Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.518
1.
PLoS One ; 19(5): e0303238, 2024.
Article En | MEDLINE | ID: mdl-38709762

The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important potato pest with known resistance to pyrethroids and organophosphates in Czechia. Decreased efficacy of neonicotinoids has been observed in last decade. After the restriction of using chlorpyrifos, thiacloprid and thiamethoxam by EU regulation, growers seek for information about the resistance of CPB to used insecticides and recommended antiresistant strategies. The development of CPB resistance to selected insecticides was evaluated in bioassays in 69 local populations from Czechia in 2017-2022 and in 2007-2022 in small plot experiments in Zabcice in South Moravia. The mortality in each subpopulation in the bioassays was evaluated at the field-recommended rates of insecticides to estimate the 50% and 90% lethal concentrations (LC50 and LC90, respectively). High levels of CPB resistance to lambda-cyhalothrin and chlorpyrifos were demonstrated throughout Czechia, without significant changes between years and regions. The average mortality after application of the field-recommended rate of lambda-cyhalothrin was influenced by temperature before larvae were sampled for bioassays and decreased with increasing temperature in June. Downwards trends in the LC90 values of chlorpyrifos and the average mortality after application of the field-recommended rate of acetamiprid in the bioassay were recorded over a 6-year period. The baseline LC50 value (with 95% confidence limit) of 0.04 mg/L of chlorantraniliprole was established for Czech populations of CPBs for the purpose of resistance monitoring in the next years. Widespread resistance to pyrethroids, organophosphates and neonicotinoids was demonstrated, and changes in anti-resistant strategies to control CPBs were discussed.


Chlorpyrifos , Coleoptera , Insecticide Resistance , Insecticides , Neonicotinoids , Thiazines , Animals , Coleoptera/drug effects , Insecticides/pharmacology , Neonicotinoids/pharmacology , Chlorpyrifos/pharmacology , Pyrethrins/pharmacology , Nitriles/pharmacology , Larva/drug effects , Czech Republic , Thiamethoxam , Solanum tuberosum/parasitology
2.
PLoS One ; 19(5): e0302941, 2024.
Article En | MEDLINE | ID: mdl-38709777

Insecticidal Bacillus thuringiensis Berliner (Bt) toxins produced by transgenic cotton (Gossypium hirsutum L.) plants have become an essential component of cotton pest management. Bt toxins are the primary management tool in transgenic cotton for lepidopteran pests, the most important of which is the bollworm (Helicoverpa zea Boddie) (Lepidoptera: Noctuidae) in the United States (U.S.). However, bollworm larvae that survive after consuming Bt toxins may experience sublethal effects, which could alter interactions with other organisms, such as natural enemies. Experiments were conducted to evaluate how sublethal effects of a commercial Bt product (Dipel) incorporated into artificial diet and from Bt cotton flowers impact predation from the convergent lady beetle (Hippodamia convergens Guérin-Méneville) (Coleoptera: Coccinellidae), common in cotton fields of the mid-southern U.S. Sublethal effects were detected through reduced weight and slower development in bollworm larvae which fed on Dipel incorporated into artificial diet, Bollgard II, and Bollgard 3 cotton flowers. Sublethal effects from proteins incorporated into artificial diet were found to significantly alter predation from third instar lady beetle larvae. Predation of bollworm larvae also increased significantly after feeding for three days on a diet incorporated with Bt proteins. These results suggest that the changes in larval weight and development induced by Bt can be used to help predict consumption of bollworm larvae by the convergent lady beetle. These findings are essential to understanding the potential level of biological control in Bt cotton where lepidopteran larvae experience sublethal effects.


Bacillus thuringiensis , Coleoptera , Flowers , Gossypium , Larva , Plants, Genetically Modified , Predatory Behavior , Animals , Coleoptera/drug effects , Coleoptera/physiology , Gossypium/parasitology , Gossypium/genetics , Predatory Behavior/drug effects , Larva/drug effects , Pest Control, Biological , Moths/drug effects , Moths/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus thuringiensis Toxins
3.
PLoS One ; 19(5): e0302714, 2024.
Article En | MEDLINE | ID: mdl-38805412

