Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.698
Filter
1.
J Gene Med ; 26(7): e3709, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949077

ABSTRACT

BACKGROUND: Colorectal cancer is the third most common malignancy worldwide and is one of the leading causes of cancer-related mortality. Ubiquitin-specific peptidase 18 (USP18) protein has been reported to exert different tumor-related effects in distinct tumor types. Here, we initially investigated the expression and signaling pathways of USP18 in colon adenocarcinoma (COAD). METHODS: A quantitative real-time PCR was conducted to evaluate the mRNA level of USP18 in cultured cells. Immunohistochemical staining was used to explore the protein expression of USP18 in clinical COAD samples. Specific knockdown was achieved by transient transfection of small interfering RNAs into SW480 and HT29 cells using Lipo3000. Cell conting kit-8 assay, transwell assay and matrigel-transwell assays were conducted to evaluate proliferation, migration and invasion capacities, respectively. Western blotting was performed to analyze downstream signaling pathways. A chi-squared test and univariate and multivariate analyses were used to evaluate the clinical data. Xenografts from mice model were assessed to validate the in vitro findings. RESULTS: Higher USP18 level was identified in COAD tissues and was positively correlated with advanced tumor stage. High USP18 protein expression indicated poorer prognosis of COAD patients. Silencing USP18 suppressed COAD cell proliferation and invasion via destabilizing extracellular signal-regulated kinase (ERK) protein and suppressing ERK downstream pathways. Simultaneously silencing interferon-stimulated gene 15 (ISG15) with USP18 can partially rescue the tumor cell viability, indicating its involvement in USP18 signaling. The oncogenic effects of USP18 were also confirmed in mice models. CONCLUSIONS: USP18 plays oncogenic effects in colon adenocarcinoma via ISG15-ERK pathways. High USP18 expression indicates poor clinical outcomes for colon adenocarcinoma patients.


Subject(s)
Adenocarcinoma , Cell Movement , Cell Proliferation , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Signal Transduction , Ubiquitin Thiolesterase , Humans , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Animals , Mice , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Male , Cell Movement/genetics , Female , Cell Line, Tumor , Disease Progression , Middle Aged , Prognosis , MAP Kinase Signaling System , Extracellular Signal-Regulated MAP Kinases/metabolism , HT29 Cells , Mice, Nude
2.
Commun Biol ; 7(1): 785, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951178

ABSTRACT

Accurate, rapid and non-invasive cancer cell phenotyping is a pressing concern across the life sciences, as standard immuno-chemical imaging and omics require extended sample manipulation. Here we combine Raman micro-spectroscopy and phase tomography to achieve label-free morpho-molecular profiling of human colon cancer cells, following the adenoma, carcinoma, and metastasis disease progression, in living and unperturbed conditions. We describe how to decode and interpret quantitative chemical and co-registered morphological cell traits from Raman fingerprint spectra and refractive index tomograms. Our multimodal imaging strategy rapidly distinguishes cancer phenotypes, limiting observations to a low number of pristine cells in culture. This synergistic dataset allows us to study independent or correlated information in spectral and tomographic maps, and how it benefits cell type inference. This method is a valuable asset in biomedical research, particularly when biological material is in short supply, and it holds the potential for non-invasive monitoring of cancer progression in living organisms.


Subject(s)
Phenotype , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/metabolism , Cell Line, Tumor
3.
Cancer Immunol Immunother ; 73(9): 174, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953978

ABSTRACT

Γδ T cell infiltration into tumours usually correlates with improved patient outcome, but both tumour-promoting and tumoricidal effects of γδ T cells have been documented. Human γδ T cells can be divided into functionally distinct subsets based on T cell receptor (TCR) Vδ usage. Still, the contribution of these different subsets to tumour immunity remains elusive. Here, we provide a detailed γδ T cell profiling in colon tumours, using mass and flow cytometry, mRNA quantification, and TCR sequencing. δ chain usage in both the macroscopically unaffected colon mucosa and tumours varied considerably between patients, with substantial fractions of Vδ1, Vδ2, and non-Vδ1 Vδ2 cells. Sequencing of the Vδ complementarity-determining region 3 showed that almost all non-Vδ1 Vδ2 cells used Vδ3 and that tumour-infiltrating γδ clonotypes were unique for every patient. Non-Vδ1Vδ2 cells from colon tumours expressed several activation markers but few NK cell receptors and exhaustion markers. In addition, mRNA analyses showed that non-Vδ1 Vδ2 cells expressed several genes for proteins with tumour-promoting functions, such as neutrophil-recruiting chemokines, Galectin 3, and transforming growth factor-beta induced. In summary, our results show a large variation in γδ T cell subsets between individual tumours, and that Vδ3 cells make up a substantial proportion of γδ T cells in colon tumours. We suggest that individual γδ T cell composition in colon tumours may contribute to the balance between favourable and adverse immune responses, and thereby also patient outcome.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Receptors, Antigen, T-Cell, gamma-delta , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Adenocarcinoma/genetics , Phenotype , Female , Male , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Aged , Middle Aged , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
4.
Sci Rep ; 14(1): 16485, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019906

