abundance of Trichoderma spp. significantly increased by 500%, 200%, and 100% at the genus level, respectively, compared to the control treatment. By constructing a co-occurrence network, we discovered a complex network structure among the species in all the bioproduct-treated groups. However, our findings indicate that the introduction of exogenous beneficial microbes into field conditions was unable to modulate the existing microbiota significantly. These findings suggest that the applied bioproducts had no significant impact on the reshaping of the overall microbial diversity in the rhizosphere microbiome but rather recruited selected microrganisms and assured net return to the grower. The results underscore the intricate nature of the rhizosphere microbiome and suggest the necessity for alternate biocontrol strategies and a re-evaluation of agricultural practices to improve nematode control by aligning with the complex ecological interactions in the rhizosphere.


Subject(s)
Coffea , Organothiophosphorus Compounds , Tylenchoidea , Animals , Coffee , Soil/chemistry , Soil Microbiology , Bacteria/genetics , Antinematodal Agents , Coffea/microbiology , Rhizosphere , Biological Control Agents
12.
Curr Microbiol ; 81(2): 62, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216774

ABSTRACT

Microbial contamination of coffee beans arises from various factors such as harvesting, handling, and storage practices, during which ochratoxin A (OTA)-producing fungi develop and proliferate. The presence of elevated concentrations of OTA poses a serious health risk to coffee consumers. Therefore, the implementation of a post-harvest treatment involving the use of bacteria known to antagonize OTA-producing fungi constitutes a safe alternative for reducing or eliminating the toxin's concentration in coffee beans. In this study, coffee beans (Coffea arabica L.) were inoculated with Bacillus licheniformis M2-7, after which we monitored fungal growth, in vitro antagonism, and OTA concentration. Our findings demonstrated that coffee beans inoculated with this bacterial strain exhibited a significant decrease in fungal populations belonging to the genera Aspergillus and Penicillium, which are known to produce OTA. Moreover, strain M2-7 decreased the growth rates of these fungi from 67.8% to 95.5% (P < 0.05). Similarly, inoculation with B. licheniformis strain M2-7 effectively reduced the OTA concentration from 24.35 ± 1.61 to 5.52 ± 1.69 µg/kg (P < 0.05) in stored coffee beans. These findings suggest that B. licheniformis M2-7 holds promise as a potential post-harvest treatment for coffee beans in storage, as it effectively inhibits the proliferation of OTA-producing fungi and lowers the toxin's concentration.


Subject(s)
Bacillus licheniformis , Coffea , Ochratoxins , Food Contamination/analysis , Coffea/microbiology
13.
Int Microbiol ; 27(2): 525-534, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37507629

ABSTRACT

Although coffee leaf rust (CLR), caused by Hemileia vastatrix, poses an increasing threat to coffee production in Ethiopia, little is known regarding its genetic diversity and structure and how these are affected by coffee management. Here, we used genetic fingerprinting based on sequence-related amplified polymorphism (SRAP) markers to genotype H. vastatrix samples from different coffee shrubs, across 40 sites, covering four coffee production systems (forest coffee, semi plantation coffee, home garden coffee, and plantation coffee) and different altitudes in Ethiopia. In total, 96 H. vastatrix samples were successfully genotyped with three primer combinations, producing a total of 79 scorable bands. We found 35.44% of amplified bands to be polymorphic, and the polymorphic information content (PIC) was 0.45, suggesting high genetic diversity among our CLR isolates. We also found significant isolation-by-distance across the samples investigated and detected significant differences in fungal genetic composition among plantation coffee and home garden coffee and a marginally significant difference among plantation coffee and forest coffee. Furthermore, we found a significant effect of altitude on CLR genetic composition in the forest coffee and plantation systems. Our results suggest that both spore dispersal and different selection pressures in the different coffee management systems are likely responsible for the observed high genetic diversity and genetic structure of CLR isolates in Ethiopia. When selecting Ethiopian coffee genotypes for crop improvement, it is important that these genotypes carry some resistance against CLR. Because our study shows large variation in genetic composition across relatively short geographical distances, a broad selection of rust isolates must be used for coffee resistance screening.