With the increasing frequencies of extreme weather events caused by climate change, the risk of forest damage from insect attacks grows. Storms and droughts can damage and weaken trees, reduce tree vigour and defence capacity and thus provide host trees that can be successfully attacked by damaging insects, as often observed in Norway spruce stands attacked by the Eurasian spruce bark beetle Ips typographus. Following storms, partially uprooted trees with grounded crowns suffer reduced water uptake and carbon assimilation, which may lower their vigour and decrease their ability to defend against insect attack. We conducted in situ measurements on windthrown and standing control trees to determine the concentrations of non-structural carbohydrates (NSCs), of phenolic defences and volatile monoterpene emissions. These are the main storage and defence compounds responsible for beetle´s pioneer success and host tree selection. Our results show that while sugar and phenolic concentrations of standing trees remained rather constant over a 4-month period, windthrown trees experienced a decrease of 78% and 37% of sugar and phenolic concentrations, respectively. This strong decline was especially pronounced for fructose (-83%) and glucose (-85%) and for taxifolin (-50.1%). Windthrown trees emitted 25 times greater monoterpene concentrations than standing trees, in particular alpha-pinene (23 times greater), beta-pinene (27 times greater) and 3-carene (90 times greater). We conclude that windthrown trees exhibited reduced resources of anti-herbivore and anti-pathogen defence compounds needed for the response to herbivore attack. The enhanced emission rates of volatile terpenes from windthrown trees may provide olfactory cues during bark beetle early swarming related to altered tree defences. Our results contribute to the knowledge of fallen trees vigour and their defence capacity during the first months after the wind-throw disturbance. Yet, the influence of different emission rates and profiles on bark beetle behaviour and host selection requires further investigation.


Monoterpenes , Phenols , Picea , Picea/parasitology , Picea/metabolism , Monoterpenes/analysis , Monoterpenes/metabolism , Phenols/analysis , Phenols/metabolism , Animals , Carbohydrates/analysis , Coleoptera/physiology , Norway , Climate Change , Wind
4.
Sci Rep ; 14(1): 12259, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806558

Tribolium castaneum and Rhyzopertha dominica are cosmopolitan, destructive postharvest pests. Although research has investigated how high densities of T. castaneum affect attraction to the aggregation pheromone by conspecifics, research into the behavioral response of both species to food cues after high density exposure has been lacking despite its importance to foraging ecology. Our goal was to manipulate and observe the effects of crowding on the behavioral response of both species to common food and pheromonal stimuli and to determine how the headspace emission patterns from grain differed under increasing densities. Densities of colonies for both species was altered (10-500 adults) on a fixed quantity of food (10 g of flour or whole wheat), then the behavioral response to common food and pheromonal cues was evaluated in a wind tunnel and release-recapture experiment, while volatiles were examined through gas chromatography coupled with mass spectrometry. Importantly, at least for T. castaneum, crowded conditions attenuate attraction to food-based stimuli, but not pheromonal stimuli. Crowding seemed to have no effect on R. dominica attraction to food and pheromonal stimuli in the wind tunnel, but exposure to high density cues did elicit 2.1-3.8-fold higher captures in traps. The relative composition and abundance of headspace volatiles emitted varied significantly with different densities of beetles and was also species-specific. Overall, our results have implications for expanding our understanding of the foraging ecology of two economically important pests.


Coleoptera , Feeding Behavior , Pheromones , Tribolium , Animals , Tribolium/physiology , Coleoptera/physiology , Feeding Behavior/physiology , Pheromones/metabolism , Population Density , Behavior, Animal/physiology
5.
BMC Ecol Evol ; 24(1): 66, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773381