ABSTRACT

The microarray gene expression data poses a tremendous challenge due to their curse of dimensionality problem. The sheer volume of features far surpasses available samples, leading to overfitting and reduced classification accuracy. Thus the dimensionality of microarray gene expression data must be reduced with efficient feature extraction methods to reduce the volume of data and extract meaningful information to enhance the classification accuracy and interpretability. In this research, we discover the uniqueness of applying STFT (Short Term Fourier Transform), LASSO (Least Absolute Shrinkage and Selection Operator), and EHO (Elephant Herding Optimisation) for extracting significant features from lung cancer and reducing the dimensionality of the microarray gene expression database. The classification of lung cancer is performed using the following classifiers: Gaussian Mixture Model (GMM), Particle Swarm Optimization (PSO) with GMM, Detrended Fluctuation Analysis (DFA), Naive Bayes classifier (NBC), Firefly with GMM, Support Vector Machine with Radial Basis Kernel (SVM-RBF) and Flower Pollination Optimization (FPO) with GMM. The EHO feature extraction with the FPO-GMM classifier attained the highest accuracy in the range of 96.77, with an F1 score of 97.5, MCC of 0.92 and Kappa of 0.92. The reported results underline the significance of utilizing STFT, LASSO, and EHO for feature extraction in reducing the dimensionality of microarray gene expression data. These methodologies also help in improved and early diagnosis of lung cancer with enhanced classification accuracy and interpretability.


Subject(s)
Colonic Neoplasms , Gene Expression Profiling , Machine Learning , Humans , Colonic Neoplasms/genetics , Gene Expression Profiling/methods , Support Vector Machine , Algorithms , Oligonucleotide Array Sequence Analysis/methods , Bayes Theorem , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/classification , Fourier Analysis
5.
BMC Gastroenterol ; 24(1): 222, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992586

ABSTRACT

BACKGROUND: CFAP65 (cilia and flagella associated protein 65) is a fundamental protein in the development and formation of ciliated flagella, but few studies have focused on its role in cancer. This study aimed to investigate the prognostic significance of CFAP65 in colon cancer. METHODS: The functionally enriched genes related to CFAP65 were analyzed through the Gene Ontology (GO) database. Subsequently, CFAP65 expression levels in colon cancer were evaluated by reverse transcription and quantitative polymerase chain reaction (RT-qPCR) and immunoblotting in 20 pairs of frozen samples, including tumors and their matched paratumor tissue. Furthermore, protein expression of CFAP65 in 189 colon cancer patients were assessed via immunohistochemical staining. The correlations between CFAP65 expression and clinical features as well as long-term survival were statistically analyzed. RESULTS: CFAP65-related genes are significantly enriched on cellular processes of cell motility, ion channels, and GTPase-associated signaling. The expression of CFAP65 was significantly higher in colon cancer tissue compared to paratumor tissue. The proportion of high expression and low expression of CFAP65 in the clinical samples of colon cancer were 61.9% and 38.1%, respectively, and its expression level was not associated with the clinical parameters including gender, age, tumor location, histological differentiation, tumor stage, vascular invasion and mismatch repair deficiency. The five-year disease-free survival rate of the patients with CFAP65 low expression tumors was significantly lower than that those with high expression tumors (56.9% vs. 72.6%, P = 0.03), but the overall survival rate has no significant difference (69% vs. 78.6%, P = 0.171). The cox hazard regression analysis model showed that CFAP65 expression, tumor stage and tumor location were independent prognostic factors. CONCLUSIONS: In conclusion, we demonstrate CFAP65 is a potential predictive marker for tumor progression in colon cancer.