Subject(s)
Basidiomycota , Coffea , Coffea/genetics , Coffea/microbiology , Ethiopia , Basidiomycota/genetics , Polymorphism, Genetic , Plant Diseases/microbiology
14.
Braz J Microbiol ; 54(4): 2651-2661, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37642890

ABSTRACT

Endophytic fungi produce a range of known metabolites and several others, not yet explored, which present important biological activities from the pharmaceutical and industrial perspective. Several studies have reported the diversity of endophytes in Coffea arabica plants, although few have been described in organic cultures. In the current paper, we describe the chemical profile of specialized metabolites in the ethyl acetate phase in a strain of the endophytic fungus Colletotrichum siamense associated with coffee (Coffea arabica L.) (Rubiaceae) and its potential against tumor cells and bacteria of medical and food importance. Cytotoxicity assays in tumor cells MCF-7 and HepG2/C3A were performed by MTT and microdilution in broth to evaluate the antibacterial action of metabolic extract. The antiproliferative assay showed promising results after 24 h of treatment, with 50% injunction concentrations for the two cell types. UHPLC-MS/MS analyses with an electrospray ionization source were used to analyze the extracts and identify compounds of species Colletotrichum siamense, which is still little explored as a source of active metabolites. Many of these compounds observed in the endophytic need to be chemically synthesized in industry, at high costs, while production by the fungus becomes a chemically and economically more viable alternative. Pyrocatechol, gentisyl alcohol, and alpha-linolenic acid, associated with different mechanisms of action against tumor cells, were detected among the main compounds. The extract of the endophytic fungus Colletotrichum siamense presented several compounds with pharmacological potential and antibacterial activity, corroborating its potential in biotechnological applications.


Subject(s)
Coffea , Colletotrichum , Coffea/microbiology , Coffee/metabolism , Tandem Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Endophytes
15.
Yeast ; 40(9): 425-436, 2023 09.
Article in English | MEDLINE | ID: mdl-37464909

ABSTRACT

During wet fermentation, mucilage layers in coffee cherries must be removed completely. To explain mucilage degradation, several controversial hypotheses have been proposed. The aim of this work was to improve our understanding of the kinetics of mucilage breakdown. Pulped coffee beans were wet fermented with seven different treatments for 36 h. Endogenous bacteria and yeasts are selectively suppressed, and pectinases or lactic acid are added. They also involve maintaining the beans at pH 7 throughout fermentation and using spontaneous fermentation without additives as a control. During spontaneous fermentation, yeast and lactic acid bacteria were detected and significantly increased to 5.5 log colony-forming units (CFU)/mL and 5.2 log CFU/mL, respectively. In the first 12 h of fermentation, there was a significant degree of endogenous pectinolytic activity, which resulted in partly destroyed beans in the absence of microorganisms. By adding pectinase and lactic acid to the fermentation mass, the breakdown process was accelerated in less than 8 h. When yeast was present throughout the fermentation, complete degradation was achieved. Bacteria played no critical role in the degradation. Klebsiella pneumoniae and Erwinia soli were found in a lower population and showed weaker pectinolytic activities compared to Hanseniaspora uvarum and Pichia kudriavzevii. During wet fermentation, mucilage degradation appears to be mediated by endogenous enzymes at the early stage, whereas microbial contributions, mainly yeasts, occur subsequently. H. uvarum and P. kudriavzevii may be promising candidates to be tested in future studies as coffee starter cultures to better control the mucilage degradation process.


