Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.071
1.
Gut Microbes ; 16(1): 2363020, 2024.
Article En | MEDLINE | ID: mdl-38841892

CD4+ T cells play a critical role in regulating autoimmune diseases, and intestinal microbial metabolites control various immune responses. Granzyme B (GzmB)-producing CD4+ T cells have been recently reported to participate in the pathogenesis of autoimmune diseases. Here, we found that GzmbB-deficient CD4+ T cells induced more severe colitis in Rag1-/- mice than wild-type (WT) CD4+ T cells. Germ-free (GF) mice exhibited a lower expression of GzmB in intestinal CD4+ T cells compared to specific pathogen-free (SPF) mice. Intestinal microbial metabolite butyrate increased GzmB expression in CD4+ T cells, especially in IL-10-producing Th1 cells, through HDAC inhibition and GPR43, but not GPR41 and GPR109a. Butyrate-treated GzmB-deficient CD4+ T cells demonstrated more severe colitis compared to butyrate-treated WT CD4+ T cells in the T cell transfer model. Butyrate altered intestinal microbiota composition, but altered microbiota did not mediate butyrate induction of intestinal CD4+ T cell expression of GzmB in mice. Blimp1 was involved in the butyrate induction of GzmB in IL-10-producing Th1 cells. Glucose metabolism, including glycolysis and pyruvate oxidation, mediated butyrate induction of GzmB in Th1 cells. In addition, we found that IKZF3 and NR2F6 regulated GzmB expression induced by butyrate. Together, our studies underscored the critical role of GzmB in mediating gut bacterial metabolite butyrate regulation of T cell tolerance at the mucosal surface.


Butyrates , Colitis , Gastrointestinal Microbiome , Granzymes , Interleukin-10 , Mice, Inbred C57BL , Th1 Cells , Animals , Interleukin-10/metabolism , Interleukin-10/genetics , Interleukin-10/immunology , Th1 Cells/immunology , Mice , Gastrointestinal Microbiome/drug effects , Butyrates/metabolism , Butyrates/pharmacology , Granzymes/metabolism , Colitis/immunology , Colitis/microbiology , Colitis/metabolism , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Immune Tolerance , Homeodomain Proteins
2.
Food Res Int ; 186: 114322, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729712

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Colitis , Cultured Milk Products , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus delbrueckii , Animals , Gastrointestinal Microbiome/drug effects , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Colitis/drug therapy , Lactobacillus delbrueckii/metabolism , Cultured Milk Products/microbiology , Mice , Probiotics/therapeutic use , Male , Mice, Inbred C57BL , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Inflammation , Colon/microbiology , Colon/metabolism , Lactobacillus
3.
Nat Commun ; 15(1): 3784, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710716

Probiotic and engineered microbe-based therapeutics are an emerging class of pharmaceutical agents. They represent a promising strategy for treating various chronic and inflammatory conditions by interacting with the host immune system and/or delivering therapeutic molecules. Here, we engineered a targeted probiotic yeast platform wherein Saccharomyces boulardii is designed to bind to abundant extracellular matrix proteins found within inflammatory lesions of the gastrointestinal tract through tunable antibody surface display. This approach enabled an additional 24-48 h of probiotic gut residence time compared to controls and 100-fold increased probiotic concentrations within the colon in preclinical models of ulcerative colitis in female mice. As a result, pharmacodynamic parameters including colon length, colonic cytokine expression profiles, and histological inflammation scores were robustly improved and restored back to healthy levels. Overall, these studies highlight the potential for targeted microbial therapeutics as a potential oral dosage form for the treatment of inflammatory bowel diseases.


Colitis, Ulcerative , Colon , Disease Models, Animal , Extracellular Matrix , Probiotics , Saccharomyces boulardii , Animals , Probiotics/administration & dosage , Female , Mice , Extracellular Matrix/metabolism , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Colon/microbiology , Colon/metabolism , Colon/pathology , Mice, Inbred C57BL , Colitis/therapy , Colitis/microbiology , Colitis/pathology , Cytokines/metabolism , Humans
4.
Gut Microbes ; 16(1): 2356642, 2024.
Article En | MEDLINE | ID: mdl-38769708

Adherent-invasive Escherichia coli (AIEC) strain LF82, isolated from patients with Crohn's disease, invades gut epithelial cells, and replicates in macrophages contributing to chronic inflammation. In this study, we found that RstAB contributing to the colonization of LF82 in a mouse model of chronic colitis by promoting bacterial replication in macrophages. By comparing the transcriptomes of rstAB mutant- and wild-type when infected macrophages, 83 significant differentially expressed genes in LF82 were identified. And we identified two possible RstA target genes (csgD and asr) among the differentially expressed genes. The electrophoretic mobility shift assay and quantitative real-time PCR confirmed that RstA binds to the promoters of csgD and asr and activates their expression. csgD deletion attenuated LF82 intracellular biofilm formation, and asr deletion reduced acid tolerance compared with the wild-type. Acidic pH was shown by quantitative real-time PCR to be the signal sensed by RstAB to activate the expression of csgD and asr. We uncovered a signal transduction pathway whereby LF82, in response to the acidic environment within macrophages, activates transcription of the csgD to promote biofilm formation, and activates transcription of the asr to promote acid tolerance, promoting its replication within macrophages and colonization of the intestine. This finding deepens our understanding of the LF82 replication regulation mechanism in macrophages and offers new perspectives for further studies on AIEC virulence mechanisms.


Bacterial Adhesion , Biofilms , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Macrophages , Macrophages/microbiology , Animals , Mice , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Biofilms/growth & development , Escherichia coli Infections/microbiology , Humans , Hydrogen-Ion Concentration , Virulence , Colitis/microbiology , Crohn Disease/microbiology , Disease Models, Animal , Signal Transduction , Acids/metabolism
5.
Nutrients ; 16(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38732527

Ulcerative colitis (UC) is characterized by chronic inflammation and ulceration of the intestinal inner lining, resulting in various symptoms. Sea buckthorn berries contain a bioactive compound known as sea buckthorn polysaccharide (SBP). However, the precise mechanisms underlying the impact of SBP on UC remain unclear. In this study, we investigated the effects of pretreatment with SBP on colitis induced by DSS. Our findings demonstrate that SBP pretreatment effectively reduces inflammation, oxidative stress, and intestinal barrier damage associated with colitis. To further elucidate the role of SBP-modulated gut microbiota in UC, we performed fecal microbiota transplantation (FMT) on DSS-treated mice. The microbiota from SBP-treated mice exhibits notable anti-inflammatory and antioxidant effects, improves colonic barrier integrity, and increases the abundance of beneficial bacteria, as well as enhancing SCFA production. Collectively, these results strongly indicate that SBP-mediated amelioration of colitis is attributed to its impact on the gut microbiota, particularly through the promotion of SCFA-producing bacteria and subsequent elevation of SCFA levels. This study provides compelling evidence supporting the efficacy of pre-emptive SBP supplementation in alleviating colitis symptoms by modulating the gut microbiota, thereby offering novel insights into the potential of SBP as a regulator of the gut microbiota for colitis relief.


Gastrointestinal Microbiome , Hippophae , Polysaccharides , Animals , Hippophae/chemistry , Polysaccharides/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Colitis/drug therapy , Colitis/chemically induced , Colitis/microbiology , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Disease Models, Animal , Male , Mice, Inbred C57BL , Oxidative Stress/drug effects , Fecal Microbiota Transplantation , Colon/drug effects , Colon/microbiology , Colon/metabolism , Dextran Sulfate , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Fruit/chemistry , Fatty Acids, Volatile/metabolism
6.
J Int Med Res ; 52(5): 3000605241241000, 2024 May.
Article En | MEDLINE | ID: mdl-38749910

Ileostomy diverts the flow of feces, which can result in malnutrition in the distal part of the intestine. The diversity of the gut microbiota consequently decreases, ultimately leading to intestinal dysbiosis and dysfunction. This condition can readily result in diversion colitis (DC). Potential treatment strategies include interventions targeting the gut microbiota. In this case study, we effectively treated a patient with severe DC by ileostomy and allogeneic fecal microbiota transplantation (FMT). A 69-year-old man presented with a perforated malignant tumor in the descending colon and an iliac abscess. He underwent laparoscopic radical sigmoid colon tumor resection and prophylactic ileostomy. Follow-up colonoscopy 3 months postoperatively revealed diffuse intestinal mucosal congestion and edema along with granular inflammatory follicular hyperplasia, leading to a diagnosis of severe DC. After two rounds of allogeneic FMT, both the intestinal mucosal bleeding and edema significantly improved, as did the diversity of the gut microbiota. The positive outcome of allogeneic FMT in this case highlights the potential advantages that this procedure can offer patients with DC. However, few studies have focused on allogeneic FMT, and more in-depth research is needed to gain a better understanding.


Colitis , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Ileostomy , Humans , Male , Aged , Fecal Microbiota Transplantation/methods , Colitis/microbiology , Colitis/therapy , Transplantation, Homologous/methods , Treatment Outcome , Colonoscopy
7.
Theranostics ; 14(7): 2719-2735, 2024.
Article En | MEDLINE | ID: mdl-38773969

Aim: To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by Bifidobacterium breve (B. breve) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Methods: Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of B. breve and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of B. breve. Efficacious molecules produced by B. breve were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. Results: B. breve alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of B. breve. Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following B. breve supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with B. breve in CAC mice and highly enriched in the culture supernatant of B. breve. Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs in vitro. The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of B. breve and ILA in relieving colitis and tumorigenesis. Conclusion: B. breve-mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.


Bifidobacterium breve , Cell Differentiation , Colitis , Indoles , Macrophages , Probiotics , Animals , Mice , Macrophages/metabolism , Macrophages/drug effects , Bifidobacterium breve/metabolism , Indoles/pharmacology , Indoles/metabolism , Humans , Colitis/chemically induced , Colitis/microbiology , Colitis/complications , Cell Differentiation/drug effects , Probiotics/pharmacology , Probiotics/administration & dosage , Disease Models, Animal , Carcinogenesis/drug effects , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/microbiology , Colitis-Associated Neoplasms/metabolism , Mice, Inbred C57BL , Colon/microbiology , Colon/pathology , Colon/metabolism , Dextran Sulfate , Male , Gastrointestinal Microbiome , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Azoxymethane
8.
Int Immunopharmacol ; 134: 112234, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38739976

Ulcerative colitis, a chronic inflammatory condition affecting the rectum and colon to varying degrees, is linked to a dysregulated immune response and the microbiota. Sodium (aS,9R)-3-hydroxy-16,17-dimethoxy-15-oxidotricyclo[12.3.1.12,6]nonadeca-1(18),2,4,6(19),14,16-hexene-9-yl sulfate hydrate (SDH) emerges as a novel diarylheptane compound aimed at treating inflammatory bowel diseases. However, the mechanisms by which SDH modulates these conditions remain largely unknown. In this study, we assessed SDH's impact on the clinical progression of dextran sodium sulfate (DSS)-induced ulcerative colitis. Our results demonstrated that SDH significantly mitigated the symptoms of DSS-induced colitis, reflected in reduced disease activity index scores, alleviation of weight loss, shortening of the colorectum, and reduction in spleen swelling. Notably, SDH decreased the proportion of Th1/Th2/Th17 cells and normalized inflammatory cytokine levels in the colon. Furthermore, SDH treatment modified the gut microbial composition in mice with colitis, notably decreasing Bacteroidetes and Proteobacteria populations while substantially increasing Firmicutes, Actinobacteria, and Patescibacteria. In conclusion, our findings suggest that SDH may protect the colon from DSS-induced colitis through the regulation of Th1/Th2/Th17 cells and gut microbiota, offering novel insights into SDH's therapeutic potential.


Colitis, Ulcerative , Dextran Sulfate , Diarylheptanoids , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Diarylheptanoids/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Colon/drug effects , Colon/immunology , Colon/pathology , Colon/microbiology , Cytokines/metabolism , Disease Models, Animal , Colitis/chemically induced , Colitis/drug therapy , Colitis/immunology , Colitis/microbiology , Male , Th1 Cells/immunology , Th1 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Th2 Cells/immunology , Th2 Cells/drug effects , Humans
9.
Sci Rep ; 14(1): 11560, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773299

IBD is a disorder which could be caused by oxidative stress. This investigation aims to determine if probiotics and postbiotics can control oxidative stress and inflammation and compare the effectiveness of these two probiotic and postbiotic mixtures of substances. 88 strains of Lactobacillus and Bifidobacterium were tested for antioxidant activity. Male wild-type C57BL/6 mice were divided into four experimental groups, namely high fat diet (HFD) + PBS, HFD + DSS, HFD + DSS + 109 cfu/ml of probiotics, and HFD + DSS + 109 cfu/ml of postbiotics. The phenotypical indices and pathological scores were assessed. The expression of genes related to NF-kB and Nrf2 signaling pathways and enzymes associated with oxidant/anti-oxidant activities, and proinflammatory/inflammatory cytokines were assessed. In contrast to the groups exposed to DSS, mice treated with probiotics mixture and postbiotics mixture alongside DSS displayed alleviation of DSS-induced adverse effects on phenotypical characteristics, as well as molecular indices such as the Nrf2 and NF-kB related genes, with a greater emphasis on the postbiotics component. In accordance with the findings of the present investigation, it can be inferred that even in using a high-fat dietary regimen as an inducer of oxidative stress, the emergence of inflammation can be effectively addressed through the utilization of probiotics and, more specifically, postbiotics.


Anti-Inflammatory Agents , Antioxidants , Colitis , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL , NF-E2-Related Factor 2 , NF-kappa B , Oxidative Stress , Probiotics , Signal Transduction , Animals , Probiotics/pharmacology , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Male , Mice , Colitis/chemically induced , Colitis/metabolism , Colitis/microbiology , Anti-Inflammatory Agents/pharmacology , Signal Transduction/drug effects , Oxidative Stress/drug effects , Lactobacillus , Bifidobacterium , Diet, High-Fat/adverse effects
10.
Int Immunopharmacol ; 135: 112285, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38762922

Inflammatory bowel disease (IBD) is a chronic and recurrent gastrointestinal inflammation regulated by intricate mechanisms. Recently, prebiotics is considered as promising nutritional strategy for the prevention and treatment of IBD. Prevotella histicola (P. histicola), an emerging probiotic, possesses apparently anti-inflammatory bioactivity. However, the role and underlying mechanism of P. histicola on IBD remain unclear. Hence, we probe into the effect of P. histicola on dextran sulfate sodium (DSS)-induced colitis and clarified the potential mechanism. Our results revealed that DSS-induced colonic inflammatory response and damaged epithelial barrier in mice were attenuated by oral administration of P. histicola. Moreover, supplementary P. histicola significantly enriched short-chain fatty acid (SCFA)-producing bacteria (Lactobacillus, and Bacillus) and reduced pathogenic bacteria (Erysipelotrichaceae, Clostridium, Bacteroides) in DSS-induced colitis. Notably, In DSS-treated mice, endoplasmic reticulum stress (ERS) was persistently activated in colonic tissue. Conversely, P. histicola gavage suppressed expansion of endoplasmic reticulum, downregulated PERK-ATF4-CHOP and IRE1α-JNK pathway. In vitro, the P. histicola supernatant eliminated LPS-induced higher production of pro-inflammatory cytokines regulated by NF-κB and impairment of epithelial barrier by inhibiting IRE1α-JNK signaling in Caco-2 cell. In summary, our study indicated that P. histicola mitigated DSS-induced chronic colitis via inhibiting IRE1α-JNK pathway and NF-κB signaling. These findings provide the new insights into the promotion of gut homeostasis and the application potential of P. histicola as a prebiotic for IBD in the future.


Colitis , Dextran Sulfate , Endoplasmic Reticulum Stress , Endoribonucleases , Mice, Inbred C57BL , NF-kappa B , Prevotella , Protein Serine-Threonine Kinases , Animals , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Endoplasmic Reticulum Stress/drug effects , Protein Serine-Threonine Kinases/metabolism , NF-kappa B/metabolism , Mice , Endoribonucleases/metabolism , Humans , Probiotics/therapeutic use , Signal Transduction/drug effects , Male , Colon/pathology , Colon/microbiology , Colon/drug effects , Colon/immunology , Gastrointestinal Microbiome/drug effects , MAP Kinase Signaling System/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal
11.
Nat Microbiol ; 9(6): 1555-1565, 2024 Jun.
Article En | MEDLINE | ID: mdl-38698178

The detection of oral bacteria in faecal samples has been associated with inflammation and intestinal diseases. The increased relative abundance of oral bacteria in faeces has two competing explanations: either oral bacteria invade the gut ecosystem and expand (the 'expansion' hypothesis), or oral bacteria transit through the gut and their relative increase marks the depletion of other gut bacteria (the 'marker' hypothesis). Here we collected oral and faecal samples from mouse models of gut dysbiosis (antibiotic treatment and DSS-induced colitis) and used 16S ribosomal RNA sequencing to determine the abundance dynamics of oral bacteria. We found that the relative, but not absolute, abundance of oral bacteria increases, reflecting the 'marker' hypothesis. Faecal microbiome datasets from diverse patient cohorts, including healthy individuals and patients with allogeneic haematopoietic cell transplantation or inflammatory bowel disease, consistently support the 'marker' hypothesis and explain associations between oral bacterial abundance and patient outcomes consistent with depleted gut microbiota. By distinguishing between the two hypotheses, our study guides the interpretation of microbiome compositional data and could potentially identify cases where therapies are needed to rebuild the resident microbiome rather than protect against invading oral bacteria.


Bacteria , Dysbiosis , Feces , Gastrointestinal Microbiome , Mouth , RNA, Ribosomal, 16S , Feces/microbiology , Humans , Animals , Mice , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Dysbiosis/microbiology , Mouth/microbiology , Colitis/microbiology , Disease Models, Animal , Inflammatory Bowel Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Mice, Inbred C57BL , Female , Dextran Sulfate
12.
Bull Exp Biol Med ; 176(5): 543-547, 2024 Mar.
Article En | MEDLINE | ID: mdl-38717566

We studied the dynamics of the main hemodynamic parameters in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats with visceral obesity and chemically induced colitis (CIC) against the background of probiotic therapy. Systolic BP, HR, and body temperature were recorded over 36 days using a wireless telemetry system. During 8 days (3 days before CIC induction and until the end of the experiment) the animals were intragastrically administered a probiotic based on Lactobacillus delbrueckii D5 strain. At baseline, systolic BP was significantly higher in the SHR group, while HR and body temperature did not differ in SHR and WKY rats. On day 8 after CIC induction, systolic BP, HR, and body temperature in SHR were significantly increased in comparison with the initial values. In the group of WKY rats, all indices at the end of the experiment remained at the initial levels. Probiotic therapy in SHR, in contrast to WKY rats, did not lead to normalization of body temperature and hemodynamic disorders resulting from CIC.


Body Temperature , Colitis , Hemodynamics , Probiotics , Rats, Inbred SHR , Rats, Inbred WKY , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Rats , Male , Colitis/chemically induced , Colitis/physiopathology , Colitis/microbiology , Hemodynamics/drug effects , Body Temperature/drug effects , Blood Pressure/drug effects , Blood Pressure/physiology , Heart Rate/drug effects , Lactobacillus delbrueckii , Obesity/physiopathology , Obesity, Abdominal/physiopathology , Obesity, Abdominal/chemically induced
13.
J Clin Invest ; 134(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690730

The gut microbiota is an integral part of the human metaorganism that is required to shape physiologic host immune responses including host defense against pathogens. Disease-associated gut dysbiosis has been characterized by blooms of pathobionts, which are bacterial species that can drive disease under certain conditions. Pathobionts like Enterobacteriaceae often bloom during flares of inflammatory bowel disease (IBD) and are causally linked with IBD in murine models. In this issue of the JCI, Hecht and colleagues investigated how simple carbohydrates are causally linked to the bloom of the gut pathobiont Klebsiella pneumoniae, which belong to the Enterobacteriaceae family. Notably, the presence of fiber reduced the dissemination of K. pneumoniae into the blood and liver in a colitis model. Their findings provide a diet-related mechanism for gut dysbiosis, which has implications in the management of IBD and other conditions in which gut dysbiosis is an underlying factor.


Dysbiosis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Klebsiella pneumoniae , Humans , Animals , Inflammatory Bowel Diseases/microbiology , Mice , Dietary Carbohydrates/adverse effects , Klebsiella Infections , Colitis/chemically induced , Colitis/microbiology , Dietary Fiber
14.
Int J Biol Macromol ; 270(Pt 1): 132362, 2024 Jun.
Article En | MEDLINE | ID: mdl-38750864

The prophylactic and adjunctive impacts of compound prebiotics (CP), comprising galacto-oligosaccharides, fructo-oligosaccharides, and isomalto-oligosaccharides, on colitis remain unclear. This study aimed to elucidate the effects of CP on dextran sodium sulfate (DSS)-induced colitis via modulation of the gut microbiota. Mice received prophylactic CP (PCP) for three weeks and DSS in the second week. In the third week, therapeutic CP, mesalazine, and a combination of CP and mesalazine (CPM) were administered to mice with DSS-induced colitis. The administration of PCP and CPM was found to ameliorate colitis, as evidenced by increases in body weight and colon length, elevation of the anti-inflammatory cytokine IL-10, and reductions in the disease activity index, histological scores, and levels of pro-inflammatory cytokines in mice with DSS-induced colitis on days 14 or 21. Furthermore, an increase in the relative abundance of probiotics (Ligilactobacillus, Bifidobacterium, and Limosilactobacillus), alpha diversity indices, short-chain fatty acids (SCFA) contents, and microbial network complexity was observed following PCP or CPM treatment. Correlation analysis revealed positive associations between these probiotics and both SCFA and IL-10, and negative associations with pro-inflammatory cytokines. This study highlighted the potential of CP as novel prophylactic and adjunctive treatments for alleviating DSS-induced intestinal inflammation and maintaining gut microbiota homeostasis.


Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Prebiotics , Animals , Prebiotics/administration & dosage , Gastrointestinal Microbiome/drug effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/microbiology , Dextran Sulfate/adverse effects , Mice , Male , Cytokines/metabolism , Probiotics/pharmacology , Probiotics/therapeutic use , Probiotics/administration & dosage , Disease Models, Animal , Interleukin-10/metabolism , Fatty Acids, Volatile/metabolism
15.
Nutrients ; 16(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38674829

The intestinal epithelial barrier can prevent the invasion of pathogenic microorganisms and food antigens to maintain a consistent intestinal homeostasis. However, an imbalance in this barrier can result in various diseases, such as inflammatory bowel disease, malnutrition, and metabolic disease. Thus, the aim of this study was to select probiotic strains with epithelial barrier-enhancing ability in cell-based model and further investigate them for their improving effects on colitis mouse and weaned piglet models. The results showed that selected specific cell-free fermentation supernatants (CFSs) from Ligilactobacillus salivarius P1, Lactobacillus gasseri P12, and Limosilactobacillus reuteri G7 promoted intestinal epithelial cell growth and proliferation, strengthening the intestinal barrier in an intestinal epithelial cell line Caco-2 model. Further, the administration of CFSs of L. salivarius P1, L. gasseri P12, and L. reuteri G7 were found to ameliorate DSS-induced colitis in mice. Additionally, spray-dried powders of CFS from the three strains were examined in a weaned piglet model, only CFS powder of L. reuteri G7 could ameliorate the feed/gain ratio and serum levels of D-lactate and endotoxin. In conclusion, a new potential probiotic strain, L. reuteri G7, was selected and showed ameliorating effects in both colitis mouse and weaned piglet models.


Colitis , Disease Models, Animal , Fermentation , Intestinal Mucosa , Limosilactobacillus reuteri , Probiotics , Weaning , Animals , Probiotics/pharmacology , Colitis/chemically induced , Colitis/metabolism , Colitis/microbiology , Humans , Mice , Swine , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Caco-2 Cells , Ligilactobacillus salivarius , Lactobacillus gasseri , Dextran Sulfate , Male , Cell Proliferation/drug effects
16.
Microbiome ; 12(1): 76, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38649950

BACKGROUND: The etiology of inflammatory bowel disease (IBD) is unclear but involves both genetics and environmental factors, including the gut microbiota. Indeed, exacerbated activation of the gastrointestinal immune system toward the gut microbiota occurs in genetically susceptible hosts and under the influence of the environment. For instance, a majority of IBD susceptibility loci lie within genes involved in immune responses, such as caspase recruitment domain member 9 (Card9). However, the relative impacts of genotype versus microbiota on colitis susceptibility in the context of CARD9 deficiency remain unknown. RESULTS: Card9 gene directly contributes to recovery from dextran sodium sulfate (DSS)-induced colitis by inducing the colonic expression of the cytokine IL-22 and the antimicrobial peptides Reg3ß and Reg3γ independently of the microbiota. On the other hand, Card9 is required for regulating the microbiota capacity to produce AhR ligands, which leads to the production of IL-22 in the colon, promoting recovery after colitis. In addition, cross-fostering experiments showed that 5 weeks after weaning, the microbiota transmitted from the nursing mother before weaning had a stronger impact on the tryptophan metabolism of the pups than the pups' own genotype. CONCLUSIONS: These results show the role of CARD9 and its effector IL-22 in mediating recovery from DSS-induced colitis in both microbiota-independent and microbiota-dependent manners. Card9 genotype modulates the microbiota metabolic capacity to produce AhR ligands, but this effect can be overridden by the implantation of a WT or "healthy" microbiota before weaning. It highlights the importance of the weaning reaction occurring between the immune system and microbiota for host metabolism and immune functions throughout life. A better understanding of the impact of genetics on microbiota metabolism is key to developing efficient therapeutic strategies for patients suffering from complex inflammatory disorders. Video Abstract.


CARD Signaling Adaptor Proteins , Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Interleukin-22 , Interleukins , Pancreatitis-Associated Proteins , Animals , CARD Signaling Adaptor Proteins/genetics , Colitis/microbiology , Colitis/genetics , Colitis/immunology , Mice , Pancreatitis-Associated Proteins/genetics , Interleukins/genetics , Interleukins/metabolism , Mice, Knockout , Genetic Predisposition to Disease , Disease Models, Animal , Mice, Inbred C57BL , Colon/microbiology , Colon/metabolism , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Female , Male
17.
Redox Biol ; 72: 103140, 2024 Jun.
Article En | MEDLINE | ID: mdl-38593629

Gut microbiota has been implicated in the initiation and progression of various diseases; however, the underlying mechanisms remain elusive and effective therapeutic strategies are scarce. In this study, we investigated the role and mechanisms of gut microbiota in TNBS-induced colitis and its associated kidney injury while evaluating the potential of dietary protein as a therapeutic intervention. The intrarectal administration of TNBS induced colitis in mice, concurrently with kidney damage. Interestingly, this effect was absent when TNBS was administered intraperitoneally, indicating a potential role of gut microbiota. Depletion of gut bacteria with antibiotics significantly attenuated the severity of TNBS-induced inflammation, oxidative damage, and tissue injury in the colon and kidneys. Mechanistic investigations using cultured colon epithelial cells and bone-marrow macrophages unveiled that TNBS induced cell oxidation, inflammation and injury, which was amplified by the bacterial component LPS and mitigated by thiol antioxidants. Importantly, in vivo administration of thiol-rich whey protein entirely prevented TNBS-induced colonic and kidney injury. Our findings suggest that gut bacteria significantly contribute to the initiation and progression of colitis and associated kidney injury, potentially through mechanisms involving LPS-induced exaggeration of oxidative cellular damage. Furthermore, our research highlights the potential of dietary thiol antioxidants as preventive and therapeutic interventions.


Colitis , Gastrointestinal Microbiome , Oxidative Stress , Trinitrobenzenesulfonic Acid , Animals , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Colitis/chemically induced , Colitis/microbiology , Colitis/metabolism , Mice , Trinitrobenzenesulfonic Acid/toxicity , Trinitrobenzenesulfonic Acid/adverse effects , Disease Models, Animal , Male , Antioxidants/pharmacology , Kidney/metabolism , Kidney/pathology , Kidney/drug effects
18.
J Agric Food Chem ; 72(18): 10355-10365, 2024 May 08.
Article En | MEDLINE | ID: mdl-38620073

The genus Bifidobacterium has been widely used in functional foods for health promotion due to its beneficial effects on human health, especially in the gastrointestinal tract (GIT). In this study, we characterize the anti-inflammatory potential of the probiotic strain Bifidobacterium pseudocatenulatum G7, isolated from a healthy male adult. G7 secretion inhibited inflammatory response in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Moreover, oral administration of bacteria G7 alleviated the severity of colonic inflammation in dextran sulfate sodium (DSS)-treated colitis mice, which was evidenced by a decreased disease activity index (DAI) and enhanced structural integrity of the colon. The 16S rRNA gene sequencing result illustrated that the G7 alleviated DSS-induced gut microbiota dysbiosis, accompanied by the modulated bile acids and short-chain fatty acid (SCFA) levels. Overall, our results demonstrated the potential anti-inflammatory effects of Bifidobacterium pseudocatenulatum G7 on both in vitro and in vivo models, which provided a solid foundation for further development of a novel anti-inflammatory probiotic.


Anti-Inflammatory Agents , Bifidobacterium pseudocatenulatum , Colitis , Gastrointestinal Microbiome , Probiotics , Probiotics/administration & dosage , Probiotics/pharmacology , Mice , Animals , RAW 264.7 Cells , Male , Anti-Inflammatory Agents/administration & dosage , Humans , Colitis/microbiology , Colitis/therapy , Colitis/chemically induced , Bifidobacterium pseudocatenulatum/genetics , Bifidobacterium pseudocatenulatum/chemistry , Mice, Inbred C57BL , Macrophages/immunology , Fatty Acids, Volatile/metabolism , Colon/microbiology , Colon/immunology
19.
Biomed Pharmacother ; 174: 116514, 2024 May.
Article En | MEDLINE | ID: mdl-38574618

Plant-derived nanovesicles (PDNVs) have recently emerged as natural delivery systems of biofunctional compounds toward mammalian cells. Considering their already described composition, anti-inflammatory properties, stability, and low toxicity, PDNVs offer a promising path for developing new preventive strategies for several inflammatory diseases, among which the inflammatory bowel disease (IBD). In this study, we explore the protective effects of industrially produced lemon vesicles (iLNVs) in a rat model of IBD. Characterization of iLNVs reveals the presence of small particles less than 200 nm in size and a profile of bioactive compounds enriched in flavonoids and organic acids with known beneficial properties. In vitro studies on human macrophages confirm the safety and anti-inflammatory effects of iLNVs, as evidenced by the reduced expression of pro-inflammatory cytokines and increased levels of anti-inflammatory markers. As evidenced by in vivo experiments, pre-treatment with iLNVs significantly alleviates symptoms and histological features in 2,4 dinitrobenzensulfuric acid (DNBS)-induced colitis in rats. Molecular pathway analysis reveals modulation of NF-κB and Nrf2, indicating anti-inflammatory and antioxidant effects. Finally, iLNVs affects gut microbiota composition, improving the consistent colitis-related alterations. Overall, we demonstrated the protective role of industrially produced lemon nanovesicles against colitis and emphasized their potential in managing IBD through multifaceted mechanisms.


Anti-Inflammatory Agents , Antioxidants , Citrus , Colitis , Gastrointestinal Microbiome , Animals , Anti-Inflammatory Agents/pharmacology , Citrus/chemistry , Colitis/pathology , Colitis/drug therapy , Colitis/chemically induced , Colitis/microbiology , Colitis/metabolism , Male , Antioxidants/pharmacology , Rats , Humans , Gastrointestinal Microbiome/drug effects , Nanoparticles/chemistry , Rats, Wistar , Disease Models, Animal , Cytokines/metabolism , NF-kappa B/metabolism
20.
J Food Sci ; 89(5): 3078-3093, 2024 May.
Article En | MEDLINE | ID: mdl-38605580

Human milk contains a variety of microorganisms that exert benefit for human health. In the current study, we isolated a novel Lactobacillus gasseri strain named Lactobacillus gasseri (L. gasseri) SHMB 0001 from human milk and aimed to evaluate the probiotic characteristics and protective effects on murine colitis of the strain. The results showed that L. gasseri SHMB 0001 possessed promising potential probiotic characteristics, including good tolerance against artificial gastric and intestinal fluids, adhesion to Caco-2 cells, susceptibility to antibiotic, no hemolytic activity, and without signs of toxicity or infection in mice. Administration of L. gasseri SHMB 0001 (1 × 108 CFU per gram of mouse weight per day) reduced weight loss, the disease activity index, and colon shortening in mice during murine colitis conditions. Histopathological analysis revealed that L. gasseri SHMB 0001 treatment attenuated epithelial damage and inflammatory infiltration in the colon. L. gasseri SHMB 0001 treatment increased the expression of colonic occludin and claudin-1 while decreasing the expression of pro-inflammatory cytokine genes. L. gasseri SHMB 0001 modified the composition and structure of the gut microbiota community and partially recovered the Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways altered by dextran sulfate sodium (DSS). Overall, our results indicated that the human breast milk-derived L. gasseri SHMB 0001 exhibited promising probiotic properties and ameliorative effect on DSS-induced colitis in mice. L. gasseri SHMB 0001 may be applied as a promising probiotic against intestinal inflammation in the future. PRACTICAL APPLICATION: L. gasseri SHMB 0001 isolated from human breast milk showed good tolerance to gastrointestinal environment, safety, and protective effect against DSS-induced mice colitis via enforcing gut barrier, downregulating pro-inflammatory cytokines, and modulating gut microbiota. L. gasseri SHMB 0001 may be a promising probiotic candidate for the treatment of intestinal inflammation.


Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus gasseri , Milk, Human , Probiotics , Probiotics/pharmacology , Animals , Humans , Mice , Colitis/chemically induced , Colitis/therapy , Colitis/microbiology , Dextran Sulfate/adverse effects , Gastrointestinal Microbiome/drug effects , Caco-2 Cells , Female , Colon/microbiology , Colon/pathology , Colon/metabolism , Cytokines/metabolism , Disease Models, Animal
...