Subject(s)
Biomarkers, Tumor , Colonic Neoplasms , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/mortality , Male , Female , Middle Aged , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Aged , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Clinical Relevance , Membrane Proteins , Neoplasm Proteins
6.
J Biochem Mol Toxicol ; 38(8): e23771, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39015057

ABSTRACT

Colon cancer contributes to high mortality rates internationally that has seriously endangered human health. Aurora kinase A (AURKA) served as a key molecule in colon cancer. However, its role of AURKA on regulating ferroptosis in colon cancer and their possible interactions with miRNAs and circRNAs remain still elusive. Comprehensive bioinformatics analysis after RNA-sequencing was conducted to determine the differentially expressed genes (DEGs), ferroptosis-related DEGs and hub genes. The direct relationship between miR-506-3p and hsa_circRNA_007630 or AURKA was predicted, then verified by dual luciferase reporter and quantitative real-time polymerase chain reaction. The rescue experiments were conducted by cotransfection with si-hsa_circRNA_007630, miR-506-3p inhibitor or pcDNA-AURKA in HT29 cells. Erastin was used to induce ferroptosis in HT29 cells and validated by detecting levels of intracellular Fe2+, lipid reactive oxygen species, glutathione, malondialdehyde and ferroptosis markers expression. We screened a total of 331 DEGs, 26 ferroptosis-related genes, among which 3 hub genes were identified through PPI network analysis. Therein, AURKA expression was elevated in colon cancer cells. Moreover, AURKA was targeted by miR-506-3p, and hsa_circRNA_007630 operated as miR-506-3p sponge. The effect of hsa_circRNA_007630 depletion on the inhibiting malignant phenotypes of HT29 cells was rescued by inhibition of miR-506-3p or AURKA overexpression. Additionally, AURKA reduced erastin-induced ferroptosis in HT29 cells. Depletion of circRNA_007630 exerts as a suppressive role in colon cancer through a novel miR-506-3p/AURKA pathway related to ferroptosis, and might become a novel marker for colon cancer.


Subject(s)
Aurora Kinase A , Colonic Neoplasms , Ferroptosis , MicroRNAs , RNA, Circular , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Ferroptosis/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , HT29 Cells , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Disease Progression , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism
7.
PeerJ ; 12: e17582, 2024.
Article in English | MEDLINE | ID: mdl-39006025

ABSTRACT

Background: Disruptions in calcium homeostasis are associated with a wide range of diseases, and play a pivotal role in the development of cancer. However, the construction of prognostic models using calcium extrusion-related genes in colon adenocarcinoma (COAD) has not been well studied. We aimed to identify whether calcium extrusion-related genes serve as a potential prognostic biomarker in the COAD progression. Methods: We constructed a prognostic model based on the expression of calcium extrusion-related genes (SLC8A1, SLC8A2, SLC8A3, SLC8B1, SLC24A2, SLC24A3 and SLC24A4) in COAD. Subsequently, we evaluated the associations between the risk score calculated by calcium extrusion-related genes and mutation signature, immune cell infiltration, and immune checkpoint molecules. Then we calculated the immune score, stromal score, tumor purity and estimate score using the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm. The response to immunotherapy was assessed using tumor immune dysfunction and exclusion (TIDE). Finally, colorectal cancer cells migration, growth and colony formation assays were performed in RKO cells with the overexpression or knockdown SLC8A3, SLC24A2, SLC24A3, or SLC24A4. Results: We found that patients with high risk score of calcium extrusion-related genes tend to have a poorer prognosis than those in the low-risk group. Additionally, patients in high-risk group had higher rates of KRAS mutations and lower MUC16 mutations, implying a strong correlation between KRAS and MUC16 mutations and calcium homeostasis in COAD. Moreover, the high-risk group showed a higher infiltration of regulatory T cells (Tregs) in the tumor microenvironment. Finally, our study identified two previously unreported model genes (SLC8A3 and SLC24A4) that contribute to the growth and migration of colorectal cancer RKO cells. Conclusions: Altogether, we developed a prognostic risk model for predicting the prognosis of COAD patients based on the expression profiles of calcium extrusion-related genes, Furthermore, we validated two previously unreported tumor suppressor genes (SLC8A3 and SLC24A4) involved in colorectal cancer progression.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Prognosis , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/mortality , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Calcium/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Male , Female , Mutation
8.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999959

ABSTRACT

In the realm of colon carcinoma, significant genetic and epigenetic diversity is observed, underscoring the necessity for tailored prognostic features that can guide personalized therapeutic strategies. In this study, we explored the association between the type 2 bitter taste receptor (TAS2Rs) family-related genes and colon cancer using RNA-sequencing and clinical datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Our preliminary analysis identified seven TAS2Rs genes associated with survival using univariate Cox regression analysis, all of which were observed to be overexpressed in colon cancer. Subsequently, based on these seven TAS2Rs prognostic genes, two colon cancer molecular subtypes (Cluster A and Cluster B) were defined. These subtypes exhibited distinct prognostic and immune characteristics, with Cluster A characterized by low immune cell infiltration and less favorable outcomes, while Cluster B was associated with high immune cell infiltration and better prognosis. Finally, we developed a robust scoring system using a gradient boosting machine (GBM) approach, integrated with the gene-pairing method, to predict the prognosis of colon cancer patients. This machine learning model could improve our predictive accuracy for colon cancer outcomes, underscoring its value in the precision oncology framework.