Subject(s)
Coffea , Fermentation , Coffea/chemistry , Coffea/metabolism , Coffea/microbiology , Yeasts/metabolism , Bacteria/metabolism , Polysaccharides , Lactic Acid/metabolism
16.
J Appl Microbiol ; 134(5)2023 May 02.
Article in English | MEDLINE | ID: mdl-37113015

ABSTRACT

AIMS: The American leaf spot, caused by Mycena citricolor, is an important disease of coffee (Coffea arabica), mostly in Central America. Currently, there are limited pathogen control alternatives that are environment friendly and economically accessible. The use of fungi isolated from the plant endomycobiota in their native habitats is on the rise because studies show their great potential for biological control. To begin to generate a green alternative to control M. citricolor, the objectives of the present study were to (i) collect, identify, screen (in vitro and in planta), and select endophytic fungi from wild Rubiaceae collected in old-growth forests of Costa Rica; (ii) confirm endophytic colonization in coffee plantlets; (iii) evaluate the effects of the endophytes on plantlet development; and (iv) corroborate the antagonistic ability in planta. METHODS AND RESULTS: Through in vitro and in planta antagonism assays, we found that out of the selected isolates (i.e. Daldinia eschscholzii GU11N, Nectria pseudotrichia GUHN1, Purpureocillium aff. lilacinum CT24, Sarocladium aff. kiliense CT25, Trichoderma rifaii CT5, T. aff. crassum G1C, T. aff. atroviride G7T, T. aff. strigosellum GU12, and Xylaria multiplex GU14T), Trichoderma spp. produced the highest growth inhibition percentages in vitro. Trichoderma isolates CT5 and G1C were then tested in planta using Coffea arabica cv. caturra plantlets. Endophytic colonization was verified, followed by in planta growth promotion and antagonism assays. CONCLUSIONS: Results show that Trichoderma isolates CT5 and G1C have potential for plant growth promotion and antagonism against Mycena citricolor, reducing incidence and severity, and preventing plant mortality.


Subject(s)
Agaricales , Coffea , Rubiaceae , Coffee , Fungi , Coffea/microbiology
17.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37015877

ABSTRACT

Arabica and robusta are the two major coffee beans being sold worldwide. It is well recognized that coffee quality is influenced by their origin and the microbiological activities that drive their fermentation. However, in many coffee plantations, information about the natural diversity of bacteria that inhabit the arabica and robusta coffee cherries is limited. Here, we sampled arabica and robusta coffee cherries from Malang, East Java, Indonesia, then sequenced and analysed their bacterial composition. We found that: (a) arabica cherries contained bacteria with less diversity and abundance compared with robusta; (b) both coffee cherries were heavily populated by extremophiles, presumably dispersed from volcanic activities; (c) groups known to be involved in coffee fermentation such as lactic acid bacteria, acetic acid bacteria, Enterobacteria, and soil-associated bacteria were present in both arabica and robusta coffee cherries, and (d) arabica cherries were dominated by Leuconostoc pseudomesenteroides. These findings highlight that coffee cherry bacteria are highly diverse, the majority of which might come from the environment, with some potentially beneficial or detrimental to coffee quality. Knowledge of the natural microbial diversity of coffee cherries may be useful for the development of coffee fermentation technologies to yield coffee beans with consistent quality.


Subject(s)
Coffea , Seeds , Seeds/microbiology , Coffea/microbiology , Bacteria , Enterobacteriaceae , Food Handling
18.
BMC Plant Biol ; 23(1): 217, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37098489

ABSTRACT

BACKGROUND: The microbial biodiversity and the role of microorganisms in the fermentation of washed coffee in Colombia were investigated using the Bourbon and Castillo coffee varieties. DNA sequencing was used to evaluate the soil microbial biota and their contribution to fermentation. The potential benefits of these microorganisms were analyzed, including increased productivity and the need to understand the rhizospheric bacterial species to optimize these benefits. METHODS: This study used coffee beans for DNA extraction and 16 S rRNA sequencing. The beans were pulped, samples were stored at 4ºC, and the fermentation process was at 19.5ºC and 24ºC. The fermented mucilage and root-soil samples were collected in duplicate at 0, 12, and 24 h. DNA was extracted from the samples at a concentration of 20 ng/µl per sample, and the data obtained were analyzed using the Mothur platform. RESULTS: The study demonstrates that the coffee rhizosphere is a diverse ecosystem composed primarily of microorganisms that cannot be cultured in the laboratory. This suggests that the microbial community may vary depending on the coffee variety and play an essential role in fermentation and overall coffee quality. CONCLUSIONS: The study highlights the importance of understanding and optimizing the microbial diversity in coffee production, which could have implications for the sustainability and success of coffee production. DNA sequencing techniques can help characterize the structure of the soil microbial biota and evaluate its contribution to coffee fermentation. Finally, further research is needed to fully understand the biodiversity of coffee rhizospheric bacteria and their role.