BACKGROUND: Dorcus stag beetles in broad sense are one of the most diverse group in Lucanidae and important saproxylic insects playing a crucial role in nutrient recycling and forest biomonitoring. However, the dazzling morphological differentiations have caused numerous systematic confusion within the big genus, especially the puzzlingly generic taxonomy. So far, there is lack of molecular phylogenetic study to address the chaotic situation. In this study, we undertook mitochondrial genome sequencing of 42 representative species including 18 newly-sequenced ones from Eastern Asia and reconstructed the phylogenetic framework of stag beetles in Dorcus sensu lato for the first time. RESULTS: The mitogenome datasets of Dorcus species have indicated the variable mitogenomic lengths ranged from 15,785 to 19,813 bp. Each mitogenome contained 13 PCGs, 2 rRNAs, 22 tRNAs, and a control region, and all PCGs were under strong purifying selection (Ka/Ks < 1). Notably, we have identified the presence of a substantial intergenic spacer (IGS) between the trnAser (UCN) and NAD1 genes, with varying lengths ranging from 129 bp (in D. hansi) to 158 bp (in D. tityus). The mitogenomic phylogenetic analysis of 42 species showed that Eastern Asia Dorcus was monophyletic, and divided into eight clades with significant genetic distance. Four of them, Clade VIII, VII, VI and I are clustered by the representative species of Serrognathus Motschulsky, Kirchnerius Schenk, Falcicornis Séguy and Dorcus s.s. respectively, which supported their fully generic positions as the previous morphological study presented. The topology also showed the remaining clades were distinctly separated from the species of Dorcus sensu lato, which implied that each of them might demonstrate independent generic status. The Linnaeus nomenclatures were suggested as Eurydorcus Didier stat. res., Eurytrachellelus Didier stat. res., Hemisodorcus Thomson stat. res. and Velutinodorcus Maes stat. res. For Clade V, IV, III and II respectively. CONCLUSION: This study recognized the monophyly of Dorcus stag beetles and provided a framework for the molecular phylogeny of this group for the first time. The newly generated mitogenomic data serves as a valuable resource for future investigations on lucanid beetles. The generic relationship would facilitate the systematics of Dorcus stag beetles and thus be useful for exploring their evolutionary, ecological, and conservation aspects.


Coleoptera , Genome, Mitochondrial , Phylogeny , Animals , Coleoptera/genetics , Coleoptera/classification , Genome, Mitochondrial/genetics , Asia, Eastern
6.
Mol Reprod Dev ; 91(5): e23745, 2024 May.
Article En | MEDLINE | ID: mdl-38785179

Seminal fluid protein composition is complex and commonly assumed to be rapidly divergent due to functional interactions with both sperm and the female reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal fluid may contain structures, such as mating plugs and spermatophores. Here, we investigate the evolutionary diversification of a lesser-known ejaculate structure: the spermatostyle, which has independently arisen in several families of beetles and true bugs. We characterized the spermatostyle proteome, in addition to spermatostyle and FRT morphology, in six species of whirligig beetles (family Gyrinidae). Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they possess proteolytic activity. Sperm-leucylaminopeptidases (S-LAPs) were particularly abundant, and their localization to spermatostyles was confirmed by immunohistochemistry. Although there was evidence for functional conservation of spermatostyle proteomes across species, phylogenetic regressions suggest evolutionary covariation between protein composition and the morphology of both spermatostyles and FRTs. We postulate that S-LAPs (and other proteases) have evolved a novel structural role in spermatostyles and discuss spermatostyles as adaptations for delivering male-derived materials to females.


Coleoptera , Proteome , Animals , Coleoptera/metabolism , Male , Proteome/metabolism , Proteome/analysis , Female , Proteomics/methods , Phylogeny , Insect Proteins/metabolism , Insect Proteins/analysis , Spermatozoa/metabolism
7.
Sci Rep ; 14(1): 10641, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724571

Although Eucalyptus is widely planted outside its native range for timber and pulp production, the effects of these exotic plantations on biodiversity relative to native semi-natural forests or plantations of native tree species remain incompletely understood. Here, we compare the diversity of saproxylic beetles (Coleoptera) and true bugs (Hemiptera) between non-native Eucalyptus benthamii Maiden and Cambage (Camden white gum) and native Pinus taeda L. (loblolly pine) stands on the upper Coastal Plain of South Carolina, U.S.A. We sampled insects emerging from logs of both species placed in both stand types after 1, 2, 6, and 12 months in the field. Beetle and true bug richness and diversity were both significantly lower from eucalypt than from pine wood. Moreover, the two communities were compositionally distinct. Whereas pine supported many species of host-specific phloeoxylophagous beetles, most species collected from eucalypts were mycophagous or predatory taxa capable of utilizing a wide range of hosts. Species richness did not differ between logs placed in eucalypt vs. pine stands but Shannon's diversity was significantly higher in the eucalypt stands, possibly due to greater sun exposure in the latter. Contrary to a previous study, we found no support for the idea that eucalypt litter reduces the diversity of saproxylic insects. Our findings add to the growing body of evidence that non-native plantations are less favorable to biodiversity than those consisting of native tree species.


Biodiversity , Coleoptera , Eucalyptus , Plant Leaves , Animals , Coleoptera/physiology , Plant Leaves/chemistry , Wood , Forests , Hemiptera/physiology , Southeastern United States , South Carolina
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732123

The pine wood nematode (PWN) uses several Monochamus species as vehicles, through a temporary hitchhiking process known as phoresy, enabling it to access new host plant resources. Monochamus saltuarius acts as a new and major vector of the PWN in Northeastern China, showing lower PWN carrying capacity and a shorter transmission cycle compared to established vectors. The apparently altered symbiotic relationship offers an interesting area for researching the costs and adaptions involved in nematode-beetle, a specialized phoresy. We analyzed the response and fitness costs of M. saltuarius through physiological measurements and transcriptomics. The PWN exerted adverse repercussions on the growth and development of M. saltuarius. The PWN accelerated larval development into pupae, while beetle adults carrying the PWN exhibited an elevated abnormality rate and mortality, and reduced starvation resistance. During the pupal stage, the expression of growth-related genes, including ecdysone-inducible genes (E74EA), cuticle proteins, and chitin genes (CHTs), markedly increased. Meanwhile, the induced immune response, mainly by the IMD and Toll signaling pathways, could be a contributing factor to adult abnormality and mortality. Adult gonads and trachea exhibited enrichment in pathways related to fatty acid elongation, biosynthesis, and metabolism. FASN, ELOVL, and SCD possibly contributed to resistance against PWN. Our research indicated that phoretic interactions between vector beetles and PWN vary throughout the vector's lifespan, particularly before and after entry into the trachea. This study highlighted the fitness costs of immunity and metabolism on the vector beetle, indicating the adaptation mechanisms and evolutionary trade-offs to PWN.


Coleoptera , Transcriptome , Animals , Coleoptera/physiology , Coleoptera/genetics , Tylenchida/physiology , Tylenchida/genetics , Tylenchida/pathogenicity , Gene Expression Profiling/methods , Larva , Host-Parasite Interactions/genetics , Genetic Fitness
9.
J Agric Food Chem ; 72(20): 11381-11391, 2024 May 22.
Article En | MEDLINE | ID: mdl-38728113

RNA interference (RNAi)-based biopesticides offer an attractive avenue for pest control. Previous studies revealed high RNAi sensitivity in Holotrichia parallela larvae, showcasing its potential for grub control. In this study, we aimed to develop an environmentally friendly RNAi method for H. parallela larvae. The double-stranded RNA (dsRNA) of the V-ATPase-a gene (HpVAA) was loaded onto layered double hydroxide (LDH). The dsRNA/LDH nanocomplex exhibited increased environmental stability, and we investigated the absorption rate and permeability of dsRNA-nanoparticle complexes and explored the RNAi controlling effect. Silencing the HpVAA gene was found to darken the epidermis of H. parallela larvae, with growth cessation or death or mortality, disrupting the epidermis and midgut structure. Quantitative reverse transcription-polymerase chain reaction and confocal microscopy confirmed the effective absorption of the dsRNA/LDH nanocomplex by peanut plants, with distribution in roots, stems, and leaves. Nanomaterial-mediated RNAi silenced the target genes, leading to the death of pests. Therefore, these findings indicate the successful application of the nanomaterial-mediated RNAi system for underground pests, thus establishing a theoretical foundation for developing a green, safe, and efficient pest control strategy.


Larva , RNA Interference , RNA, Double-Stranded , Animals , Larva/growth & development , Larva/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Hydroxides/chemistry , Hydroxides/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Arachis/genetics , Arachis/chemistry , Arachis/growth & development , Arachis/metabolism , Pest Control, Biological , Coleoptera/genetics , Coleoptera/growth & development , Green Chemistry Technology , Biological Control Agents/chemistry , Biological Control Agents/metabolism , Nanoparticles/chemistry
10.
PLoS One ; 19(5): e0304037, 2024.
Article En | MEDLINE | ID: mdl-38787856

Spinosads are insecticides used to control insect pests, especially in organic farming where limited tools for pest management exist. However, resistance has developed to spinosads in economically important pests, including Colorado potato beetle (CPB), Leptinotarsa decemlineata. In this study, we used bioassays to determine spinosad sensitivity of two field populations of CPB, one from an organic farm exposed exclusively to spinosad and one from a conventional farm exposed to a variety of insecticides, and a reference insecticide naïve population. We found the field populations exhibited significant levels of resistance compared with the sensitive population. Then, we compared transcriptome profiles between the two field populations to identify genes associated primarily with spinosad resistance and found a cytochrome P450, CYP9E2, and a long non-coding RNA gene, lncRNA-2, were upregulated in the exclusively spinosad-exposed population. Knock-down of these two genes simultaneously in beetles of the spinosad-exposed population using RNA interference (RNAi) resulted in a significant increase in mortality when gene knock-down was followed by spinosad exposure, whereas single knock-downs of each gene produced smaller effects. In addition, knock-down of the lncRNA-2 gene individually resulted in significant reduction in CYP9E2 transcripts. Finally, in silico analysis using an RNA-RNA interaction tool revealed that CYP9E2 mRNA contains multiple binding sites for the lncRNA-2 transcript. Our results imply that CYP9E2 and lncRNA-2 jointly contribute to spinosad resistance in CPB, and lncRNA-2 is involved in regulation of CYP9E2 expression. These results provide evidence that metabolic resistance, driven by overexpression of CYP and lncRNA genes, contributes to spinosad resistance in CPB.


Coleoptera , Drug Combinations , Insect Proteins , Insecticide Resistance , Insecticides , Macrolides , RNA, Long Noncoding , Animals , Coleoptera/genetics , Coleoptera/drug effects , Macrolides/pharmacology , Insecticide Resistance/genetics , Insecticides/pharmacology , RNA, Long Noncoding/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , RNA Interference
11.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791374

Cryptococcus neoformans (C. neoformans) is a pathogenic fungus that can cause life-threatening meningitis, particularly in individuals with compromised immune systems. The current standard treatment involves the combination of amphotericin B and azole drugs, but this regimen often leads to inevitable toxicity in patients. Therefore, there is an urgent need to develop new antifungal drugs with improved safety profiles. We screened antimicrobial peptides from the hemolymph transcriptome of Blaps rhynchopetera (B. rhynchopetera), a folk Chinese medicine. We found an antimicrobial peptide named blap-6 that exhibited potent activity against bacteria and fungi. Blap-6 is composed of 17 amino acids (KRCRFRIYRWGFPRRRF), and it has excellent antifungal activity against C. neoformans, with a minimum inhibitory concentration (MIC) of 0.81 µM. Blap-6 exhibits strong antifungal kinetic characteristics. Mechanistic studies revealed that blap-6 exerts its antifungal activity by penetrating and disrupting the integrity of the fungal cell membrane. In addition to its direct antifungal effect, blap-6 showed strong biofilm inhibition and scavenging activity. Notably, the peptide exhibited low hemolytic and cytotoxicity to human cells and may be a potential candidate antimicrobial drug for fungal infection caused by C. neoformans.


Antifungal Agents , Antimicrobial Peptides , Coleoptera , Cryptococcus neoformans , Microbial Sensitivity Tests , Cryptococcus neoformans/drug effects , Animals , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Coleoptera/microbiology , Coleoptera/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Humans , Biofilms/drug effects , Amino Acid Sequence
12.
Article En | MEDLINE | ID: mdl-38723431

The longhorned beetles are key players for the maintenance of biodiversity in the terrestrial ecosystem. As xylophagous cerambycid insects in Coleoptera, the beetles have evolved specialized olfactory and gustatory systems to recognize chemical cues in the surrounding habitats. Despite over 36,000 described species in the Cerambycidae family including a wood-boring pest Pharsalia antennata, only a limited number of them (<1 %) have been characterized regarding their chemical ecology at the molecular level. Here, we surveyed four membrane protein gene families in P. antennata related to chemoreception through transcriptomics, phylogenetics and expression profiling analyses. In total, 144 genes encoding 72 odorant receptors (ORs), 33 gustatory receptors (GRs), 23 ionotropic receptors (IRs), four sensory neuron membrane proteins (SNMPs) and 12 ionotropic glutamate receptors (iGluRs) were harvested from the transcriptome of multiple tissues including antennae and legs of both sexes. The lineage-specific expansion of PantORs possibly implied a diverse range of host plants in this beetle, supporting this correlation between the host range and olfactory receptor repertoire sizes across cerambycid species. Further phylogenetic analysis revealed that Group 2 was contributed mainly to the large OR gene repertoire in P. antennata, representing 18 genes in Group 2A and eight in Group 2B. On the other hand, some key chemosensory genes were identified by applying a phylogenetics approach, such as PantOR21 close to the 2-phenylethanol receptor in Megacyllene caryae, three carbon dioxide GRs and seven Antennal IRs (A-IRs) clades. We also determined sex- and tissue-specific expression profiles of 69 chemosensory genes, revealing the high expression of most PantORs in antennae. Noticeably, 10 sex-biased genes (six PantORs, three PantIRs and PantSNMP1a) were presented in antennae, five sex-biased PantGRs in legs and 39 sex-biased genes (15 PantORs, 13 PantGRs, eight PantIRs and three PantSNMPs) in abdomens. These findings have greatly enhanced our knowledge about the chemical ecology of P. antennata and identify candidate molecular targets for mediating smell and taste of this beetle.


Coleoptera , Insect Proteins , Phylogeny , Animals , Coleoptera/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Female , Transcriptome , Receptors, Ionotropic Glutamate/genetics , Receptors, Ionotropic Glutamate/metabolism , Multigene Family , Arthropod Antennae/metabolism
13.
J Therm Biol ; 121: 103862, 2024 Apr.
Article En | MEDLINE | ID: mdl-38703597

Elevation gradients provide powerful study systems for examining the influence of environmental filters in shaping species assemblages. High-mountain habitats host specific high-elevation assemblages, often comprising specialist species adapted to endure pronounced abiotic stress, while such harsh conditions prevent lowland species from colonizing or establishing. While thermal tolerance may drive the altitudinal segregation of ectotherms, its role in structuring aquatic insect communities remains poorly explored. This study investigates the role of thermal physiology in shaping the current distribution of high-mountain diving beetles from the Sierra Nevada Iberian mountain range and closely related lowland species. Cold tolerance of five species from each altitudinal zone was measured estimating the supercooling point (SCP), lower lethal temperature (LLT) and tolerance to ice enclosure, while heat tolerance was assessed from the heat coma temperature (HCT). Alpine species exhibited wider fundamental thermal niches than lowland species, likely associated with the broader range of climatic conditions in high-mountain areas. Cold tolerance did not seem to prevent lowland species from colonizing higher elevations, as most studied species were moderately freeze-tolerant. Therefore, fundamental thermal niches seem not to fully explain species segregation along elevation gradients, suggesting that other thermal tolerance traits, environmental factors, and biotic interactions may also play important roles.


Altitude , Thermotolerance , Animals , Coleoptera/physiology , Ecosystem , Acclimatization , Cold Temperature
14.
Environ Sci Pollut Res Int ; 31(24): 35455-35469, 2024 May.
Article En | MEDLINE | ID: mdl-38730215

Plant volatilomics such as essential oils (EOs) and volatile phytochemicals (PCs) are known as potential natural sources for the development of biofumigants as an alternative to conventional fumigant pesticides. This present work was aimed to evaluate the fumigant toxic effect of five selected EOs (cinnamon, garlic, lemon, orange, and peppermint) and PCs (citronellol, limonene, linalool, piperitone, and terpineol) against the Callosobruchus maculatus, Sitophilus oryzae, and Tribolium castaneum adults. Furthermore, for the estimation of the relationship between molecular descriptors and fumigant toxicity of plant volatiles, quantitative structural activity relationship (QSAR) models were developed using principal component analysis and multiple linear regression. Amongst the tested EOs, garlic EO was found to be the most toxic fumigant. The PCs toxicity analysis revealed that terpineol, limonene, linalool, and piperitone as potential fumigants to C. maculatus (< 20 µL/L air of LC50), limonene and piperitone as potential fumigants to T. castaneum (14.35 and 154.11 µL/L air of LC50, respectively), and linalool and piperitone as potential fumigants to S. oryzae (192.27 and 69.10 µL/L air of LC50, respectively). QSAR analysis demonstrated the role of various molecular descriptors of EOs and PCs on the fumigant toxicity in insect pest species. In specific, dipole and Randic index influence the toxicity in C. maculatus, molecular weight and maximal projection area influence the toxicity in S. oryzae, and boiling point and Dreiding energy influence the toxicity in T. castaneum. The present findings may provide insight of a new strategy to select effective EOs and/or PCs against stored product insect pests.


Coleoptera , Fumigation , Oils, Volatile , Animals , Coleoptera/drug effects , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Quantitative Structure-Activity Relationship , Insecticides/chemistry , Insecticides/pharmacology , Tribolium/drug effects
15.
Microb Ecol ; 87(1): 70, 2024 May 14.
Article En | MEDLINE | ID: mdl-38740585

Stag beetles, recognized as common saproxylic insects, are valued for their vibrant coloration and distinctive morphology. These beetles play a crucial ecological role in decomposition and nutrient cycling, serving as a vital functional component in ecosystem functioning. Although previous studies have confirmed that stag beetles are predominantly fungivores, the fluctuations in their intestinal fungal communities at different developmental stages remain poorly understood. In the current study, high-throughput sequencing was employed to investigate the dynamic changes within intestinal fungal communities at various developmental stages in the stag beetle Dorcus hopei. Results showed that microbial diversity was higher during the larval stage than during the pupal and adult stages. Furthermore, significant differences were identified in the composition of the intestinal fungal communities across the larval, pupal, and adult stages, suggesting that developmental transitions may be crucial factors contributing to variations in fungal community composition and diversity. Dominant genera included Candida, Scheffersomyces, Phaeoacremonium, and Trichosporon. Functional predictions indicated a greater diversity and relative abundance of endosymbiotic fungi in the larval gut, suggesting a potential dependency of larvae on beneficial gut fungi for nutrient acquisition. Additionally, the application of abundance-based ß-null deviation and niche width analyses revealed that the adult gut exerted a stronger selection pressure on its fungal community, favoring certain taxa. This selection process culminates in a more robust co-occurrence network of fungal communities within the adult gut, thereby enhancing their adaptability to environmental fluctuations. This study advances our understanding of the intestinal fungal community structure in stag beetles, providing a crucial theoretical foundation for the development of saproxylic beetle resources, biomass energy utilization, plastic degradation strategies, and beetle conservation efforts.


Coleoptera , Fungi , Gastrointestinal Microbiome , Larva , Animals , Coleoptera/microbiology , Coleoptera/growth & development , Larva/growth & development , Larva/microbiology , Fungi/genetics , Fungi/classification , Fungi/physiology , Pupa/growth & development , Pupa/microbiology , Mycobiome , Biodiversity , Symbiosis , High-Throughput Nucleotide Sequencing
16.
PLoS One ; 19(5): e0302992, 2024.
Article En | MEDLINE | ID: mdl-38713664

Bean beetle (Callosobruchus maculatus) exhibits clear phenotypic plasticity depending on population density; However, the underlying molecular mechanism remains unknown. Compared to low-density individuals, high-density individuals showed a faster terminal oocyte maturity rate. Four insulin-like peptide (ILP) genes were identified in the bean beetle, which had higher expression levels in the head than in the thorax and abdomen. The population density could regulate the expression levels of CmILP1-3, CmILP2-3, and CmILP1 as well as CmILP3 in the head, thorax, and abdomen, respectively. RNA interference results showed that each CmILP could regulate terminal oocyte maturity rate, indicating that there was functional redundancy among CmILPs. Silencing each CmILP could lead to down-regulation of some other CmILPs, however, CmILP3 was up-regulated in the abdomen after silencing CmILP1 or CmILP2. Compared to single gene silencing, silencing CmILP3 with CmILP1 or CmILP2 at the same time led to more serious retardation in oocyte development, suggesting CmILP3 could be up-regulated to functionally compensate for the down-regulation of CmILP1 and CmILP2. In conclusion, population density-dependent plasticity in terminal oocyte maturity rate of bean beetle was regulated by CmILPs, which exhibited gene redundancy and gene compensation.


Coleoptera , Oocytes , Animals , Coleoptera/genetics , Coleoptera/metabolism , Oocytes/metabolism , Oocytes/growth & development , Female , RNA Interference , Insect Proteins/genetics , Insect Proteins/metabolism , Insulin/metabolism , Insulin/genetics , Population Density , Insulin-Like Peptides
17.
Biol Lett ; 20(5): 20230610, 2024 May.
Article En | MEDLINE | ID: mdl-38747686

Echolocating bats and their eared insect prey are in an acoustic evolutionary war. Moths produce anti-bat sounds that startle bat predators, signal noxiousness, mimic unpalatable models and jam bat sonar. Tiger beetles (Cicindelidae) also purportedly produce ultrasound in response to bat attacks. Here we tested 19 tiger beetle species from seven genera and showed that they produce anti-bat signals to playback of authentic bat echolocation. The dominant frequency of beetle sounds substantially overlaps the sonar calls of sympatric bats. As tiger beetles are known to produce defensive chemicals such as benzaldehyde and hydrogen cyanide, we hypothesized that tiger beetle sounds are acoustically advertising their unpalatability. We presented captive big brown bats (Eptesicus fuscus) with seven different tiger beetle species and found that 90 out of 94 beetles were completely consumed, indicating that these tiger beetle species are not aposematically signalling. Instead, we show that the primary temporal and spectral characteristics of beetle warning sounds overlap with sympatric unpalatable tiger moth (Arctinae) sounds and that tiger beetles are probably Batesian mimics of noxious moth models. We predict that many insect taxa produce anti-bat sounds and that the acoustic mimicry rings of the night sky are hyperdiverse.


Chiroptera , Coleoptera , Echolocation , Moths , Animals , Moths/physiology , Chiroptera/physiology , Coleoptera/physiology , Predatory Behavior , Biological Mimicry
18.
Sci Rep ; 14(1): 8678, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622206

This study emphasizes the phytochemical study of some locally available botanicals against maize weevils. Nine plant parts were collected from six plant species. The test plant powder (200 g) was suspended sequentially in 600 ml of petroleum ether, chloroform, acetone, methanol, and distilled water for 72 h with frequent agitation. Different concentrations of the crude extracts were applied to maize seeds at rates of 10 ml, 15 ml and 20 ml per 100 g. All treatments with different extracts at different rates of application showed significant differences (p < 0.05) in the cumulative mean percentage mortality of the maize weevil. The seed extract of Maesa lanceolata and Croton macrostachyus and the leaf extract of Clausena anisata showed cumulative percent mortality ranged 95.32-98.02% in 28 days after treatment application. There was no significant difference (p > 0.05) among all treatments for the prevention of F1 progeny emergence. In all extracts, Clausena anisata showed 100% inhibition of F1 progeny emergence. All treatments significantly reduced seed weight loss and damage. The treated maize seeds were germinated with an acceptable germination quality. In conclusion, an increased dosage of the extract resulted in significant mortality in maize weevils. The seed extracts of Maesa lanceolata and Croton macrostachyus and Clausena anisata leaf extract were observed to be the most promising botanical in protecting stored maize against maize weevil.


Coleoptera , Insecticides , Plants, Medicinal , Weevils , Animals , Weevils/physiology , Insecticides/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology
19.
Sci Rep ; 14(1): 8682, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622222

Brachyura and Anomala (or Anomura), also referred to as true and false crabs, form the species-rich and globally abundant group of Meiura, an ingroup of Decapoda. The evolutionary success of both groups is sometimes attributed to the process of carcinization (evolving a crab-like body), but might also be connected to the megalopa, a specific transitional larval phase. We investigate these questions, using outline analysis of the shields (carapaces) of more than 1500 meiuran crabs. We compare the morphological diversity of different developmental phases of major ingroups of true and false crabs. We find that morphological diversity of adults is larger in false crabs than in true crabs, indicating that taxonomic diversity and morphological diversity are not necessarily linked. The increasing morphological disparity of adults of true and false crabs with increasing phylogenetic distance furthermore indicates diverging evolution of the shield morphology of adult representatives of Meiura. Larvae of true crabs also show larger diversity than their adult counterparts, highlighting the importance of larvae for biodiversity studies. The megalopa phase of Meiura appears to be plesiomorphic, as it overlaps between true and false crabs and shows little diversity. Causes may be common evolutionary constraints on a developmental phase specialized for transitioning.


Anomura , Brachyura , Coleoptera , Animals , Brachyura/anatomy & histology , Phylogeny , Anomura/anatomy & histology , Larva
20.
Proc Biol Sci ; 291(2021): 20240122, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38628120

Diverse organisms actively manipulate their (sym)biotic and physical environment in ways that feed back on their own development. However, the degree to which these processes affect microevolution remains poorly understood. The gazelle dung beetle both physically modifies its ontogenetic environment and structures its biotic interactions through vertical symbiont transmission. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess how environment modifying behaviour and microbiome transmission shape heritable variation and evolutionary potential. We found that depriving larvae of symbionts and environment modifying behaviours increased additive genetic variance and heritability for development time but not body size. This suggests that larvae's ability to manipulate their environment has the potential to modify heritable variation and to facilitate the accumulation of cryptic genetic variation. This cryptic variation may become released and selectable when organisms encounter environments that are less amenable to organismal manipulation or restructuring. Our findings also suggest that intact microbiomes, which are commonly thought to increase genetic variation of their hosts, may instead reduce and conceal heritable variation. More broadly, our findings highlight that the ability of organisms to actively manipulate their environment may affect the potential of populations to evolve when encountering novel, stressful conditions.


Coleoptera , Microbiota , Animals , Coleoptera/genetics , Microbiota/genetics , Larva/genetics , Biological Evolution , Genetic Variation
...