Subject(s)
Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Receptors, G-Protein-Coupled , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Colonic Neoplasms/pathology , Prognosis , Receptors, G-Protein-Coupled/genetics , Biomarkers, Tumor/genetics , Female , Machine Learning , Gene Expression Profiling , Male
9.
Sci Rep ; 14(1): 13555, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38867070

ABSTRACT

In order to construct a prognostic evaluation model of TLS features in COAD and better realize personalized precision medicine in COAD. Colon adenocarcinoma (COAD) is a common malignant tumor of the digestive system. At present, there is no effective prognostic marker to predict the prognosis of patients. Tertiary lymphoid structure (TLS) affects cancer progression by regulating immune microenvironment. Mining COAD biomarkers based on TLS-related genes helps to improve the prognosis of patients. In order to construct a prognostic evaluation model of TLS features in COAD and better realize personalized precision medicine in COAD. The mRNA expression data and clinical information of COAD and adjacent tissues were downloaded from the Cancer Genome Atlas database. The differentially expressed TLS-related genes of COAD relative to adjacent tissues were obtained by differential analysis. TLS gene co-expression analysis was used to mine genes highly related to TLS, and the intersection of the two was used to obtain candidate genes. Univariate, LASSO, and multivariate Cox regression analysis were performed on candidate genes to screen prognostic markers to construct a risk assessment model. The differences of immune characteristics were evaluated by ESTIMATE, ssGSEA and CIBERSORT in high and low risk groups of prognostic model. The difference of genomic mutation between groups was evaluated by tumor mutation burden score. Screening small molecule drugs through the GDSC library. Finally, a nomogram was drawn to evaluate the clinical value of the prognostic model. Seven TLS-related genes ADAM8, SLC6A1, PAXX, RIMKLB, PTH1R, CD1B, and MMP10 were screened to construct a prognostic model. Survival analysis showed that patients in the high-risk group had significantly lower overall survival rates. Immune microenvironment analysis showed that patients in the high-risk group had higher immune indicators, indicating higher immunity. The genomic mutation patterns of the high-risk and low-risk groups were significantly different, especially the KRAS mutation frequency was significantly higher in the high-risk group. Drug sensitivity analysis showed that the low-risk group was more sensitive to Erlotinib, Savolitinib and VE _ 822, which may be used as a potential drug for COAD treatment. Finally, the nomogram constructed by pathological features combined with RiskScore can accurately evaluate the prognosis of COAD patients. This study constructed and verified a TLS model that can predict COAD. More importantly, it provides a reference standard for guiding the prognosis and immunotherapy of COAD patients.


Subject(s)
Biomarkers, Tumor , Colonic Neoplasms , Tertiary Lymphoid Structures , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Colonic Neoplasms/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/mortality , Tertiary Lymphoid Structures/genetics , Tertiary Lymphoid Structures/pathology , Prognosis , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Mutation , Adenocarcinoma/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Middle Aged , Gene Expression Profiling , Antineoplastic Agents/therapeutic use
10.
BMC Cancer ; 24(1): 681, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834966

ABSTRACT

BACKGROUND: Our previous studies have indicated that mRNA and protein levels of PPIH are significantly upregulated in Hepatocellular Carcinoma (LIHC) and could act as predictive biomarkers for patients with LIHC. Nonetheless, the expression and implications of PPIH in the etiology and progression of common solid tumors have yet to be explored, including its potential as a serum tumor marker. METHODS: We employed bioinformatics analyses, augmented with clinical sample evaluations, to investigate the mRNA and protein expression and gene regulation networks of PPIH in various solid tumors. We also assessed the association between PPIH expression and overall survival (OS) in cancer patients using Kaplan-Meier analysis with TCGA database information. Furthermore, we evaluated the feasibility and diagnostic efficacy of PPIH as a serum marker by integrating serological studies with established clinical tumor markers. RESULTS: Through pan-cancer analysis, we found that the expression levels of PPIH mRNA in multiple tumors were significantly different from those in normal tissues. This study is the first to report that PPIH mRNA and protein levels are markedly elevated in LIHC, Colon adenocarcinoma (COAD), and Breast cancer (BC), and are associated with a worse prognosis in these cancer patients. Conversely, serum PPIH levels are decreased in patients with these tumors (LIHC, COAD, BC, gastric cancer), and when combined with traditional tumor markers, offer enhanced sensitivity and specificity for diagnosis. CONCLUSION: Our findings propose that PPIH may serve as a valuable predictive biomarker in tumor patients, and its secreted protein could be a potential serum marker, providing insights into the role of PPIH in cancer development and progression.


Subject(s)
Biomarkers, Tumor , Humans , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Prognosis , Female , Liver Neoplasms/genetics , Liver Neoplasms/blood , Liver Neoplasms/mortality , Gene Expression Regulation, Neoplastic , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/diagnosis , Neoplasms/genetics , Neoplasms/blood , Neoplasms/mortality , Neoplasms/diagnosis , Male , Computational Biology/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Kaplan-Meier Estimate , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/mortality , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/blood , Stomach Neoplasms/diagnosis , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/blood , Colonic Neoplasms/diagnosis , Colonic Neoplasms/pathology , Colonic Neoplasms/mortality , Gene Regulatory Networks
11.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892324

ABSTRACT

SARS-CoV-2 infection ranges from mild to severe presentations, according to the intensity of the aberrant inflammatory response. Purinergic receptors dually control the inflammatory response: while adenosine A2A receptors (A2ARs) are anti-inflammatory, ATP P2X7 receptors (P2X7Rs) exert pro-inflammatory effects. The aim of this study was to assess if there were differences in allelic and genotypic frequencies of a loss-of-function SNP of ADORA2A (rs2298383) and a gain-of-function single nucleotide polymorphism (SNP) of P2RX7 (rs208294) in the severity of SARS-CoV-2-associated infection. Fifty-five individuals were enrolled and categorized according to the severity of the infection. Endpoint genotyping was performed in blood cells to screen for both SNPs. The TT genotype (vs. CT + CC) and the T allele (vs. C allele) of P2RX7 SNP were found to be associated with more severe forms of COVID-19, whereas the association between ADORA2A SNP and the severity of infection was not significantly different. The T allele of P2RX7 SNP was more frequent in people with more than one comorbidity and with cardiovascular conditions and was associated with colorectal cancer. Our findings suggest a more prominent role of P2X7R rather than of A2AR polymorphisms in SARS-CoV-2 infection, although larger population-based studies should be performed to validate our conclusions.


Subject(s)
COVID-19 , Polymorphism, Single Nucleotide , Receptors, Purinergic P2X7 , Humans , Male , Middle Aged , Aged , Aged, 80 and over , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Receptor, Adenosine A2A/genetics , Patient Acuity , COVID-19/complications , COVID-19/genetics , COVID-19/pathology , Genotype , Gene Frequency , Cardiovascular Diseases/complications , Cardiovascular Diseases/genetics , Colonic Neoplasms/complications , Colonic Neoplasms/genetics
12.
N Engl J Med ; 390(21): 1949-1958, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38838311

ABSTRACT

BACKGROUND: Mismatch repair-deficient (dMMR) tumors can be found in 10 to 15% of patients with nonmetastatic colon cancer. In these patients, the efficacy of chemotherapy is limited. The use of neoadjuvant immunotherapy has shown promising results, but data from studies of this approach are limited. METHODS: We conducted a phase 2 study in which patients with nonmetastatic, locally advanced, previously untreated dMMR colon cancer were treated with neoadjuvant nivolumab plus ipilimumab. The two primary end points were safety, defined by timely surgery (i.e., ≤2-week delay of planned surgery owing to treatment-related toxic events), and 3-year disease-free survival. Secondary end points included pathological response and results of genomic analyses. RESULTS: Of 115 enrolled patients, 113 (98%; 97.5% confidence interval [CI], 93 to 100) underwent timely surgery; 2 patients had surgery delayed by more than 2 weeks. Grade 3 or 4 immune-related adverse events occurred in 5 patients (4%), and none of the patients discontinued treatment because of adverse events. Among the 111 patients included in the efficacy analysis, a pathological response was observed in 109 (98%; 95% CI, 94 to 100), including 105 (95%) with a major pathological response (defined as ≤10% residual viable tumor) and 75 (68%) with a pathological complete response (0% residual viable tumor). With a median follow-up of 26 months (range, 9 to 65), no patients have had recurrence of disease. CONCLUSIONS: In patients with locally advanced dMMR colon cancer, neoadjuvant nivolumab plus ipilimumab had an acceptable safety profile and led to a pathological response in a high proportion of patients. (Funded by Bristol Myers Squibb; NICHE-2 ClinicalTrials.gov number, NCT03026140.).


Subject(s)
Antineoplastic Agents, Immunological , Antineoplastic Combined Chemotherapy Protocols , Colonic Neoplasms , DNA Mismatch Repair , Ipilimumab , Neoadjuvant Therapy , Nivolumab , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/surgery , Disease-Free Survival , Ipilimumab/administration & dosage , Ipilimumab/adverse effects , Ipilimumab/therapeutic use , Nivolumab/administration & dosage , Nivolumab/adverse effects , Nivolumab/therapeutic use , Time-to-Treatment , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Netherlands , Young Adult
13.
Cancer Rep (Hoboken) ; 7(6): e2079, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923313

ABSTRACT

BACKGROUND: Liver metastasis of CRC is still the main cause of poor prognosis in patients with CRC. Previous studies have suggested that serpin family C member 1(SERPINC1) is involved in the development of a variety of tumours, but its effect on colorectal cancer progression has been poorly elucidated. METHODS: Based on the GEO database, this study identifies the core gene SERPINC1 associated with liver metastasis in CRC. We used transcriptomic data and immunohistochemical staining to explore the expression of SERPINC1 in normal, cancer, and liver metastases tissue from CRC patients. Clinical data obtained from our hospital were used to explore the impact of SERPINC1 on the prognosis of colon cancer patients. Mechanistically, the biological functions exerted by SERPINC1 in CRC were predicted by bioinformatics, and the results were validated by the results of the experiments in vitro. Cell lines with knockdown of SERPINC1 were performed a series assay such as trans well, CCK-8 and colony formation assay to explore the relationship between SERPINC1 and proliferation and metastasis of CRC cells. Finally, the effect of SERPINC1 on the sensitivity of colon cancer patients to immune checkpoint therapy was evaluated. RESULTS: In CRC liver metastatic tissues, we found significantly high expression of SERPINC1. Briefly, 212 CRC cohorts showed that SERPINC1 was significantly associated with TNM stage and plasma CA19-9 and CEA in CRC patients. Univariate and multivariate Cox demonstrated that SERPINC1 was significantly associated with 5-year survival after radical surgery for colorectal cancer (p < 0.001). Bioinformatics predicted that SERPINC1 affects metastasis of colon cancer through epithelial-mesenchymal transition (EMT). Colony formation assay and CCK-8 assay showed that SERPINC1 promotes malignant proliferation of CRC cells, trans well assay showed that SERPINC1 promotes distant migratory behaviour of CRC cells and protein blotting assay showed that SERPINC1 may promote migration by promoting the TGF-ß1-mediated EMT of CRC cells. In addition, several immunotherapy cohorts also reflected that the expression of SERPINC1 reduced the sensitivity of CRC patients to immune checkpoint therapy. CONCLUSION: Our study identified SERPINC1 as a novel liver metastasis-associated gene in CRC. Targeting SERPINC1 may be a novel therapeutic strategy for patients with liver metastases from CRC.


Subject(s)
Biomarkers, Tumor , Cell Proliferation , Colonic Neoplasms , Disease Progression , Epithelial-Mesenchymal Transition , Liver Neoplasms , Humans , Prognosis , Liver Neoplasms/secondary , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Middle Aged , Cell Line, Tumor , Cell Movement , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality
14.
Cancer Med ; 13(12): e7393, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923428

ABSTRACT

INTRODUCTION: A neurotrophic tropomyosin receptor kinase (NTRK)-tyrosine kinase inhibitor (TKI) has shown dramatic efficacy against malignant tumors harboring an NTRK fusion gene. However, almost all tumors eventually acquire resistance to NTRK-TKIs. METHOD: To investigate the mechanism of resistance to NTRK-TKIs, we established cells resistant to three types of NTRK-TKIs (larotrectinib, entrectinib, and selitrectinib) using KM12 colon cancer cells with a TPM3-NTRK1 rearrangement. RESULT: Overexpression of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) was observed in three resistant cells (KM12-LR, KM12-ER, and KM12-SR) by microarray analysis. Lower expression of sterol regulatory element-binding protein 2 (SREBP2) and peroxisome proliferator activated receptor α (PPARα) was found in two cells (KM12-ER and KM12-SR) in which HMGCS2 was overexpressed compared to the parental KM12 and KM12-LR cells. In resistant cells, knockdown of HMGCS2 using small interfering RNA improved the sensitivity to NTRK-TKI. Further treatment with mevalonolactone after HMGCS2 knockdown reintroduced the NTRK-TKI resistance. In addition, simvastatin and silibinin had a synergistic effect with NTRK-TKIs in resistant cells, and delayed tolerance was observed after sustained exposure to clinical concentrations of NTRK-TKI and simvastatin in KM12 cells. In xenograft mouse models, combination treatment with entrectinib and simvastatin reduced resistant tumor growth compared with entrectinib alone. CONCLUSION: These results suggest that HMGCS2 overexpression induces resistance to NTRK-TKIs via the mevalonate pathway in colon cancer cells. Statin inhibition of the mevalonate pathway may be useful for overcoming this mechanistic resistance.


Subject(s)
Drug Resistance, Neoplasm , Mevalonic Acid , Protein Kinase Inhibitors , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Mevalonic Acid/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Receptor, trkA/metabolism , Receptor, trkA/genetics , Receptor, trkA/antagonists & inhibitors , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Benzamides/pharmacology , Benzamides/therapeutic use , Pyrimidines/pharmacology , Pyrazoles/pharmacology , Indazoles/pharmacology , Indazoles/therapeutic use
15.
BMC Cancer ; 24(1): 758, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914961

ABSTRACT

BACKGROUND: Colon cancer (CC) is a malignancy associated with significant morbidity and mortality within the gastrointestinal tract. Recurrence and metastasis are the main factors affecting the prognosis of CC patients undergoing radical surgery; consequently, we attempted to determine the impact of immunity-related genes. RESULT: We constructed a CC risk model based on ZG16, MPC1, RBM47, SMOX, CPM and DNASE1L3. Consistently, we found that a significant association was found between the expression of most characteristic genes and tumor mutation burden (TMB), microsatellite instability (MSI) and neoantigen (NEO). Additionally, a notable decrease in RBM47 expression was observed in CC tissues compared with that in normal tissues. Moreover, RBM47 expression was correlated with clinicopathological characteristics and improved disease-free survival (DFS) and overall survival (OS) among patients with CC. Lastly, immunohistochemistry and co-immunofluorescence staining revealed a clear positive correlation between RBM47 and CXCL13 in mature tertiary lymphoid structures (TLS) region. CONCLUSION: We conclude that RBM47 was identified as a prognostic-related gene, which was of great significance to the prognosis evaluation of patients with CC and was correlated with CXCL13 in the TLS region.


Subject(s)
Biomarkers, Tumor , Colonic Neoplasms , Microsatellite Instability , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Colonic Neoplasms/mortality , Prognosis , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Aged , Mutation , Gene Expression Regulation, Neoplastic , Disease-Free Survival
16.
Food Funct ; 15(13): 7200-7213, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38896046

ABSTRACT

Colorectal cancer often leads to metastasis, with cancer stem cells (CSCs) playing a pivotal role in this process. Two closely linked mechanisms, epithelial-mesenchymal transition and angiogenesis, contribute to metastasis and recent research has also highlighted the impact of telomere replication on this harmful tumor progression. Standard chemotherapy alone can inadvertently promote drug-resistant CSCs, posing a challenge. Combining chemotherapy with other compounds, including natural ones, shows promise in enhancing effectiveness while minimizing side effects. This study investigated the anti-metastatic potential of Manuka honey, both alone and in combination with 5-fluorouracil, using a 3D model of colonospheres enriched with CSC-like cells. In summary, it was observed that the treatment reduced migration ability by downregulating the transcription factors Slug, Snail, and Twist, which are key players in epithelial-mesenchymal transition. Additionally, Manuka honey downregulated pro-angiogenic factors and shortened CSC telomeres by downregulating c-Myc - demonstrating an effective anti-metastatic potential. This study suggests new research opportunities for studying the impact of natural compounds when combined with pharmaceuticals, with the potential to enhance effectiveness and reduce side effects.


Subject(s)
Colonic Neoplasms , Epithelial-Mesenchymal Transition , Honey , Neoplastic Stem Cells , Neovascularization, Pathologic , Epithelial-Mesenchymal Transition/drug effects , Humans , Neoplastic Stem Cells/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Neovascularization, Pathologic/drug therapy , Cell Line, Tumor , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Fluorouracil/pharmacology , Leptospermum/chemistry , Cell Movement/drug effects , Neoplasm Metastasis , Telomere/drug effects , Telomere Homeostasis/drug effects , Angiogenesis
17.
Aging (Albany NY) ; 16(11): 9918-9932, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38850524

ABSTRACT

BACKGROUND: Colon cancer (CC) is the most frequently occurring digestive system malignancy and is associated with a dismal prognosis. While super-enhancer (SE) genes have been identified as prognostic markers in several cancers, their potential as practical prognostic markers for CC patients remains unexplored. METHODS: We obtained super-enhancer-related genes (SERGs) from the Human Super-Enhancer Database (SEdb). Transcriptome and relevant clinical data for colon cancer (CC) were sourced from the Gene Expression Omnibus (GEO) database. Subsequently, we identified up-regulated SERGs by the Weighted Gene Co-expression Network Analysis (WGCNA). Prognostic signatures were constructed via univariate and multivariate Cox regression analysis. We then delved into the mechanisms of these predictive genes by examining immune infiltration. We also assessed differential sensitivities to chemotherapeutic drugs between high- and low-SERGs risk patients. The critical gene was further validated using external datasets and finally confirmed by qRT PCR. RESULTS: We established a ten-gene risk score prognostic model (S100A11, LZTS2, CYP2S1, ZNF552, PSMG1, GJC1, NXN, and DCBLD2), which can effectively predict patient survival rates. This model demonstrated effective prediction capabilities in survival rates at 1, 3, and 5 years and was successfully validated using external datasets. Furthermore, we detected significant differences in immune cell infiltration between high- and low-SERGs risk groups. Notably, high-risk patients exhibited heightened sensitivity to four chemotherapeutic agents, suggesting potential benefits for precision therapy in CC patients. Finally, qRT-PCR validation revealed a significant upregulation of LZTS2 mRNA expression in CC cells. CONCLUSION: These findings reveal that the SERGs model could effectively predict the prognosis of CC.


Subject(s)
Biomarkers, Tumor , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Colonic Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics , Transcriptome , Databases, Genetic , Gene Expression Profiling , Female , Gene Regulatory Networks
18.
Sci Rep ; 14(1): 13906, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886545

ABSTRACT

Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.


Subject(s)
Cdc20 Proteins , Core Binding Factor Alpha 2 Subunit , Gene Expression Regulation, Neoplastic , Minichromosome Maintenance Complex Component 2 , Ubiquitination , Humans , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Cdc20 Proteins/metabolism , Cdc20 Proteins/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Complex Component 2/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cell Proliferation/genetics , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Disease Progression , Cell Movement/genetics
19.
Nat Genet ; 56(7): 1456-1467, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38902475

ABSTRACT

According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, has been shown to suppress intestinal stemness. Here, we used Paneth cells as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation in mice. Upon inflammation, Paneth cell-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in patients with inflammatory bowel disease, but also of a larger fraction of human sporadic colon cancers. The latter is possibly because of the inflammatory consequences of western-style dietary habits, a major colon cancer risk factor. Machine learning methods designed to predict the cell-of-origin of cancer from patient-derived tumor samples confirmed that, in a substantial fraction of sporadic cases, the origins of colon cancer reside in secretory lineages and not in stem cells.


Subject(s)
Carcinogenesis , Cell Lineage , Colonic Neoplasms , Inflammation , Paneth Cells , Animals , Mice , Cell Lineage/genetics , Paneth Cells/pathology , Humans , Inflammation/genetics , Inflammation/pathology , Carcinogenesis/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Mutation , Stem Cells/pathology , Cell Differentiation/genetics , Cell Transformation, Neoplastic/genetics , Adenomatous Polyposis Coli Protein/genetics , Mice, Inbred C57BL , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology
20.
Life Sci ; 351: 122851, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38897345

ABSTRACT

AIMS: Pannexin-1 (PANX1) is a hemichannel that releases ATP upon opening, initiating inflammation, cell proliferation, and migration. However, the role of PANX1 channels in colon cancer remains poorly understood, thus constituting the focus of this study. MAIN METHODS: PANX1 mRNA expression was analyzed using multiple cancer databases. PANX1 protein expression and distribution were evaluated by immunohistochemistry on primary tumor tissue and non-tumor colonic mucosa from colon cancer patients. PANX1 inhibitors (probenecid or 10Panx) were used to assess colon cancer cell lines viability. To study the role of PANX1 in vivo, a subcutaneous xenograft model using HCT116 cells was performed in BALB/c NOD/SCID immunodeficient mice to evaluate tumor growth under PANX1 inhibition using probenecid. KEY FINDINGS: PANX1 mRNA was upregulated in colon cancer tissue compared to non-tumor colonic mucosa. Elevated PANX1 mRNA expression in tumors correlated with worse disease-free survival. PANX1 protein abundance was increased on tumor cells compared to epithelial cells in paired samples, in a cancer stage-dependent manner. In vitro and in vivo experiments indicated that blocking PANX1 reduced cell viability and tumor growth. SIGNIFICANCE: PANX1 can be used as a biomarker of colon cancer progression and blocking PANX1 channel opening could be used as a potential therapeutic strategy against this disease.


Subject(s)
Colonic Neoplasms , Connexins , Disease Progression , Nerve Tissue Proteins , Animals , Female , Humans , Male , Mice , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/genetics , Connexins/metabolism , Connexins/genetics , Gene Expression Regulation, Neoplastic , HCT116 Cells , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Probenecid/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...