Subject(s)
Coffea , Microbiota , Soil Microbiology , Bacteria/genetics , Coffea/microbiology , Colombia , Fermentation , Rhizosphere
19.
J Appl Microbiol ; 134(5)2023 May 02.
Article in English | MEDLINE | ID: mdl-37073118

ABSTRACT

AIMS: Elucidating the identity of an isolate of Aspergillus sp. obtained during searches for anti-coffee leaf rust (CLR) biocontrol agents, from healthy coffee berry samples, preliminarily verify whether it is an aflatoxin-producer, confirm its ability to grow as an endophyte in healthy coffee tissues and assess its biocontrol potential against CLR. METHODS AND RESULTS: One, among hundreds of fungal isolates fungus were obtained from healthy coffee tissues belonged to Aspergillus (isolate COAD 3307). A combination of morphology features and molecular analyses; including four regions-internal transcribed spacer, second-largest subunit of RNA polymerase (RPB2), ß-tubulin (BenA) and calmodulin (CAL)-identified COAD 3307 as Aspergillus flavus. Inoculations of healthy Coffea arabica with COAD 3307 confirmed its establishment as an endophyte in leaves, stems, and roots. Treatment of C. arabica plants by combinated applications of COAD 3307 on aerial parts and in the soil, significantly (P > .0001) reduced CLR severity as compared to controls. Thin-layer chromatography indicated that COAD 3307 is not an aflatoxin-producing isolate. In order to confirm this result, the extract was injected into high-performance liquid chromatography system equipped with a fluorescence detector, and no evidence of aflatoxin was found. CONCLUSIONS: COAD 3307 is an endophytic isolate of A. flavus-a species that has never been previously recorded as an endophyte of Coffea spp. It is a non-aflatoxin producing strain that has an anti-CLR effect and merits further evaluation as a biocontrol agent.


Subject(s)
Aflatoxins , Basidiomycota , Coffea , Aspergillus flavus , Cameroon , Basidiomycota/genetics , Aspergillus , Plant Diseases/microbiology , Coffea/microbiology
20.
PLoS One ; 18(4): e0284203, 2023.
Article in English | MEDLINE | ID: mdl-37053244

ABSTRACT

Research has demonstrated that intraspecific functional trait variation underpins plant responses to environmental variability. However, few studies have evaluated how trait variation shifts in response to plant pathogens, even though pathogens are a major driver of plant demography and diversity, and despite evidence of plants expressing distinct strategies in response to pathogen pressures. Understanding trait-pathogen relationships can provide a more realistic understanding of global patterns of functional trait variation. We examined leaf intraspecific trait variability (ITV) in response to foliar disease severity, using Coffea arabica cv. Caturra as a model species. We quantified coffee leaf rust (CLR) severity-a fungal disease prominent in coffee systems-and measured key coffee leaf functional traits under contrasting, but widespread, management conditions in an agroforestry system. We found that coffee plants express significant ITV, which is largely related to shade tree treatment and leaf position within coffee canopy strata. Yet within a single plant canopy stratum, CLR severity increased with increasing resource conserving trait values. However, coffee leaves with visible signs of disease expressed overall greater resource acquiring trait values, as compared to plants without visible signs of disease. We provide among the first evidence that leaf traits are correlated with foliar disease severity in coffee, and that functional trait relationships and syndromes shift in response to increased disease prevalence in this plant-pathogen system. In doing so, we address a vital gap in our understanding of global patterns of functional trait variation and highlight the need to further explore the potential role of pathogens within established global trait relationships and spectra.


Subject(s)
Basidiomycota , Coffea , Coffea/genetics , Coffea/microbiology , Basidiomycota/genetics , Phenotype , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL